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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the Degree of Master of Science 

 

INFLUENCE OF NbO2 AND SnO2 ADDITIONS ON THE PROPERTIES 

OF YBa2Cu3O7-δ BULK SUPERCONDUCTOR SYNTHESISED VIA THERMAL 

TREATMENT METHOD 

 

By 

 

NUR NABILAH MOHD YUSUF 

 

April 2018 

 

Chairman : Mohd Mustafa Awang Kechik, PhD  

Faculty  : Science 

 

YBa2Cu3O7-δ bulk sample had been synthesized using thermal treatment method. The 

microstructure and superconducting properties of the sample with the addition of NbO2 

and SnO2 were studied. Both additions improve the resistance-temperature, R-T 

properties with smaller superconducting transition, ∆T compared to pure sample. While 

alternating current susceptibility, ACS measurement showed degradation of 

intergranular coupling with enhanced intragranular pinning strength in NbO2 added 

sample, enhanced coupling is observed in SnO2 added sample. Among the added 

sample, maximum Josephson current, Io is found to be the highest in 0.8 wt% NbO2 

(131.44 μA) and 0.4 wt% SnO2 (664.42 μA) compared to pure sample (146.05 μA). X-

ray diffraction analysis revealed that NbO2 added sample leads to the formation of 

YBa2NbO6 phase while SnO2 addition reduces the Y211 secondary phase in the Y123 

sample. Y123 phase is found to enhanced with SnO2 addition up to 95.8 % (0.4 wt%) 

compared to 91.5% in pure sample. The scanning electron microscope, SEM images 

showed an increase in grain size as both addition increases. Sponge-like grain 

structures is observed in NbO2 and is randomly distributed across the sample pertained 

to YBa2NbO6 phase while SnO2 addition causes Sn to precipitate on the surface sample 

and agglomerates at the grain boundaries. Here, SnO2 addition seems to have the upper 

hand as the overall current transport in high Tc is governed by the intergranular 

coupling where weak links is associated.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Master Sains 

 

PENGARUH NbO2 DAN SnO2 KE ATAS CIRI-CIRI KESUPERKONDUKSIAN 

BAGI SUPERKONDUKTOR YBa2Cu3O7-δ PUKAL 

 

Oleh 

 

NUR NABILAH MOHD YUSUF 

 

April 2018 

 

Pengerusi : Mohd Mustafa Awang Kechik, PhD 

Fakulti          : Sains 

 

Sampel pukal YBa2Cu3O7-δ telah disintesis melalui kaedah rawatan termal. Perubahan 

sifat elektrik dan mikrostruktur sampel tersebut dengan penambahan NbO2 dan SnO2 

telah dikaji. Kedua-dua jenis penambahan telah menunjukkan kemajuan dalam sifat 

suhu-rintangan (R-T) dengan pengecilan julat suhu peralihan kesuperkonduksian, ∆T 

berbanding sampel asal. Bagi sampel berpenambahan NbO2, kerentanan semasa 

alternative, ACS telah menunjukkan kemerosotan dalam pengepinan antara butiran dan 

menguatkan pengepinan dalam butiran. Penambahan SnO2 pula menguatkan lagi 

pengepinan antara butiran. Nilai arus kritikal Josephson, Io dalam kalangan sampel 

berpenambahan memberikan nilai tertinggi pada sampel 0.8 wt% NbO2 (131.44 μA) 

dan 0.4 wt% SnO2 (664.42 μA) berbanding sampel asal, (146.05 μA). Analisis difraksi 

X-ray mendedahkan bahawa penambahan NbO2 membentuk fasa baru, YBa2NbO6 

manakala penambahan SnO2 dapat mengurangkan fasa sekunder Y211 dalam sampel.  

