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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 
of the requirements for the degree of Master of Science.

STUDY OF THERMAL DIFFUSIVITY OF LIQUID REDUCED GRAPHENE 
OXIDE BY USING THERMAL WAVE RESONANT CAVITY TECHNIQUE 

By

ROSNO KINSU 

December 2017 

Chair  : Nor Kamilah Sa’at, PhD 
Faculty : Science 

Graphene oxide (GO) exhibit excellent thermal properties where it has ability to 
diffuse heat efficiently. By reducing the GO to the reduced graphene oxide (rGO), 
the thermal diffusivity (TD) can be enhanced. The aim of study are to measure 
various standard liquid thermal diffusivities by employing a Thermal Wave Resonant 
Cavity (TWRC) technique, and secondly to study the thermal, optical property as 
well as morphology of rGO fabricated by ultra violet (UV) and Nd:YAG laser 
radiations at various exposure time. In order to achieve the first objective, the liquid 
thermal diffusivities (water, glycerol and ethylene glycol) were measured by using 
the TWRC technique and calculated via a normalisation procedure.  For this, a 
control program in LabView programming language was written to automate the set-
up in measuring the TD.  For the second objective, it was achieved by reducing GO 
in water suspension with UV and Nd:YAG laser irradiation.  The thermal, optical, 
morphological properties of it were investigated by TWRC technique, UV-Vis 
spectroscopy, X-Ray Photoelectron Spectroscopy (XPS), and   a Field-emission 
Scanning Electron Microscopy (FeSEM). 

Without the normalization process on the TWRC technique, TD of standard liquid 
water obtained by the cavity scan is 1.431×10-3 and 1.435×10-3 cm2s-1 for phase and 
amplitude, respectively, and very close to literature (0.5%).  This shows that the 
current TWRC set up is reliable enough and can be used to measure liquid TD.  With 
the normalisation process, TD of water with for frequency scan of amplitude signal 
with respect to literature improves tremendously to 1.6% but with a little increase for 
that of phase signal, 3.5%.  For cavity scan, TD of water for amplitude signal and for 
phase are 0.6% and 1.9%, respectively, with respect to literature which are very 
small indeed. Over all this agrees with the first hypothesis. 
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The TD measurement revealed that the rGO produced with UV radiation has higher 
value compared to that of with laser. The trend is apparent when the irradiation time 
increased. Accordingly, its TD decreased at higher rGO concentration.  FeSEM 
images revealed that the UV radiation reduced graphene oxide (UVrGO) sample has 
more ripples, deeper wrinkles, and fluffier texture compared to that of laser reduced 
graphene oxide (LrGO). The coarser rGO surface suggests the higher rate of 
reduction. The UV-Vis peak of UVrGO has shifted further to red than that of LrGO, 
complimenting morphology results. The XPS survey analysis showed that atomic 
concentration of carbon increases whilst the concentration of carbon containing C-O, 
and C=O group decreases. Hence, verifying the reduction of GO to rGO. As a 
conclusion, exposing GO to UV or laser radiation will reduce it to rGO, consequently 
increasing its TD. The reduction rate was highly influenced by type of treatment and 
exposure time. It was found that UVrGO give higher reduction rate and higher 
increase in TD when the exposure time increased as compared to LrGO. These 
findings have given a promising future for rGO to be further studied as an alternative 
to conventional liquid conductors. 
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Abstark tesis ini diserahkan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Master Sains  

KAJIAN KEMERESAPAN TERMA BAGI GRAFIN OKSIDA DITURUN 
MENGGUNAKAN TEKNIK RONGGA RESONAN GELOMBANG TERMA. 

Oleh 

ROSNO KINSU 

Disember 2017 

Pengerusi : Nor Kamilah Sa’at, Ph.D.
Fakulti : Sains 

Grafin oksida (GO) menunjukkan sifat terma yang unggul, bahan ini boleh 
meresapkan haba secara efisien. Keresapan terma (TD) bahan ini boleh ditingkatkan 
dengan menurunkan GO kepada grafin oksida terturun rGO. Matlamat kajian ini 
adalah untuk mengukur TD beberapa cecair piawai menggunakan teknik rongga 
resonan gelombang terma (TWRC), dan keduanya adalah untuk mengkaji sifat optik 
serta morfologi rGO yang dihasilkan menggunakan sinaran ultra violet (UV) and 
laser Nd:YAG yang didedahkan pada masa penyinaran  yang berbeza. Untuk 
mencapai matlamat pertama, TD (air, gliserol, dan etilena glikol) telah diukur 
menggunakan teknik TWRC dan dikira menggunakan prosedur penormalan. Bagi 
tujuan ini, satu program kawalan menggunakan bahasa pengaturcaraan Lab View 
telah dibangunkan untuk mengautomasikan peralatan untuk mengukur TD. Untuk 
objektif kedua, GO dalam larutan air diturunkan menggunakan sinaran UV dan 
ablasi laser Nd:YAG. Sifat terma, optik dan morofologi dikaji menggunakan teknik 
TWRC, spektroskopi UV-Vis, fotoelektron X-Ray (XPS), dan mikroskop elektron 
imbasan medan pancaran (FeSEM). 

