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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Master of Science 

EFFECT OF CUBIC TEMPERATURE GRADIENT ON ONSET OF 

THERMAL CONVECTION IN A MICROPOLAR FLUID 

By 

NURUL AFIQAH BINTI MOHD ISA 

April 2018 

Chair: Prof Norihan Md Arifin, PhD 

Faculty: Science Mathematic 

Thermal convection with shear flow has received widespread attention due to its 

importance in geophysical flows as well as several technological applications, such as 

heat exchangers and chemical vapour deposition.  The thesis deals with two types of 

thermal convection in a fluid layer that is Rayleigh Benard convection (driven by 

buoyancy) and Marangoni convection (driven by surface tension). The Rayleigh-

Benard and Marangoni stability problem for a fluid bound by bottom and top wall 

which are heated and cooled, respectively are studied numerically. The fluid layer with 

various boundary conditions at the different lower and upper boundary are investigated 

theoretically based on linear stability theory. The various boundary conditions are 

assumed for lower and upper boundaries to be free isothermal and free isothermal 

(FIFI), free isothermal and free adiabatic (FIFA), free isothermal and rigid adiabatic 

(FIRA), rigid isothermal and free isothermal (RIFI), rigid isothermal and free adiabatic 

(RIFA), and rigid isothermal and rigid adiabatic (RIRA). The effect of cubic 

temperature gradient, internal heat generation, feedback control, and electric field on 

the onset of Rayleigh-Bénard and Marangoni convection in an Eringen’s micropolar 

fluid has been examined. Three types of non-uniform basic temperature gradients 

which are linear, cubic 1 and cubic 2 are considered. The single-term Galerkin method 

is applied to obtain the eigenvalue for FIFI, FIFA, FIRA, RIFI, RIFA, and RIRA 

boundary combination. Closed form analytical solutions, of the full governing 

equations, are derived and the governing parameters of the problem are the thermal 

critical Rayleigh number,  the critical Marangoni number,  couple stress,    coupling, 

  and micropolar heat conduction,    on the onset of convection has been analysed. It 

is found that cubic 1 is the most stabilizing temperature gradient and linear temperature 
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gradient is the most destabilizing temperature gradient. The results also indicate that 

the internal heat generation and electric field can acts as destabilizing on the system 

while feedback control can acts as controller of the stability of the system. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Master Sains 

KESAN KECERUNAN SUHU KUBIK KE ATAS OLAKAN TERMA DI 

DALAM BENDALIR MIKROPOLAR  

Oleh 

NURUL AFIQAH BINTI MOHD ISA 

April 2018 

Pengerusi: Prof Norihan Md Arifin, PhD 

Fakulti : Sains Matematik 

Olakan terma dengan aliran ricih telah mendapat perhatian yang meluas kerana 

kepentingannya dalam aliran geofizik serta beberapa aplikasi teknologi, seperti penukar 

haba dan pemendapan wap kimia. Tesis ini adalah berkaitan dengan dua jenis olakan 

terma dalam lapisan bendalir iaitu olakan Rayleigh Benard (didorong oleh keapungan) 

dan olakan Marangoni (didorong oleh ketegangan permukaan). Masalah kestabilan 

Rayleigh-Benard dan Marangoni untuk bendalir dibatasi oleh dinding bawah dan atas 

yang dipanaskan dan disejukkan, masing-masing dikaji secara berangka. Lapisan 

bendalir dengan pelbagai syarat sempadan di sempadan bawah dan atas yang berbeza 

dikaji secara teori berdasarkan teori kestabilan linear. Pelbagai syarat sempadan 

diandaikan untuk lapisan bawah dan lapisan atas iaitu bebas isoterma dan bebas 

isoterma (FIFI), bebas isoterma dan adiabatik bebas (FIFA), isoterma bebas dan 

adiabatik tegar (FIRA), isothermal tegar dan isoterma bebas (RIFI), tegar isoterma dan 

adiabatik bebas (RIFA), dan adiabatik dan isoterma tegar (RIRA). Kesan kecerunan 

suhu kubik, penjanaan haba dalaman, kawalan suap balik, dan medan elektrik pada 

permulaan olakan Rayleigh-Bénard dan Marangoni dalam bendalir mikropolar Eringen 

telah diselidiki. Tiga jenis kecerunan suhu asas tidak seragam yang dipertimbangkan 

