

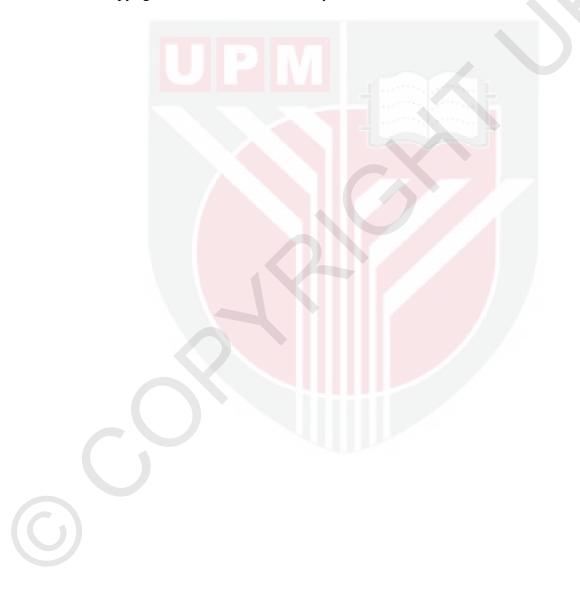
UNIVERSITI PUTRA MALAYSIA

EFFECTIVENESS OF CONSTRUCTED WETLANDS ON WATER QUALITY IMPROVEMENT AT THE NATIONAL HYDRAULIC RESEARCH INSTITUTE OF MALAYSIA LAKE

ALIYU DANJUMA ALIYU

FS 2018 40

EFFECTIVENESS OF CONSTRUCTED WETLANDS ON WATER QUALITY IMPROVEMENT AT THE NATIONAL HYDRAULIC RESEARCH INSTITUTE OF MALAYSIA LAKE

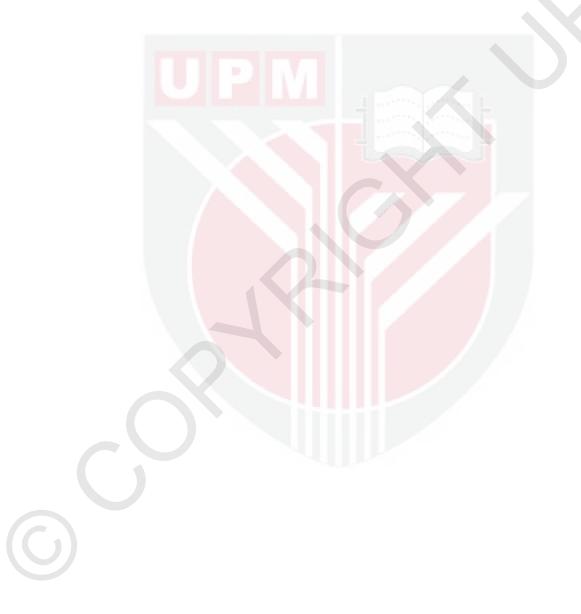

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

July 2018

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia



DEDICATION

To the memory of my late loving parents, for their unconditional love while alive on this earth.

k

To my siblings, for their understanding, affections, prayers and wholehearted support.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

EFFECTIVENESS OF CONSTRUCTED WETLANDS ON WATER QUALITY IMPROVEMENT AT THE NATIONAL HYDRAULIC RESEARCH INSTITUTE OF MALAYSIA LAKE