Tanpa proses penormalan ke atas teknik TWRC, TD cecair air piawai yang didapati 
dari imbasan rongga adalah 1.431×10-3 dan 1.435×10-3 cm2s-1 untuk fasa dan 
amplitud, masing-masingnya, dan mendekati nilai kepada literatur (0.5%).  Ini 
menunjukkan bahawa set up TWRC semasa boleh dipercayai dan boleh diguna untuk 
mengukur TD cecair.  Tanpa proses penormalan, TD air melalui imbasan frekuensi 
dari signal amplitude merujuk kepada literature meningkat secara mendadak kepada 
1.6% tetapi dengan kenaikan kecil sahaja untuk signal fasa, 3.5%. Untuk imbasan 
rongga, TD air untuk signal amplitude dan fasa adalah 0.6% dan 1.9%, masing-
masingnya, dengan merujuk kepada literature yang mana sesungguhnya adalah 
terlalu kecil. Secara keseluruhan ini adalah bersetuju dengan hipotesis pertama.   
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Pengukuran TD menunjukkan GO yang didedahkan kepada sinar UV mempunyai 
nilai yang lebih tinggi berbanding dengan yang didedahkan kepada laser.  Trend ini
lebih jelas apabila masa penyinaran bertambah. Nilai TD didapati menurun apabila 
kepekatan larutan bertambah. Imej FeSEM sampel UVrGO menunjukkan lebih 
kedutan yang agak dalam dan mempunyai tekstur yang kelihatan lebih empuk 
berbanding LrGO. Permukaan rGO yang lebih kasar menunjukkan kadar penurunan 
yang lebih tinggi. Puncak UV-Vis bagi UVrGO menunjukkan anjakan yang lebih 
besar ke arah panjang gelombang yang lebih panjang berbanding (red shift) LrGO, 
mengukuhkan lagi analisis morfologi. Analisis XPS juga menunjukkan kepadatan 
atom karbon bertambah manakala kepadatan kumpulan mengandungi karbon C-O, 
dan C=O menurun. Keputusan analisis-analisis telah mengesahkan penurunan GO 
kepada rGO. Sebagai kesimpulan, GO dapat diturunkan kepada rGO dengan 
mendedahkannya kepada sinaran UV dan laser, seterusnya meningkatkan TD nya. 
Kadar penurunan dipengaruhi oleh jenis sinaran dan masa penyinaran. Didapati 
bahawa UVrGO memberikan kadar penurunan yang lebih tinggi serta peningkatan 
TD yang lebih tinggi apabila masa penyinaran bertambah berbanding dengan LrGO.  
Dapatan kajian ini memberikan ruang bagi rGO untuk kajian lebih lanjut pada masa 
hadapan sebagai alternatif untuk konduktor cecair konvensional.  
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Graphene has attracted so much attention due to its superior characteristics of 
thermal and electrical properties (Sur, 2012) that promises a better solution for 
industries that will enhance the recent thermal management technology (Zhang et. 
al., 2015) to a higher standard. Graphene is a very promising candidate as alternative 
to conventional conductors (Feng et.al., 2016). Reduced graphene oxide (rGO) is a 
material which has a graphene like properties. rGO is produced by removing the 
oxygen content in graphene oxide (GO), by exposing GO to radiation, using 
chemical method, or heat treatment. One of the parameter used to characterise the 
thermal properties of a material is the thermal diffusivity (TD). 

TD is an important thermophysical parameter used in the design of heat transporting 
systems, which can also be used in identification and diagnostics of materials of 
practical interest (Touloukian et. al., 1974) .

There are many techniques employable in measuring TD. Among them, 
photothermal (PT) techniques have been proven very useful in the measurement of 
thermal diffusivities (Mandelis and Lymer, 1985) because of its simplicity and 
reliability. 

Measuring the TD manually is quite a tedious task, it is time consuming process 
required high skill in handling the instruments and could lead to errors in 
measurement. For that reason, automation is required to speed up the processes and 
reducing parallax errors. 

1.2 Photopyroelectric detection 

Pyroelectricity is the ability of a material to generate momentary voltage when 
heated or cooled (Wan and Bowen, 2017).  This property is due to spontaneous 
polarization, Ps, in certain anisotropic solids (Lang, 2005) . 

The change in temperature,  causes the changes in spontaneous polarisation thus 

changing the amount of bound charges, the unbalanced distribution of charges create 
potential difference which lead to redistribution of free charges as illustrated in  
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Figure 0.1: (a) At constant temperature, (b) When the temperature is increased, 
and (c) When the temperature is decreased. 

Figure 0.1. Movements of charges result in current flow. Therefore this effect is 
present only during the temperature change period. 

This unique property is being put to good use by using materials such as 
polyvinylidenefluoride (PVDF) as a transducer in changing thermal signal into 
electrical signal.  In photopyroelectric (PPE) technique this transducer is placed in 
the pyroelectric (PE) cell in front or at the back of the sample, to sense the thermal 
signal carried in the thermal wave (TW).  