adalah linear, kubik 1 dan kubik 2. Kaedah Galerkin satu-sebutan digunakan untuk 

mendapatkan nilai eigen bagi gabungan sempadan FIFI, FIFA, FIRA, RIFI, RIFA, dan 

RIRA. Penyelesaian beranalitik dalam bentuk tertutup bagi persamaan yang diterbitkan 

sepenuhnya, diperolehi dan parameter terbitan bagi masalah ini adalah nombor 

Rayleigh kritikal, nombor Marangoni kritikal, tekanan gandingan, N1 ,gandingan N3 dan 

konduksi haba mikropolar, N5 pada permulaan olakan telah dianalisis. Telah didapati 

bahawa sistem dengan kubik 1 adalah lebih stabil dan sistem dengan kecerunan suhu 
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linear adalah yang paling tidak stabil. Keputusan juga menunjukkan bahawa penjanaan 

haba dalaman dan medan elektrik boleh menyebabkan ketidakstabilan pada sistem 

manakala kawalan suap balik boleh bertindak sebagai pengawal untuk menstabilkan 

sistem. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Heat Transfer 

 

Heat is about all matter that made up from atoms and molecules. Basically, atoms are 

always in different types of motion or movement such as rotational, translation, and 

vibrational. Then, the motion of atoms and molecules will create the heat or thermal 

energy hence we assume that all matter has thermal energy. In fact, the more 

movement of the atoms or molecules, the more heat or thermal energy they will 

produce. Heat can travel from one place to another in three ways: conduction, 

convection and radiation. But, from these three ways, both conduction and convection 

require matter to transfer heat energy. If there is a temperature difference between two 

systems heat, it will always find a way to transfer from the higher system to the lower 

system. 

  

Conduction is the transfer of heat between substances that are indirect contact with 

each other. The better the conductor, the more rapidly heat will be transferred. Metal is 

a one example of good conduction of heat. Conduction occurs when a substance is 

heated the particles will gain more energy, and vibrate more. These molecules then 

bump into nearby particles and transfer some of their energy to them. This then 

continues and passes the energy from the hot end down to the colder end of the 

substance. 

 

Thermal energy is transferred from hot places to cold places by convection. Convection 

occurs when warmer areas of a liquid or gas rise to cooler areas in the liquid or gas. 

Cooler liquid or gas then takes the place of the warmer areas which have risen higher. 

This results in a continuous circulation pattern. Water boiling in a pan is a good 

example of these convection currents. Another good example of convection is in the 

atmosphere. The earth's surface is warmed by the sun, the warm air rises and cool air 

moves in. 

 

Radiation is a method of heat transfer that does not rely upon any contact between the 

heat source and the heated object as is the case with conduction and convection. Heat 

can be transmitted though empty space by thermal radiation often called infrared 

radiation. This is a type of electromagnetic radiation. No mass is exchanged and no 

medium is required in the process of radiation. Example of radiation is the heat from 

the sun, or heat released from the filament of a light bulb. 
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1.2 Convection 

 

Convection in deep meaning is the transfer of internal energy into or out of an object 

by the physical movement of a surrounding fluid that transfers the internal energy 

along with its mass. Although the heat is transferred early between an object and a fluid 

by conduction, a bulk transfer of energy comes from the motion of the fluid. 

Convection can arise spontaneously (or naturally or freely) through the creation of 

convection cells or can be forced by propelling the fluid across the object or by the 

object through the fluid. 

  

There are two types of convection that was free convection and forced convection. 

Figure 1.1 shows the comparison the cooling of the boiled egg by forced and natural 

convection. For the natural process of convection, the block has to heat the air to a 

certain extent to make lighter (say up to 50 degree). When the fan is turned on the air is 

constantly replaced thus the temperature of the air adjacent to the hot plate is around 25 

degrees. Hence the potential of heat transfer is much higher, thus the heat transfer 

coefficient is higher. 

