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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Master of Science

ITERATIVE METHODS FOR SOLVING NONLINEAR EQUATIONS
WITH MULTIPLE ZEROS

By

NUR ALIF AKID JAMALUDIN

May 2018

Chairman : Nik Mohd Asri Nik Long, PhD
Faculty : Science

This thesis discusses the problem of finding the multiple zeros of nonlinear equa-
tions. Six two-step methods without memory are developed. Five of them posses
third order convergence and an optimal fourth order of convergence. The optimal or-
der of convergence is determined by applying the Kung-Traub conjecture. These
method were constructed by modifying the Victory and Neta’s method, Osada’s
method, Halley’s method and Chebyshev’s method. All these methods are free from
second derivative function. Numerical computation shows that the newly modified
methods performed better in term of error. The multiplicity of roots for the test func-
tions have been known beforehand. Basin of attraction described that our methods
have bigger choice of initial guess.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Master Sains

KAEDAH LELARAN UNTUK MENYELESAIKAN PERSAMAAN TAK
LINEAR DENGAN PUNCA BERULANG

Oleh

NUR ALIF AKID JAMALUDIN

Mei 2018

Pengerusi : Nik Mohd Asri Nik Long, PhD
Fakulti : Sains

Tesis ini membincangkan masalah mencari punca berulang bagi persamaan tak lin-
ear. Enam kaedah lelaran dua langkah tanpa memori dibangunkan. Lima dari-
padanya mempunyai penumpuan darjah ketiga dan satu lagi penumpuan optimal
darjah keempat. Penumpuan darjah optimal ditentukan oleh konjektur Kung-Traub.
Kaedah ini dibina dengan ubah suai kaedah Victory dan Neta, kaedah Osada, kaedah
Halley dan kaedah Chebyshev. Kaedah-kaedah ini adalah bebas daripada perbezaan
funsi peringkat kedua. Pengiraan berangka menunjukan kaedah baharu yang di ubah
suai adalah lebih baik dari segi ralat. Bilangan punca berulang untuk setiap fungsi
ujian diketahui sebelumnya. Bekas tarikan menerangkan bahawa kaedah kami mem-
punyai pilihan nilai awal yang lebih besar.
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CHAPTER 1

INTRODUCTION

Solving root-finding problem of nonlinear equation is an important research work in
the theory and practice, not only in applied mathematics, but also in many branches
of engineering science, physics, computer sciences and others. Let f (x) be real
single-valued function. If f (x∗) = 0, then x∗ is known as zero of f (x) or root of the
equation

f (x) = 0. (1.1)

Assume that f (x) has certain number of continuous derivative in the neigh-
bourhood of zeros, x∗. Root of equation can be found analytically in some special
cases. Finding roots problem are commonly solved by an approximation to the zero,
x∗ by introduce some iterative methods.

Let xk,xk−1, ...,xk−n be n+ 1 approximate to x∗. Let xk+1 be determined uniquely
by the information obtained at points xk,xk−1, ...,xk−n. Let the function that map
xk,xk−1, ...,xk−n into xk+1 be denoted as φ . Thus

xk+1 = φ(xk,xk−1, ...,xk−n), (1.2)

where φ is called as an iteration function.

1.1 Classification of iterative methods

Traub (1982) classified the iterative methods by the information requires for approx-
imation to roots, x∗.

1. One-point iterative methods without memory

Let xk+1 be determined by the only new information at xk, which no
previous information is reused.

xk+1 = φ(xk) (1.3)

1
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where φ is iteration function. One-point iterative method are mostly
used for root-finding problem. The well-known method for one-point iterative
method is Newton’s method.

2. One-point iterative methods with memory

Let xk+1 be defined a new approximate information at xk and the
information at xk−1, ...,xk−n are reused. Thus

xk+1 = φ(xk;xk−1, ...,xk−n), (1.4)

where semicolon in (1.4) is used to separate from the new data are used
from the point at which previous information are reused. The most popular
iterative method for one-point method with memory is secant method.