In case of “thermal wave resonant cavity” (TWRC) technique, the TW generated by 
the TW generator will propagate through the liquid sample and reaches the 
boundaries of sample-PVDF, a fraction of the wave will be reflected and a portion 
are transmitted into the PE transducer. The transmitted TW is converted into 
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electrical signal in form of phase and amplitude that can be used to determine the TD
of the sample. The value of the output signal is depending in the amount of 
transmitted TW and the amount of transmitted TW is depending on the thermal 
properties of the sample material. 

1.3 Thermal diffusivity 

The heat is the energy flow due to different in temperature, in real situation it occurs 
in form of conduction, convection and radiation. For experimental purpose only one 
will be considered, in this case is the conduction. The specific heat capacity, C, 
thermal conductivity, K, and thermal diffusivity (TD), α, are among the term 

normally used characterise thermal property of a material.  

For isotropic material (Berinskii, 2013) like graphene, only C is needed in solving 
related problem. K is contributed by only thermal conductivity of component in 
material and it is able to deal with steady state problem when temperature does not 
vary over time, and α depends on both thermal conductivity and TD of a material, 
therefore will give a comprehensive characterisation. 

When heat,  is supplied to a mass, m and contribute to temperature, T rise can be 
express as 

                                                      1.1 
where C is the amount of heat required to change the temperature of a unit mass in a 
unit of temperature. The specific heat capacity, C measures the ability of a material 
to store internal energy. 

The heat flow,  between two media due to the existence of a temperature gradient, 

in a homogeneous isotropic material is given by Fourier law. 

                                                       1.2 
where K is the heat flows in a unit time through a unit of area of layer of material of 
unit thickness with temperature difference between its faces, or the ability of 
material to transport the heat from one point to another. 

In the case of temperature dependent, the thermal properties of homogeneous 
isotropic material whereas there is no heat generated inside it is given by, 

.                                                  1.3 

The TD,  is given by Laplace equation. It measures the change in temperature 
produced in a unit volume of material by the amount of heat that flows in unit time 
through a unit area of layer material of unit thickness with temperature difference 
between its faces, or the speed of heat propagation during the change of temperature 
per unit time. 
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The TD, thermal conductivity, and the specific heat capacity are interrelated to each 
other. The TD is in direct proportion to thermal conductivity,  but inversely 
proportional to the heat capacity, and density,  of a material. Mathematically, 

.                                                     1.4 

It measures the rate of transfer of heat of a material from the hot side to the cold side.
The unit of TD is centimetre square per second, cm2 s-1. 

1.4 Research problem 

The accuracy in obtaining the liquid TD of a few standard liquids by photothermal 
method is a challenging effort in order to claim the importance of this method. 
Therefore, the robustness in data processing and a certain way of calculating the TD
rather than that of the conventional one is needed.  Secondly, a reduced graphene 
oxide liquid is known to have good heat conductivity.  Therefore the easy production 
of this liquid and the TD study of it at various concentrations are important for heat 
conductivity application in thermal cooling application. 

1.5 Objectives

The objectives for this research are; 

1. to study various standard liquid thermal diffusivities by employing a TWRC 
technique calculated by normalisation process, 

2. to study the thermal, optical properties as well as morphology of reduced 
graphene oxide (rGO) fabricated by ultra violet (UV) and Nd:YAG laser 
irradiation at various exposure time. 

1.6 Hypothesis 

i) The normalisation process from the TWRC technique would increase 
the accuracy of the liquid standard sample TD.

ii) The TD of rGO would increase as both UV and laser irradiation time 
increase. 
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1.7 Scope and limitation 

The scope and limitation of this work are: 

i. Only LabView and C programming language will be used to
develop the interfacing program.

ii. Only light irradiation from laser and UV sources will be
applied in this study.

iii. The study will be limited to commercialized liquid GO.

iv. The PVDF sensor used in PE technique is limited to only
single type.

1.8 Thesis outline 

This thesis focuses on the measurement of various standard liquid thermal 
diffusivities by employing a TWRC technique calculated by normalisation process 
and study the thermal, optical property as well as morphology of rGO fabricated by 
ultra violet (UV) and neodymium-doped yttrium aluminium garnet (Nd:YAG) laser 
irradiation at various exposure times. The thesis is organized into six chapters. 

Chapter 1 gives a general introduction on photopyroelectric detection and TD. It also 
covers research problem, objectives, hypothesis, scope and limitation. Chapter 2 
provides the review of photopyroelectric technique, graphene and graphene oxide. 
Theory of photopyroelectric effect, thermal wave, graphene oxide and reduced-
graphene oxide is covered in Chapter 3. Chapter 4 describes system automation, the 
materials used, the techniques and procedures, and finally the characterization of the 
samples. Chapter 5 reports and discusses the results of rGO characterizations. 
Finally, Chapter 6 concludes the study and suggests the area to be investigated for 
future studies. 
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