 

 

Figure 1. 1: Difference between forced and natural convection. (Adapted from: 

http://www.mhhe.com/engcs/mech/cengel/notes/ConvectionHeatTransfer.html) 

 

1.2.1 Free or Natural Convection 

 

Free or natural convection can be described when fluid motion is caused by buoyancy 

forces the results from the density variations due to variations of thermal temperature in 

the fluid. In the absence of an externals source, when the fluid is in contact with a hot 

surface, its molecules separate and scatter, causing the fluid to be less dense. As a 

consequence, the fluid is displaced while the cooler fluid gets denser and the fluid 

sinks. Thus, the hotter volume transfers heat towards the cooler volume of that fluid. 
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Familiar examples are the upward flow of air due to a fire or hot object and the 

circulation of water in a pot that is heated from below.  

 

1.2.2 Forced Convection 

 

Mechanism when the fluid motion produced from an external source like a pump, fan, 

or other device called as forced convection. Term of forced convection also can be used 

to refer any fluid and it is commonly relatable forced air cooling. 

 

The effect of high airspeeds involved with forced convection can cause the significant 

amounts of heat can be transported rapidly and effectively. The quantity of the surface 

area on the heat sink is an important factor in helping meet the desired thermal 

performance, but too much surface area will cause the heat sink to have a large 

pressure drop. The greater the drop in pressure, the greater the strain put on the fan, 

which results in decreased fan performance.  

 

1.3 Application of convection 

 

1.3.1 Boiling water in a cooking pot 

 

Boiling water in a cooking pot is one great example for convection. When water is 

boiled, the liquid moves around quickly. Water at the bottom of the pan receives more 

heat. This process will make the water at the bottom of the pan less dense and rise to 

the top. When it on top surface, it will receives less heat and become more dense. This 

will make the water go back to the bottom of the pot again. Once at the bottom, it will 

go right back up, and the process repeats. The back and forth movements are called 

convection currents. Figure 1.2 shows the illustration of boiling water in a cooking pot. 

The big red circles show when water is heated, it will expand and become less dense. 

 

 

Figure 1. 2: Example of boiling water in a cooking pot. (Adapt from: https://www.introduction-

to-physics.com/examples-of-convection.html) 
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1.3.2 Oceanic circulation 

 

Ocean circulation is the large scale movement of waters in the ocean basins. The 

mechanism occurs when warm water from the equator move to circulate toward the 

poles and cold water heads towards to the equator. The surface currents are initially 

dictated by surface wind conditions while the trade winds blow westward in the tropics, 

and the westerlies blow eastward at mid-latitudes. This wind pattern applies a stress to 

the subtropical ocean surface with negative curl across the Northern Hemisphere and 

the reverse across the Southern Hemisphere. The ocean current pattern produced by the 

wind-induced Ekman transport called Sverdrup transport is equator ward because of 

conservation of potential vorticity caused by the poleward-moving winds on the 

subtropical ridge's western periphery and the increased relative vorticity of poleward 

moving water, transport is balanced by a narrow, accelerating poleward current, which 

flows along the western boundary of the ocean basin, outweighing the effects of 

friction with the cold western boundary current which originates from high latitudes. 

The overall process is known as western intensification, causes currents on the western 

boundary of an ocean basin to be stronger than those on the eastern boundary. Figure 

1.3 below show the illustration of the ocean circulation. 

 

 
 

Figure 1. 3: Ocean currents. (Adapt from: https://pediaview.com/openpedia/Convection) 

 

 

As it travels poleward, warm water transported by strong warm water current 

undergoes evaporative cooling. The cooling is wind driven: wind moving over water 

cools the water and also causes evaporation, leaving saltier brine. In this process, the 

water becomes saltier and denser, and decreases in temperature. Once sea ice forms, 

salts are left out of the ice, a process known as brine exclusion. These two processes 

produce water that is denser and colder or more precisely, water that is still liquid at a 

lower temperature. The water across the northern Atlantic Ocean becomes so dense that 

it begins to sink down through less salty and less dense water. The convective action is 

not unlike that of a lava lamp. This downdraft of heavy, cold and dense water becomes 

a part of the North Atlantic Deep Water, a south going stream. 

 

https://www.britannica.com/science/ocean-current
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1.3.3 Weather 

 

Some more localized phenomena than global atmospheric movement are also due to 

convection, including wind and some of the hydrologic cycle. For example, a foehn 

wind is a down-slope wind which occurs on the downwind side of a mountain range. A 

föhn or foehn is a type of dry, warm, down-slope wind that occurs in the lee 

(downwind side) of a mountain range. Figure 1.4 is the illustration of how the foehn 

wind is produced. It results from the adiabatic warming of air which has dropped most 

of its moisture on windward slopes. Because of the different adiabatic lapse rates of 

moist and dry air, the air on the leeward slopes becomes warmer than at the same 

height on the windward slopes. 