By

ALIYU DANJUMA ALIYU

July 2018 Chairman : Professor Rusea Go, PhD Faculty : Science

The use of biological method of constructed wetlands to improve water quality of freshwater bodies in developing countries especially those in the tropical region with high water quality issues have been underutilized and reported. Therefore, the objective of this study is to establish the baseline water quality parameters concentrations of the NAHRIM lake, assess the effectiveness of the constructed wetlands in improving the water quality of the lake as well as determining the level of improvement in the water quality. Sampling and laboratory analysis of the lake water, constructed wetland water, sediment and plant samples were conducted according to the standard water, sediment and plants laboratory methods. Quality control and assurances were used to ensure the accuracy of the methods. ANOVA and Pearson correlation, in addition to water, sediment, plants indices were used to understand the parameters studied. The results shows the total mean concentration of dissolved oxygen (DO): 6.77±1.4mgL⁻¹, chemical oxygen demand (COD): 10.13±1.5mgL⁻¹, biochemical oxygen demand (BOD): 4.54±0.62mgL⁻¹, total suspended solids (TSS): 12.89±5.12mgL⁻¹, total coliform (8671±1762CFU/100mL), Fe (1.33±0.62mgL⁻¹), Mn $(0.26\pm0.09$ mgL⁻¹) and Al $(0.19\pm0.08$ mgL⁻¹) of water samples in the lake to be between the national water quality standard class I and II, and exhibited significant difference (p < 0.05) across the sampling sites. The total mean concentration of COD $(20.51\pm3.4 \text{mgL}^{-1})$, biochemical oxygen demand $(5.04\pm1.8 \text{ mgL}^{-1})$, total suspended solids $(53.91 \pm 23.72 \text{ mgL}^{-1}),$ $(6.51 \pm 0.62 \text{mgL}^{-1}),$ pН *E*. coli (6330±2053.23CFU/100mL), total coliform (65700±21884.4CFU/100mL) and A1 $(8.16\pm3.5 \text{mgL}^{-1})$ also shows a significant difference (p < 0.05) in water samples across the wetland sampling sites. COD and BOD are in a strong positive significant correlation (r = 0.700^{**}). Fe (7499.14±762.03mgkg⁻¹), Al (4753.24±990.8mgkg⁻¹), Mn $(85.10\pm25.3 \text{ mgkg}^{-1})$, Zn $(15.74\pm4.17 \text{ mgkg}^{-1})$, Cr $(14\pm2.73 \text{ mgkg}^{-1})$, Pb $(3.11\pm0.78 \text{ mgkg}^{-1})$, Ni $(2.30\pm0.41 \text{ mgkg}^{-1})$, Cu $(1.56\pm1.1 \text{ mgkg}^{-1})$ and Cd

 $(0.90\pm0.22 \text{ mgkg}^{-1})$ also revealed a significant difference (p < 0.05) in the sediment samples of the wetlands while Al and Fe ($r = 0.933^{**}$), Cr and Ni ($r = 0.84^{**}$), Cu and Fe ($r = 0.886^{**}$) exhibited a very strong positive correlations. Ten heavy metals were observed for plants samples with total mean concentration of Fe (3338.5±3082mgkg⁻ ¹), A1 (1071.91±944.6mgkg⁻¹), Mn (240±143.07mgkg⁻¹), Zn (25.94±17.21mgkg⁻¹), Ba $(2.8\pm1.97 \text{mgkg}^{-1})$, Cu $(1.86\pm1.33 \text{mgkg}^{-1})$, (13.6±12.1 mgkg⁻¹), Cr Ni (1.00±0.91mgkg⁻¹), Pb (0.8±0.71mgkg⁻¹) and Cd (0.78±0.17mgkg⁻¹) across their tissues. Thalia sp., Cyperus papyrus, Nelumbo nucifera have the best phytoremediation potential for the heavy metals. As compared with the previous study of the lake water pre-constructed wetlands period, with a reported mean of Water Quality Index (WQI) class III (63.01) status, there is an improvement in the water quality due to the achievement of the WQI class II (86.01) status suitable for recreation. This is attributed to the constructed wetland through its accumulation of more contaminants before they get to the lake. Thus, this study suggests that constructed wetlands improve water quality; and this method can be replicated in other lake.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KEBERKESANAN TANAH BENCAH BUATAN DALAM MENINGKATKAN KUALITI AIR DI TASIK INSTITUT PENYELIDIKAN HIDRAULIK KEBANGSAAN MALAYSIA (NAHRIM)