Fasa major Y123 pula didapati meningkat dengan adanya penambahan SnO2 sehingga 

95.8 % (0.4 wt%) berbanding 91.5% dalam sampel asal. Imej mikroskop pengimbasan 

elektron, SEM mempamerkan pembesaran saiz butiran seiring pertambahan berat 

peratusan NbO2 dan SnO2. Penambahan NbO2 membawa kepada pertumbuhan 

berbentuk spong dek fasa YBa2NbO6. Pertambahan berat peratusan SnO2 menyebabkan 

penepuan Sn berlaku lalu membentuk aglomerasi Sn di sempadan butiran pada 

permukaan sampel. Memandangkan arus superkonduktor lebih dipengaruhi oleh sifat 

ikatan yang lemah dan pengepinan di antara butiran berbanding dalam butiran, maka 

SnO2 dilihat mempunyai kelebihan berbanding NbO2.  
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INTRODUCTION 

 

1.1   Introduction to superconductor and its potentials 

 

In order to fight the enormous challenge of climate change and annual depletion of 

fossil fuels, renewable energy is our alternative solution. Unlike oil and gas, renewable 

energies are generated by natural sources such as sunlight and wind which are 

constantly replenish. However, reducing our dependence on oil and gas is only part of 

the solution. We need to conserve energy and improve the energy efficiency of our 

electrical system. 

 

Despite the growing demand for electrical energy, the electrical system we have today 

is incredibly inefficient especially during the transport of electricity from one source to 

another. Although copper are good conductors for electrical wiring, approximately 60 

to 80 percent of the energy that goes into the system is lost and wasted mostly to heat 

and sound during the transportation. Thus, further investment, research and 

development are required to find better material that has better efficiency to meet the 

ever increasing energy demand (Kaygusuz, 2012). 

 

This is where superconductor comes in handy. Unlike conventional conductors, 

superconductor has the ability to conduct electricity with zero resistance. As such, there 

will be no loses in the form of energy. This phenomenon of superconductivity however 

can only be achieved upon cooling the material below its transition temperature, Tc in 

which the material loses its resistance (Khare, 2003). In other words, superconducting 

materials act like perfect conductors but with better striking properties such as perfect 

diamagnetism (Tinkham, 1996).  

 

The absence of resistance in the superconductor allows the current to flow without 

measurable decay with time hence, perfect conductivity. Perfect conductivity 

successfully explains the exclusion of external magnetic field from entering the 

superconductor (Tinkham, 1996). However, later it appears that not only the external 

field but, the field which is originally inside a superconductor itself is expelled too 

when cooled below its Tc. This is known as perfect diamagnetism (Ginzburg & 

Andryushin, 2004). These properties are the prerequisite for most potential electrical 

applications, such as high-current transmission lines or high-field magnets (Sarrao et 

al., 2006). 

 

In electrical power devices, the ability of superconductors to sustain higher current 

densities and lower losses enables it to have higher specific power and efficiency 
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compared to conventional conductors.  Superconductors are also able to generate large 

magnetic flux density with values that are constant in time. They can trap magnetic flux 

and have strong diamagnetic response to changes in magnetic flux with nonlinear 

relationship between current density and electric field near the superconducting 

transition (Sarrao et al., 2006). 

1.2   Material aspects of superconductor 

While it is desirable to replace the wires in conventional electrical power devices or 

electromagnets with superconducting wires, the high cost of cooling makes it 

unrealistic for widespread use. This is due to the fact that only at extremely cold 

temperature would the material possess superconductivity. However, there is an 

alternative to superconducting wires that provides the same benefits. It is ‘bulk 

superconductors’, a generic class of material that includes large single-grain blocks and 

sintered structures (Hull & Murakami, 2004). 

To this day, many researches have been done to find materials that can sustain 

superconductivity at room temperature. One of the promising materials with excellent 

ability to carry high superconducting critical current in high magnetic field despite 

having a lower Tc of 92 K is YB2C3O7-δ (Kechik, 2010). To date, the feasibility of 

YBCO to be manufactured in a large scale makes it one of the most studied high 

temperature superconductor (HTS) in the industry. A more detailed account regarding 

the properties of this material is given in section 2.3. 