 

 

Figure 1.4: How foehn is produced. (Adapt from: https://commons.wikimedia.org/wiki/File:Foehn1.svg) 

             

A thermal column (or thermal) is a vertical section of rising air in the lower altitudes of 

the Earth's atmosphere. Thermals are generated by the irregular heating of Earth's 

surface from solar radiation. The warm ground affected by the sun will turn the warm 

air which is directly below it. Then, the warmer air will rise and become less dense 

around the surrounding of air mass, and creating a thermal low. The mass of lighter air 

rises, and as it does, it cools by expansion at lower air pressures. It stops rising when it 

had the same temperature as encircle the air. Associated with a thermal is a downward 

flow around the thermal area. The downward moving exterior is affected by colder air 

being replaced at the upper surface of the thermal. Sea breeze is one example of 

convection driven weather. 

 

Warm air has a lower density than cool air, so warm air rises within cooler air, similar 

to hot air balloons. Clouds form as relatively warmer air carrying moisture rises within 

cooler air. As the moist air rises, it cools, causing some of the water vapour in the 

rising packet of air to condense. When the moisture condenses, it releases energy 

known as latent heat of condensation which permits the rising packet of air to cool less 

than its surrounding air, continuing the cloud's ascension. If enough instability is 

present in the atmosphere, this mechanism will continue until it forms the 

cumulonimbus clouds, where it will support lightning and thunder. Generally, 

thunderstorm requires three conditions to form: moisture, an unstable air mass, and a 

lifting force (heat). Figure 1.5 below show three stages of a thunderstorm life. 
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Figure 1. 5: Stage of a thunderstorm's life. (Adapt from: 

https://en.wikipedia.org/wiki/Cumulonimbus_cloud) 

 

Thunderstorms will go through three stages that was the developing stage, the mature 

stage, and the dissipation stage. The average thunderstorm has a 24 km (15 mi) 

diameter. Depending on the conditions present in the atmosphere, these three stages 

take an average of 30 minutes to go through. 

 

1.3.4 Atmospheric circulation 

 

Atmospheric circulation is the major movement of air where the thermal energy is 

dispersed on the surface of the earth, together with much slower (lagged) ocean 

circulation system. The wide structure of the atmospheric circulation varies from time 

to time, but the basic climatological structure remains fairly constant. 

 

 

Figure 1. 6: Idealised depiction of the global circulation on Earth. (Adapt from: 

https://en.wikipedia.org/wiki/Atmospheric_circulation) 

 

Latitudinal circulation occurs because of incident solar radiation per unit area is highest 

at the heat equator and decreases while the latitude increases also it reached minima at 
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the poles. It consists of two primary convection cells, the Hadley cell and the polar 

vortex, with the Hadley cell experiencing stronger convection due to the release of 

latent heat energy by condensation of water vapour at higher altitudes during cloud 

formation. 

 

The longitudinal circulation occurs because the ocean greater specific heat capacity 

than the ground and also thermal conductivity allowing the heat to penetrate further 

beneath the surface, and consequently absorbs and releases more heat, but the 

temperature changes less than the ground. Longitudinal circulation consists of two 

cells, the Walker circulation and El Niño / Southern Oscillation. 

 

1.4 Rayleigh-Benard convection 

 

Rayleigh-Bénard convection is a fluid flow (thermal convection) due to a non-uniform 

temperature distribution in a plane horizontal fluid layer where it is heated from below. 

Such flows result from development of convective instability, if the static vertical 

temperature gradient (the gradient that would be present in a motionless fluid under the 

same conditions) is large enough. Figure 1.7 shows straight convection roll on 

Rayleigh-Bénard convection. The fluid at the bottom will rise, cool and return in an 

overturning flow. The arrows indicate the flow pattern, with bright and dark regions 

corresponding to warm and cool fluid, respectively. 

 

 

Figure 1. 7: Rayleigh-Bénard convection showing straight convection rolls. 