Oleh

ALIYU DANJUMA ALIYU

Julai 2018

Pengerusi : Profesor Rusea Go, PhD Fakulti : Sains

Penggunaan kaedah biologi tanah bencah buatan untuk meningkatkan kualiti air tawar di negara-negara membangun terutamanya di rantau tropika yang menghadapi isu kualiti air yang tinggi kurang dilaksanakan dan dilaporkan. Oleh yang demikian, objektif kajian ini adalah untuk mewujudkan nilai asas kepekatan parameter kualiti air dari tasik NAHRIM, menilai keberkesanan tanah bencah buatan dalam meningkatkan kualiti air tasik serta menentukan tahap peningkatan kualiti air. Persampelan dan analisis makmal bagi air tasik, air tanah bencah buatan, sampel sedimen dan tumbuhan telah dilaksanakan menggunakan kaedah standard air, sedimen dan kaedah makmal tumbuh-tumbuhan. Kawalan dan jaminan kualiti digunakan untuk memastikan ketepatan kaedah.Korelasi ANOVA dan Pearson berserta dengan indeks air, sedimen dan tumbuhan digunakan untuk memahami parameter yang dikaji. Keputusan menunjukkan jumlah kepekatan purata oksigen terlarut (DO): 6.77±1.4mgL⁻¹, permintaan oksigen kimia (COD): 10.13±1.5mgL⁻¹, permintaan oksigen biokimia (BOD): 4.54±0.62mgL⁻¹, jumlah pepejal terampai (TSS): 12.89±5.12mgL⁻¹, jumlah koliform (8671 \pm 1762CFU/100mL), Fe (1.33 \pm 0.62mgL⁻¹), Mn (0.26 \pm 0.09mgL⁻¹) dan Al $(0.19\pm0.08$ mgL⁻¹) berada dalam lingkungan kelas kualiti air kebangsaan kelas I dan II, dan memperlihatkan perbezaan yang signifikan (p < 0.05) di kesemua tapak-tapak sampel. Jumlah kepekatan purata COD (20.51±3.4mgL-1), BOD (5.04±1.8mgL⁻¹), TSS (53.91±23.72mgL-1), pН (6.51±0.62mgL-1), Ε. coli (6330±2053.23CFU/100mL), jumlah koliform (65700±21884.4CFU/100mL) dan Al $(8.16\pm3.5 \text{mgL}^{-1})$ juga menunjukkan perbezaan ketara (p < 0.05) bagi kesemua tapak persampelan di tanah bencah. COD dan BOD mempunyai korelasi positif yang tinggi $(r = 0.700^{**})$. Fe (7499.14±762.03mgkg⁻¹), Al (4753.24±990.8mgkg⁻¹), Mn (85.10 ± 25.3mgkg⁻¹), Zn (15.74±4.17mgkg⁻¹), Cr (14±2.73mgkg⁻¹) Pb (3.11±0.78mgkg⁻¹), Ni $(2.30\pm0.41 \text{ mgkg}^{-1})$, Cu $(1.56\pm1.1 \text{ mgkg}^{-1})$ dan Cd $(0.90 \pm 0.22 \text{ mgkg}^{-1})$ juga menunjukkan perbezaan signifikan (p < 0.05) bagi sampel sedimen tanah bencah