The fact that the properties of YBCO or any other superconducting material can be 

enhanced by introducing defects or altering the parameter during the synthesis 

technique makes the study about the subject matter still on going. Never the less, the 

researches’ aim is always to get higher Tc superconductor with enhanced critical 

current density, Jc for application wise. 

1.3   Applications of superconductors 

Due to its ability to have higher power and efficiency in conducting current, more and 

more instruments as well as electrical devices today have started to employ 

superconductor in its system. Magnetic Resonance Imaging (MRI) is one of the 

commonly used machines in hospitals that employs superconductor in its system.  

A superconducting MRI magnet is an electromagnet made of niobium-titanium 

superconducting wire. Once current is caused to flow in the coil, it will continue to 

flow as long as the coil is kept immersed in liquid helium during the MRI scan. 

Although some losses do occur over time due to infinitely small resistance in the coil, 

these losses are usually only a few parts per million of the main magnetic field per year 

(Coyne, 2017) 
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Trains that employ superconductor have also been faster and more efficient. Magnetic 

Levitation Train, MAGLEV, has been widely used in the Europe and even China with 

the idea of levitating the train on top of the railway so that it moves without friction. 

The speed and direction can be fully controlled by the superconducting magnets which 

are made by coils of superconducting wires immersed in liquid nitrogen. 

 

1.4   Today’s challenge in superconductor research  

 

Though many efforts have been made to further understand the phenomenon of a 

superconductor, there are still more questions than answers regarding this remarkable 

behaviour. Through the experience of other researches, it is rather known that in most 

cases, critical temperature, Tc of a superconductor does not have a linear relationship 

with its critical current density, Jc. Most of them showed that while trying to 

increase Tc, Jc would be slowly diminished and vice versa. While the aim is to find 

superconducting materials with high Tc to operate at higher temperature, having larger 

Jc is also crucial for practical industrial use. Thus, until today, endless researches have 

been made to find any possible way to elevate Tc or improve Jc of superconductors if 

not both. 

 

Although we know that introducing defects by adding impurities in a superconductor 

can act as flux pinning centre, there is not quite a handbook of which element would or 

would not work on improvising the properties of a superconductor. Different result 

could also be obtained simply by altering the temperatures and the holding time during 

the heat treatment process, what more using different synthesis methods.  

 

To date, thermal treatment method has been widely used to produce nano magnetic 

material, but it is yet to be implemented in the synthesis of a superconductor. Although 

this method is expected to yield nano materials, in terms of YBa2Cu3O7-δ, micro-size 

grains is expected due to its high sintering temperature (Dihom et al., 2017). Compared 

to other wet methods, thermal treatment uses less material and has less by-product 

effluents. Hence, for a more environmental friendly route, it is one of the aim of this 

study to implement this method in the synthesis of YBa2Cu3O7-δ. 

 

Various elements and compounds such as Ca, K, Zr, Al2O3, BaZrO3, Nd2O3 and CNT 

have been introduced in the YBa2Cu3O7-δ matrix and had successfully enhance either Jc 

or Tc of the material (Dihom et al., 2017; Guner et al., 2012; Jha & Khare, 2010; Khalid 

et al., 2018; Ramli et al., 2016; Yeoh et al., 2009). However, less study has been made 

for the addition of SnO2 and NbO2 in YBa2Cu3O7-δ. Up to now, the effects of NbO2 and 

SnO2 addition in YBa2Cu3O7-δ compound synthesised via thermal treatment method has 

not yet been reported. 
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1.5   Objectives 

 

In this study, YBa2Cu3O7-δ or Y123 is prepared via new method called thermal 

treatment method which will be further discussed in Chapter 3 with additions of NbO2 

and SnO2 powder in between the heat treatments. The objectives are as stated below: 

 

1) To synthesise Y123 bulk superconductor via thermal treatment method. 

 

2) To study the influence of NbO2 and SnO2 addition towards the morphology of 

Y123 bulk sample. 

 

 

3) To investigate the effects of NbO2 and SnO2 addition towards the 

superconducting properties of Y123. 
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