 

A horizontal layer of the convection fluid is the most comprehensively studied example 

of nonlinear systems exhibiting self-organization (pattern-forming systems). Rayleigh-

Bénard convection, which shares a number of important properties with many other 

pattern-formation mechanisms is considered the as a "granddaddy of canonical 

examples used to study pattern formation and a behaviour in spatially extended 

systems" (Newell et al. 1993). 

 

Convective motion enhances dramatically the heat transfer through the layer compared 

to the molecular heat conduction. The moving fluid parcels, which are agents of heat 

exchange, normally have velocities and effective free paths much greater than the 

corresponding figures for molecules. Therefore, the heat flux via the layer of 

convection fluid may be several orders of magnitude higher than the heat flux due to 

molecular thermal conductivity. 
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1.5 Marangoni convection 

 

Consider a horizontal layer bounded by free upper surface and rigid lower surface 

boundary. We assumed a free upper surface with the presence of surface tension force 

as a function of temperature. The lower rigid boundary has high temperature value 

compare to upper free boundary because the heat is placed at the bottom of boundary. 

Then, at the free surface, we assume that a warm spot (infinitesimal disturbance of the 

temperature) occurs to lead to a local decrease in the surface tension when temperature 

derivative of surface tension is negative. Presence of gradients in the surface tension 

cause surface traction forces move from the warmer region (lower surface tension) to 

cooler region (higher surface tension).  The fluid beneath warm spot move 

consequently to upper surface, and then it will be cooled there, finally flowing down to 

the bottom layer. The viscosity will stabilize the fluid movement at the surface and the 

fluid will spread nearby.  

 

 

Figure 1.8: Convection mechanism caused by surface tension 

  

Figure 1.8 above shows the convection mechanism caused by the surface tension. The 

movement of the fluid can be maintained if the effect of viscosity of the fluid is less 

than the effect of surface tension. This condition can be occurred if the layer is heated 

from below and the energy can be provided by a vertical temperature difference across 

the fluid layer. If sufficient energy is supplied, then a critical temperature gradient is 

reached and finally the convection will commence and will be sustained.  

  

1.6 Micropolar fluid 

 

Micropolar fluids had special characteristic microstructure. Micropolar fluid 

corresponds to the group of fluids with non-symmetric stress tensor that the other name 

with polar fluids. They also include as a special case of the well-established Navier-

Stokes model of classical fluids that we can called as ordinary fluids. Basically, 

micropolar fluids may illustrate as fluids consist of rigid and it is randomly oriented (or 

spherical) particles suspended in a viscous medium, where the deformation of fluid 



© C
OPYRIG

HT U
PM

9 

 

particles is neglected. The model of micropolar fluids introduced in Eringen (1965) is 

valuation of studying because it is very well balanced structure. Based on Eringen 

(1965), micropolar fluids is a subclass of microfluids. The theory of microfluids 

presented by Eringen (1964) meets with a group of fluid where it shows definite 

microscopic effects increasing from original structure and micro-motions of fluid 

elements. Micropolar fluids are also the fluids that can helps stress moments and body 

moments that were influenced by spin inertia. 

 

Micropolar fluids show the effects and inertia of micro-rotational. This group of fluids 

owned certain simplicity and sophistication in their mathematical formulation which 

should appeal to mathematicians. The micropolar fluids can support couple stress and 

body couples only. Basically they may show adequately the fluids including of dipole 

elements. Certain anisotropic fluids, e.g. liquid crystals which are made up of dumbbell 

molecules, are of this type. In fact, animal blood also include into this category.  

 

In this research, we are interested with micropolar fluids for the reasons of stability of 

micropolar fluids and we want to investigate is there any parameters that can stabilized 

the system and delays the convection. 

 

1.7 Problem Statement 

 

The problem of the onset of thermal instability in horizontal layer of micropolar fluids 

heated from below is illustrated using mathematical model based on the set of the 

hydrodynamic equations in Oberbeck-Boussinesq approximations. For the present 

study, the term stability on the system over three different problems with the effect of 

cubic temperature gradient is studied. Some issues about this study are: 

 

1. What are the effects of cubic temperature profile on Rayleigh Benard 

convection with six different combination boundary conditions?  

 

2. What are the effects of heat generation on the critical Rayleigh number?  

 

3. How does the presence of internal heat generation and electric field give impact 

on Rayleigh Benard convection over six different boundary conditions? 