manakala Al dan Fe ($r = 0.933^{**}$), Cr dan Ni ($r = 0.84^{**}$), Cu dan Fe ($r = 0.886^{**}$) menunjukkan korelasi positif yang amat tinggi. Sepuluh logam berat diperolehi dari sampel tumbuhan dengan jumlah kepekatan purata Fe (3338.5±3082mgkg⁻¹), Al $(1071.91\pm944.6 \text{mgkg}^{-1}),$ Mn $(240\pm143.07 \text{mgkg}^{-1}),$ Zn (25.94±17.21mgkg⁻¹ (13.6±12.1mgkg⁻¹), Cr (2.8±1.97mgkg⁻¹), Cu (1.86±1.33mgkg⁻¹), Ni (1.00±0.91mgkg⁻¹) ¹), Pb (0.8±0.71mgkg⁻¹) dan Cd (0.78±0.17mgkg⁻¹) hasil daripada kajian tisu mereka. Thalia sp., Cyperuspapyrus, Nelumbonucifera mempunyai potensi fitoremediasi terbaik untuk logam berat. Berbanding dengan hasil kajian sebelum pewujudan tanah bencah buatan yang melaporkan nilai purata Indeks Kualiti Air (WQI) kelas III (63.01), terdapat peningkatan dalam kualiti air melalui pencapaian kelas WQI II (86.01), yang lebih sesuai untuk kegiatan rekreasi. Ini adalah kerana tanah bencah buatan berjaya mengumpul lebih banyak bahan pencemar air. Oleh itu, kajian ini menunjukkan bahawa tanah bencah buatan dapat meningkatkan kualiti air; dan kaedah ini boleh direplikasikan di tasik-tasik yang lain.

ACKNOWLEDGEMENTS

First and foremost, all glory and adoration are to Allah (SWT) for his benevolence, mercy and blessing and the capability to complete this research.

My appreciation goes to my supervisor, Professor Dr Rusea Go, for her advice, guidance, encouragement and dedication. Sincere thanks are extended to my Cosupervisors, Dr Hishammudin bin Omar and Pn. Syima Syazrin bint Sharifuddin for their patience, guidance, helpful suggestions and constructive comments.

I am appreciative of the support and opportunity that was given to me by Ibrahim Badamasi Babangida University, Lapai, Niger State, Nigeria to undertake this program. Special thanks to the Tertiary Education Trust Fund (TETFUND), Abuja, Nigeria for the grant to undergo this program. My heartfelt gratitude goes to Encik Azroie, Encik Farrizie and Encik Zulazman as well as Cik Bashirah, Cik Norsalmi and other staffs of the National Hydraulic Research Institute of Malaysia for providing me with the assistance and working environment to accomplish this research. And to my supportive relatives- Alhaji S.N. Mayaki, Alhaji Muazu, Alhaji Ndaman, Hajiya Salamatu, Mrs. Jummai Alhassan (Labai), Mr. Ahmed Shehu and numerous others; I pray Allah should reward you immensely. My deepest gratitude goes to my bosses, Drs. Isah Chado, Adamu, K. M., Usman, I.B., Dadi-Mamud, N.J. and Adebola, M.O as well as other staffs of Biology Department, IBBUL, for their moral support. And finally, a big thank you to my dear colleagues at Universiti Putra Malaysia for their cooperation and help towards making this research a success.

I certify that a Thesis Examination Committee has met on 2 July 2018 to conduct the final examination of Aliyu Danjuma Aliyu on his thesis entitled "Effectiveness of Constructed Wetlands on Water Quality Improvement at the National Hydraulic Research Institute of Malaysia Lake" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Christina Yong Seok Yien, PhD Senior Lecturer Faculty of Science Universiti Putra Malaysia (Chairman)

Syaizwan Zahmir bin Zulkifli, PhD Senior Lecturer Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Ahmad bin Ismail, PhD Associate Professor Universiti Kebangsaan Malaysia Malaysia (External Examiner)

RUSLI HAJI ABDULLAH, PhD Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 30 August 2018

This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Rusea Go, PhD Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Hishammudin Omar, PhD Senior Lecturer Faculty of Science Universiti Putra Malaysia (Member)

Syazrin Syima bint Sharifuddin Research Officer National Hydraulic Research Institute of Malaysia Malaysia (Member)

ROBIAH BINTI YUNUS, PhD Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature:	Date:
~-8	

Name and Matric No: Aliyu Danjuma Aliyu, GS43228

Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature:	
-	
Name of Chairman	
of Supervisory	
Committee:	Professor Dr. Rusea Go
Signature:	
Name of Member	
of Supervisory	
Committee:	Dr. Hishammudin Omar
Commutee.	
Signature:	
Name of Member	
of Supervisory	
Committee:	Syazrin Syima bint Sharifuddin
Committee.	Syd2im Symid onit Sharndadin