3. Multipoint iterative method without memory

Let xk+1 be determined by the new information at xk,wi(xk), ...,wn(xk),
k > 1, only one new information from previous iteration are used and no old
information is reused,

xk+1 = φ(xk,wi(xk), ...,wn(xk)) (1.5)

where φ is called a multipoint iteration function without memory. There are
extensive applications on multipoint iterative method without memory in
approximation at x∗, for example Ostrowski (1966), Schröder and Stewart
(1998) and Homeier (2009).

4. Multipoint iterative method with memory

Let z j represents the i+1 quantities x j,w1(x j), ...,wk(x j),(k > 1). Thus

xk+1 = φ(zk;zk−1, ...,zk−n), (1.6)

where φ is said to be multipoint iteration function with memory.

2
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1.2 Initial Approximation

For any iterative methods for solving nonlinear equation, f (x) = 0 must require the
knowledge of initial approximation, x0 in finding the zeros, x∗. Thus, the initial
guess, x0 needs to be chosen properly and close to the sought of zeros for having
good convergence of any iterative methods either for one-point iterative methods as
well multipoint iterative methods. The advantage of the choice of initial approxima-
tion is become more important if we applied on high-order iterative methods due to
sensitivity of perturbation.

1.3 Efficiency Index

Let τ be the number of function evaluations per iteration and ρ be an order of
methods. Kung and Traub (1974) defined the information efficiency or coefficient
of efficiency of an iterative method by the ratio

IE =
ρ

τ
. (1.7)

Other definition was introduced by Ostrowski (1966), which is called the effi-
ciency index, written as

EI = ρ

1
τ = τ

√
ρ. (1.8)

Kung and Traub (1974) gave a more realistic estimation of the computational
efficiency by defining the computational cost as τ = ∑τ( j), where τ( j) is the
computational cost of f and its derivatives f ( j)( f (0) ≡ f ). The computational
cost τ is usually expressed by the number of evaluations of the function and its
derivatives. The main intention of establishing a new method is to obtain a method
with the best possible efficiency index. It is fascinating to attain as high as possible
convergence order with fixed number of function evaluation per iteration. For the
case of multipoint method without memory this interest is closely related to the
optimal order of convergence considered in the Kung-Traub conjecture (Kung and
Traub, 1974).
Kung-Traub’s conjecture: Multipoint iterative methods without memory, demanding
n+1 function evaluations per iteration, have order of convergence at most 2n.
According to Kung-Traub conjecture the optimal efficiency index is equal to

EI(optimal)
n = 2

( n
n+1

)
.

3
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1.4 Computational Order of Convergence

The convergence rate is defined by the order of convergence. Computional Order
of Convergence (COC) is use to check the order of convergence of an iterative
method during its practical implementation and estimate how much it differs from
the theoretical order.
Weerakoon and Fernando (2000) introduced the formula for calculation of COC, as

COC ≈ ln |(xk+1− x∗)/(xk− x∗)|
ln |(xk− x∗)/(xk−1− x∗)|

. (1.9)

The COC has been used in many papers to test numerically the order of convergence
of new methods whose order has been previously studied theoretically, such as
Bi et al. (2009), Ferrara et al. (2015) and Sharifi et al. (2016). Another approach
that avoid the use of unknown zero x∗ was studied by Grau-Sánchez et al. (2010)
by introducing a more realistic relationship, approximated computational order
convergence (ACOC) defined by

ACOC ≈ ln |(xk+1− xk)/(xk− xk−1)|
ln |(xk− xk−1)/(xk−1− xk−2)|

. (1.10)

1.5 One-point methods

1.5.1 One-point iterative methods for simple root

The most popular one-point iterative method for solving nonlinear equation is
Newton’s method or also known as Newton-Raphson’s method (Petkovic et al.,
2012) written as

xk+1 = xk−
f (xk)

f ′(xk)
;(k = 1,2,3, ...), (1.11)

which is quadratically convergence. The new approximation of xk+1 to the root of
x∗ is produced by the tangent line of f (xk) at point xk. We assume

f ′(xk) =
f (xk+1)− f (xk)

xk+1− xk
, (1.12)

when f (xk+1) = 0, yield method (1.11).