 

4. What is the effect of heat generation and electric field on Marangoni 

convection?  
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1.8 Objective 

 

The objectives of the present study is to analyse the onset of thermal convection on the 

horizontal micropolar fluid layer, heated from below and cooled from above with effect 

of cubic temperature gradient. The study is divided into three problems: 

 

a. The onset of Rayleigh-Benard convection, with the lower boundary layer and the 

upper boundary layer is assumed to be  

i. Free isothermal and free isothermal (FIFI) 

ii. Free isothermal and free adiabatic (FIFA) 

iii. Free isothermal and rigid adiabatic (FIRA) 

iv. Rigid isothermal and free isothermal (RIFI) 

v. Rigid isothermal and free adiabatic (RIFA) 

vi. Rigid isothermal and rigid adiabatic (RIRA) 

 

b. The onset of Rayleigh-Benard convection, in the presence of internal heat 

generation and electric field with the lower boundary layer and the upper 

boundary layer as FIFI, FIFA, FIRA, RIFI, RIFA and RIRA. 

 

c. The onset of Marangoni convection in the presence of internal heat generation, 

electric field and feedback control with upper boundary at which the surface 

tension act is free adiabatic and the lower boundary is assumed to be rigid 

isothermal. 

 

1.9 Scope 

 

In this thesis, the effects of various hydrodynamic boundary combination from free and 

rigid surface such as free isothermal and free isothermal (FIFI), free isothermal and 

free adiabatic (FIFA), free isothermal and rigid adiabatic (FIRA), rigid isothermal and 

free isothermal (RIFI), rigid isothermal and free adiabatic (RIFA), rigid isothermal and 

rigid adiabatic (RIRA) have been used. Effect of cubic temperature gradient upon 

Rayleigh Benard and Marangoni convection are considered. We apply the single 

Galerkin method to solve the problems.  

 

1.10 Thesis Outline 

 

In Chapter 1, we discuss on the definition of heat energy and explanation on the 

different between convection, radiation and conduction. Then, a brief explanation on 

types of convection is given and followed by five examples to demonstrate the 

application of convection. Then, the different mechanisms of generating convection is 

discussed which are induced by buoyancy (Benard convection) and driven by surface 

tension variation (Marangoni convection). We also explain on the characteristic of 
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micropolar fluid. Finally, we stated the objectives of our present works and the scope 

of this thesis. 

 

Chapter 2 discussed the pioneering studies on the onset of Rayleigh-Benard, and 

Marangoni convection theoretically and experimentally. After that, we review the 

research on the onset of thermal convection focused on the non-uniform basic 

temperature gradient with the presence of magnetic field, internal heat generation and 

feedback control on horizontal fluid. Then, we analysed thermal convection on the 

electric field in different boundary condition. Lastly, we discussed the paper related to 

the internal heat generation and the presence of feedback control towards the thermal 

convection. 

 

Methodology for Chapter 4, 5, and 6 are discussed in Chapter 3. We have explained in 

details the step that should be taken to solve all the problems in this research. We 

started from the governing equation and include the effect of cubic basic temperature 

gradient, internal heat, electric field, and feedback control.  

 

Chapter 4 indicates the first problem that we present in this thesis is the effect of cubic 

temperature gradient on Rayleigh benard convection in a horizontal micropolar fluid. 

The problem is solved and discussion of all results and conclusion is given at the end of 

chapter. 

 

In Chapter 5, we present the effect of cubic temperature gradient on Rayleigh benard 

electro convection in a presence of internal heat in a horizontal micropolar fluid. We 

analysed new governing equation that should be used in this problem for the effect of 

electric field and internal heat generation. We have showed how to solve the problem 

and the linear stability theory will be discussed in this chapter. 

 

In Chapter 6, we focus on Marangoni convection with the boundary surface condition 

at the upper free adiabatic layer and lower rigid isothermal layer. We also presented the 

effect of internal heat generation on thermal convection with the presence of feedback 

control and electric field. The comparison between all parameters that have been used 

in this thesis will be given. 

 

In Chapter 7, we discussed briefly what are the functions of all the parameters and the 

aim of this thesis. We also suggest some future works that can be extended from this 

research. MAPLE programs for this research are given in appendices.   
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