TABLE OF CONTENTS

				J	Page
ABST ACKN APPR DECI LIST LIST LIST	NOWL COVAL CARAI OF TA OF FIO OF EQ	EDGEN TION BLES GURES DUATIO			i iii v vi viii xiv xvi xvii xviii xix
CHAI	PTER				
_	262751		TION		
1		ODUC'			1
	1.1 1.2	Overv			1
	1.2			earch problems	1 2
	1.5	Object	tives of the	research	Z
2	LITE	RATU	RE REVII	EW	3
-	2.1			dation of water quality	3
	2.2		_	the aquatic system.	4
		2.2.1	Heavy m		4
			-	llutants/contaminants of the water system	6
	2.3			ninations on water system	6
	2.4		water syste		7
	2.5			contaminants of water system	9
		2.5.1		onal methods of water treatment	9
			2.5.1.1	Merits and demerits of conventional methods of	of
				water treatment	9
		2.5.2	Biologica	al methods of water treatment	10
			2.5.2.1	Phytoremediation	10
			2.5.2.2	Merits and Demerits of biological methods of	
				water treatment	11
			2.5.2.3	Aquatic plants of NAHRIM constructed	
				wetlands used for phytoremediation of heavy	
				metals from the NAHRIM lake watershed	12
	2.6	Constr	ructed wet	lands as a tool for water quality improvement	17
	2.7	Water	quality as	sessment	20
		2.7.1	Water qu	ality parameters	20
		2.7.2	Water qu	ality index (WQI)	22
	• •				

2.8 Malaysian lakes water quality status 24

3	MAT	ERIALS AND METHODS	26
	3.1	Study area	26
		3.1.1 Sampling locations description	30
	3.2	Experimental design	32
		3.2.1 Chemicals, reagents and laboratory equipments used for	
		the analysis of water, sediments and plants samples	33
		3.2.2 Sampling procedure	35
		3.2.2.1 Water sampling and sample preparation	35
		3.2.2.2 Constructed wetlands Sediment sampling and	
		sample preparation	36
		3.2.2.3 Constructed wetlands aquatic plants sampling	
		and sample preparation	36
	3.3	Experimental procedure for water quality parameters analyses	37
		3.3.1 <i>In-situ</i> analysis of water quality parameters	37
		3.3.2 Laboratory analysis of water samples of NAHRIM lake	
		and the constructed wetlands	39
	3.4	Laboratory analysis of the sediment samples of the NAHRIM	
		constructed wetlands	43
		3.4.1 Digestion and preparation of sediments samples for	
		heavy metals analysis	44
		3.4.2 Digestion and analysis of plants samples for heavy metals	45
		3.4.3 Quality assurance and Quality control	45
	3.5	Determination of Water Quality Index (WQI) of NAHRIM lake	46
	3.6	Sediment Pollution Indices	47
		3.6.1 Standard Sediments Quality Guidelines (ISQG)	47
		3.6.2 Geo-accumulation index (Igeo)	47
		3.6.3 Contamination Factors (CF) and Degree of contamination	
		(DC)	48
		3.6.4 Enrichment factor (EF)	48
	3.7	Plants bioaccumulation indices	49
		3.7.1 Bioconcentration factor index (BCF)	49
		3.7.2 Translocation Factor (TF)	49
	3.8	Removal efficiency of contaminants from the constructed	
		wetlands	49
	3.9	Statistical Analyses	50
4	RESU	JLTS	51
	4.1	Physical (in-situ) water quality parameters of the NAHRIM lake	51
	4.2	Laboratory (ex-situ) water quality parameters of the NAHRIM	
		lake	54
	4.3	Heavy metals in the water samples of the NAHRIM lake	59
	4.4	Cations in the water samples of NAHRIM lake (n=60)	61
	4.5	Correlation analysis of the studied water quality parameters of	
		the NAHRIM Lake	63
	4.6	Physical (in-situ) water quality parameters of the NAHRIM	
		constructed wetlands	65