4
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For the small values of h the approximation

f ′(x)≈ f (x+h)− f (x)
h

, (1.13)

holds. By choosing two consecutive points approximation xk−1 and xk the
approximation to the first derivative in (1.13) becomes

f ′(xk)≈
f (xk)− f (xk−1)

xk− xk−1
, (1.14)

substitutes (1.14) into (1.11) yields

xk+1 = xk−
xk− xk−1

f (xk)− f (xk−1)
f (xk), (1.15)

which is second order convergence method. This method also known as se-
cant method (Petkovic et al., 2012). Method (1.15) is the example of iterative
method which is free from any derivative functions.
The well known Halley’s method (Petkovic et al., 2012) is the example of third
order iterative method for simple root, given by

xk+1 = xk−
f (xk)

f ′(xk)

1

1− f (xk) f ′′(xk)

2 f ′(xk)2

. (1.16)

From method (1.16) the famous Chebyshev’s method (Petkovic et al., 2012)
is given by

xk+1 = xk−
f (xk)

f ′(xk)

(
1+

f (xk) f ′′(xk)

2 f ′(xk)2

)
, (1.17)

which cubically convergence.

5
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1.5.2 Iterative method by using Traub’s relation

Let x∗ be a root of multiplicity m of function f to generalize the basic sequence of
root solver. The following difference-differential recurrence relation are derived by
Traub (1982) which is given by

φρ+1(x) = φρ(x)−
m
ρ

f (x)
f ′(x)

φ
′
ρ(x), ... (1.18)

where φρ(x) determined as an iterative method of order ρ .

Theorem 1.1 (Petkovic et al., 2012) Let φρ(x) be an iteration function which
defines the method xk+1 = φρ(xk)(k = 0,1, ...) of order ρ for finding a simple or
multiple zeros of the given sufficiently differentiable function f . Then the iterative
method

φρ+1(xk) = φρ(xk)−
m
ρ

f (xk)

f ′(xk)
φ
′
ρ(x) (ρ ≥)2,(k = 0,1,2, ...) (1.19)

arise from (1.18), has the order of convergence ρ +1

The example of method that apply Traub’s relation is third-order Halley-like method
(Petkovic et al., 2012) for multiple roots, H(x) as in equation (2.5) . By finding the
derivative of H ′(x) in (2.5) and equation (1.18), we have the following formulae

H4(x) = H(x)− m
3

f (xk)

f ′(xk)
H ′(x). (1.20)

For simplicity, let u =
f (x)
f ′(x)

and C j =
f j(x)

j! f ′(x)
( j = 2,3, ...). Hence the fourth-order

method (1.20) becomes

H4(x) = x−
mu(7+6m−m2−m2−12muC2 +12m2u2(C2

2 −C3))

3(m+1−2muC2)2 (1.21)

The construction of higher-order method using H4 can be proceed but these
iterative method will becomes slightly large and more complex form.

6
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1.6 Multipoint methods

1.6.1 Composite multipoint method

This type of construction methods is defined in Traub (1982). The first example
of composition method is Newton-Halley’s method (Petkovic et al., 2012) which
written as


yk = xk−

f (xk)

f ′(xk)
,

xk+1 = yk−
f (xk)

f ′(xk)−
f (yk) f ′′(yk)

2 f ′(yk)

, (1.22)

The efficiency index (1.8) of Newton’s method, (1.11), Halley’s method, (1.16) and
the Newton-Halley’s method, (1.22) are

EIN =
2√2 = 1.414, (1.23)

EIH =
3√3 = 1.442 (1.24)

and
EINH =

5√6 = 1.431, (1.25)

respectively. From the value of efficiency index, shows that the composite
method (1.22) is not example of succeseful two-point method, because for construc-
tion of composite iterative method, it necessary for method to have decrease the
number of function evaluation, inducing the increase of computational efficiency.
The other example of composite method is the combination of Newton (1.11) and
secant methods (1.15), yields Newton-secant’s method (Petkovic et al., 2012)

xk+1 = xk−

f (xk)
f ′(xk)

f (xk)

f (xk)− f (xk−
f (xk)
f ′(xk)

)
, (1.26)

which is cubically convergence and its require three function evaluations per step.
Thus, the efficiency index of Newton-secant’s method (1.26) is EINS =

3√3 = 1.442,
which is greater than efficiency index of Newton-Halley’s method (1.22). Note
that Newton-secant’s methods (1.26) are not an optimal methods in the sense of
Kung-Traub conjecture, which assume that for three function evaluations should

7
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provide the optimal order four (see Section 1.3). The application of composite
method for multiple roots is applied by Chun et al. (2009).