C


4.7	Laboratory (<i>ex-situ</i>) water quality parameters of the NAHRIM constructed wetlands	68
4.8	Heavy metals in the water samples of NAHRIM constructed	00
	wetlands	71
4.9	Cations in the water samples of NAHRIM constructed wetlands	73
4.10	Removal efficiency of the water quality parameters by the	
4 1 1	constructed wetlands	73
4.11	Correlation analysis of the water quality parameters of the	74
4.12	NAHRIM constructed wetlands Physical parameters and cations of the sediment samples of the	74
4.12	NAHRIM constructed wetlands	75
4.13	Heavy metals in the sediment samples of NAHRIM constructed	15
	wetlands	78
4.14	Comparisons of heavy metal concentrations (mgkg ⁻¹) with	
	sediment quality guidelines and continental crust values	80
4.15	Enrichment factor, Contamination factor and Degree of	
	contamination and Geo-accumulation index of the studied heavy	
	metals of the sediments in NAHRIM Constructed wetlands	82
4.16	Correlation analysis of the studied parameters of the sediment	~ ~
	samples of NAHRIM constructed wetlands	85
4.17	Heavy metals in the aquatic plant species of the NAHRIM	05
4.18	constructed wetlands	85
4.18	Bioconcentration factor and Translocation factor of the plant species of the NAHRIM constructed wetlands	92
4.19	Comparison of the total mean physical parameters (<i>in-situ</i>)	92
т.17	concentrations for NAHRIM lake before and after the	
	construction of the wetlands	95
4.20	Comparison of the total mean chemical parameters (<i>ex-situ</i>)	
	concentrations for NAHRIM Lake before and after the	
	construction of the wetlands	96
4.21	Comparison of the total mean heavy metals and cations	
	concentrations for NAHRIM lake before and after the	
	construction of the wetlands	97
4.22	Comparisons of the total mean heavy metals concentration in	
	the sediment and vegetation samples of NAHRIM constructed	00
4.23	wetlands Comparison of the total mean water quality index value of	98
4.25	Comparison of the total mean water quality index value of NAHRIM lake before and after the construction of the wetlands	99
	WATTERIN face before and after the construction of the wettands))
DISC	USSION	101
5.1	Water quality characteristics of the NAHRIM lake	101
5.2	Evaluation of the constructed wetlands as remediation media of	
	contaminants of NAHRIM Lake	107
5.3	Comparisons of the water quality of NAHRIM lake before and	

5.3 Comparisons of the water quality of NAHRIM lake before and after the construction of the wetlands 113

5

6	SUMMARY, CONCLUSION AND RECOMMENDATIONS	114
---	---	-----

116
137
172
173

LIST OF TABLES

Table		Page
2.1	Sources and effects of heavy metals in aquatic bodies	5
2.2	Water Quality Index and Classification of Water Quality Standard	23
3.1	The description of the Sampling points of the NAHRIM Lake	31
3.2	The description of the sampling points of the NAHRIM constructed wetlands	32
3.3	Summary of the chemicals, reagents and laboratory equipments utilised for the analysis of water, plants and sediments samples	34
3.4	Instrument settings for ICP-OES	43
3.5	Percentage recovery of heavy metals and cations for water Analysis by ICP-OES	46
3.6	Comparison of the results of Standard Reference Material® 1646 in mg kg ⁻¹ with their certified values	46
3.7	Sediment quality according to Igeo Values	48
4.1	Pearson correlation analysis of studied water quality parameter of the NAHRIM lake	64
4.2	Concentrations of Physical (<i>in-situ</i>) parameters in water samples of NAHRIM constructed wetlands (n=18)	67
4.3	Concentrations of laboratory (<i>ex-situ</i>) parameters in water samples of NAHRIM constructed wetlands (n=18)	70
4.4	Concentrations of heavy metals (mgL ⁻¹) in water samples of NAHRIM constructed wetlands (n=18)	72
4.5	Concentration of cations (mgL ⁻¹) in NAHRIM constructed wetlands water samples (n=18)	73
4.6	Pearson correlation analysis of the studied water quality parameters of the NAHRIM constructed wetlands	75
4.7	Concentration of analysed physical sediment parameters and cations of NAHRIM constructed wetlands (n=54)	77
4.8	Concentrations of heavy metals (mgkg ⁻¹) in the sediment samples of NAHRIM constructed wetlands (n=54)	79

4.9	Comparisons of heavy metal concentrations (mg kg ⁻¹) from this study with sediment quality guidelines and continental crust values	81
4.10	Enrichment factor, Contamination Factor and Geochemical index of studied heavy metals of the sediments in NAHRIM constructed wetlands	83
4.11	Class distribution of geoaccumulation index of the studied heavy metals in the sediment samples of NAHRIM constructed wetlands	84
4.12	Pearson correlation analysis of studied sediment parameters of the NAHRIM constructed wetlands	85
4.13	Bioconcentration factors of NAHRIM constructed wetlands Phytoremediation Plant species	93
4.14	Translocation factors of NAHRIM constructed wetlands phytoremediation plants	94
4.15	Comparison of the total mean physical parameters (<i>in-situ</i>) concentrations for NAHRIM lake before and after the construction of the wetlands	96
4.16	Comparison of the total mean laboratory parameters (<i>ex-situ</i>) concentrations for NAHRIM lake before and after the construction of the wetlands	97
4.17	Comparison of the total mean heavy metals and cations concentrations in water samples of NAHRIM lake before and after the construction of the wetlands	98
4.18	Comparisons of the total mean heavy metals concentration in the sediment and vegetation samples of NAHRIM Constructed wetlands	99
4.19	Comparison of the total mean WQI value for NAHRIM Lakebefore and after the construction of the wetlands	100

LIST OF FIGURES

Figure	e I	Page
2.1	The Earth water composition	4
2.2	A Sketch showing the major zones and structure of a typical Lake	8
2.3	Different mechanism of contaminants uptake by the phytoremediation technology	11
2.4	Cyperus papyrus L.	13
2.5	Echinodorus cordifolius (L.) Griseb	14
2.6	Nelumbo nucifera Gaertn	15
2.7	Thalia sp	16
2.8	Cabomba furcata Schult. & Schult. f	17
2.9	Surface flow wetland	18
2.10	Subsurface flow wetland	19
2.11	Pollutant removal processes in a Constructed wetland	20
3.1	The Study Zone (NAHRIM Catchment Area and sampling points)	27
3.2	The NAHRIM lake	27
3.3	Cross section of NAHRIM constructed wetlands	29
3.4	NAHRIM Constructed wetland at the construction stage	30
3.5	An established NAHRIM Constructed wetland	30
3.6	The overall experimental design of the research at the NAHRIM study area	33
3.7	Flowchart of experimental procedures for water samples collected in duplicate from NAHRIM lake and constructed wetlands	38
4.1	(a)Temperature (b)Electrical conductivity (c)pH (d)Turbidity distribution in water samples of NAHRIM lake in the sites for the months	52
4.2	(a) Dissolved oxygen and (b) Total dissolved solids distribution in water samples of NAHRIM lake in the sites for the months	53