1.6.2 Optimal two-point method of Jarratt’s type

Construction of optimal two-point method is using Jarratt’s scheme in Jarratt (1966).
Let define the functions

w1(x) =
f (x)
f ′(x)

, w2(x) =
f (x)

f ′
(
x+βw1(x)

) .
Traub (1982) showed that the iterative formulae

xk+1 = xk−a1w1(xk)−a2w2(xk), (1.27)

which have cubic convergence and required one evaluation of f (x) and two
of f ′(x) per iteration. In order to obtain fourth order convergence, Jarratt (1966)
presented the similar class of iterative methods of the form

xk+1 = xk−φ1(xk)−φ2(xk), (1.28)

where

φ1(x) = a1w1(x)−a2w2(x),

φ2(x) =
f (x)

b1 f ′(x)+b2 f ′(x+βw1(x))
.

Jarratt (1966) successfully increased the order of convergence (1.27) from
three to four without additional function evaluation. This type of construction of
optimal two-point method for simple root are extensively apply in Kou et al. (2007),
Chun and Ham (2008), Basu (2008) and Sharma et al. (2009).

1.6.3 Jarratt-like method for optimal two-point method

Let consider a two-point method in the form

8
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
yk = xk−

2
3

f (xk)

f ′(xk)
,

xk+1 = xk−Q(tk)
f (xk)

f ′(xk)
,

(1.29)

where Q(tk) is weight function to be determined the fourth order convergence
of method (1.29). The weight function Q(tk) be approximated by its Taylor’s
polynomial of third degree at the point t = 1, given by

Q(t)≈ Q(1)+Q′(1)(t−1)+
Q′′(1)

2
(t−1)2 +

Q′′′(1)
6

(t−1)3; t =
f ′(y)
f ′(x)

. (1.30)

Let ek = xk+1 − x∗, C j =
f j(x)

j! f ′(x)
( j = 2,3, ...) and substitute (1.30) into (1.29)

yields

ek+1 = (1−Q(1))ek +C2
(
Q(1)+

4
3

Q′(1)
)
e2

k −
2
9

(
9C2

2Q(1)−9C3Q(1)

+24C2
2Q′(1)−12C3Q′(1)+4C2

2Q′′(1)

)
+

1
81

(
324C3

2Q(1)

−567C2C3Q(1)+243C4Q(1)+1404C3
2Q′(1)−1512C2C3Q′(1)

+312C4Q′(1)+504C3
2Q′′(1)−288C2C3Q′′(1)+32C3

2Q′′′(1)

)
e4

k +O(e5
k).

(1.31)

In order the method of (1.29) to be fourth order convergence, then the coeffi-
cient in (1.31) of ek,e2

k and e3
k must be vanished. These condition are satisfied when

the weight function Q(t) in (1.29) have the following properties :

Q(1) = 1, Q′(1) =−3
4
, Q′′(1) =

9
4
, |Q′′′(1)< ∞|

Thus, the error term (1.29) becomes

ek+1 =
(
−C2C3 +

1
9

C4 +C3
2
(
5+

32
81

Q′′′(1)
))

e4
k +O(e5

k). (1.32)

9
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1.7 Objectives

The main objectives of the research are :

• to modified a two-point iterative methods of nonlinear equation for multiple
zeros which is free from second derivative functions.

• to attain the third and fourth order of convergence iterative method for
computing multiple zeros.

• to obtain numerical result of modified methods by using test functions.

• to investigate the modified methods in term of availability in choosing initial
guess by using basin of attraction.

• to compare the developed methods with the other existing iterative methods
in term of numerical performance and basin of attraction with same order of
convergence.

1.8 Scopes of the research

We are dealing with solving the nonlinear equation of multiple roots. The ap-
proximation of the roots are based on the iterative method without memory, which
is only used some new informations and no old information been reused per iteration.

We apply the proposed methods and other existing methods with several test func-
tions with the known of their multiplicity roots. The calculation of absolute error
have been used to observe the convergence behaviour of those methods. We in-
troduce basin of attraction for those method to observe the accessibility of initial
approximation.
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