4.3	Redox potential distribution in water samples of NAHRIM lakein the sites for the months	54
4.4	(a) Chemical oxygen demand (b) Biochemical oxygen demand (c) Ammoniacal nitogen and (d) Nitrites distribution in water samples of NAHRIM lake in the sites for the months	55
4.5	(a) Nitrates and (b) Phosphorus distribution in water samples of NAHRIM lake in the sites for the months	56
4.6	(a) Total suspended solids (b) <i>Escherichiacoli</i> (c) Total coliform distribution in water samples of NAHRIM lake in the sites for the months	58
4.7	(a) Aluminium (b) Iron (c) Manganese and (d) Zinc distribution in water samples of NAHRIM lake in the sites for the months	60
4.8	Boron distribution in water samples of NAHRIM lake in the sites for the months	61
4.9	(a) Calcium (b) Magnesium (c) Sodium and (d) potassium distribution in water samples of NAHRIM lake in the sites for the months	63
4.10	(a) Alumium (b) Barium (c) Cadmium and (d) Chromium concentrations in parts of plant species NAHRIM constructed wetland	87
4.11	(a) Copper and (b) Iron concentrations in parts of plant species NAHRIM constructed wetland	89
4.12	(a)Lead and (b) Manganese concentrations in parts of plant species NAHRIM constructed wetland	90
4.13	(a) Nickel (b) Zinc concentrations in parts of plant species NAHRIM constructed wetland	91
5.1	The schematic overview of the discussion of this study	101

LIST OF EQUATIONS

3.1	Biochemical oxygen demand calculation	39
3.2	Organic matter content of the sediments calculation	44
3.3	Conversion of heavy metals in mgL ⁻¹ to mgkg ⁻¹	44
3.4	Cation exchange capacity in sediment calculation	45
3.5	Exchangeable cations in sediment calculation	45
3.6	National water quality standard index calculation	47
3.7	Geoaccumulation of heavy metals in sediments calculation	47
3.8	Contamination factor of sediment calculation	48
3.9	Degree of contamination in sediments determination	48
3.10	Enrichment factor of sediment samples determination	49
3.11	Bioaccumulation factor of heavy metals by plants determination	49
3.12	Translocation factor of heavy metals by plants determination	49
3.13	Removal efficiency of the Constructed wetlands determination	49

Ĵ

LIST OF ABBREVIATIONS

	µs/cm	Micro siemens per centimeter
	Al	Aluminum
	ANOVA	Analysis of Variance
	АРНА	American Public Health Association
	As	Arsenic
	В	Boron
	Ba	Barium
	BCF	Bioconcentration Factor
	BOD	Biochemical Oxygen Demand
	Ca	Calcium
	Cd	Cadmium
	CEC	Cation Exchange Capacity
	CF	Contamination Factor
	CFU	Colony Forming Unit
	COD	Chemical Oxygen Demand
	Cr	Chromium
	Cu	Copper
	CWs	Constructed wetlands
	DO	Dissolved oxygen
	DOE	Department of Environment
	E.coli	Escherichia coli
	EC	Electrical conductivity
	ECP	Electro coagulation Process
	EF	Enrichment Factor

	Eh	Redox potential
	EPA	Environmental Protection Agency
	Fe	Iron
	ICP – MS	Inductively Coupled Plasma- Mass Spectrometry
	ICP-OES	Inductively coupled Plasma- Optical Electron Spectrometry
	Igeo	Geoaccumulation Index
	ILEC	International Lake Environmental Committee
	ISQG	Interim Sediment Quality Guidelines
	К	Potassium
	meq/100g	Milliequivalent per 100gram
	mg Kg ⁻¹ .dw	Milligram per Kilogram of dried weight
	mg L ⁻¹	Milligram per liter
	Mg	Magnesium
	mL	Milliliter
	Mn	Manganese
	MPN	Most Probable Number
	Na	Sodium
	NAHRIM	National Hydraulic Research Institute of Malaysia
	NH ₃ -N	Ammoniacal Nitrogen
	Ni	Nickel
	NO ₂ -N	Nitrites
	NO ₃ -N	Nitrates
	NTU	Nephelometric Turbidity Unit
	NWQS	National Water Quality Standard
	РАН	Polyaromatic Hydrocarbon
	Pb	Lead

РСВ	Polycyclic biphenyl
РО	Phosphorus
ppm	Part per million
SF	Surface Flow
SSF	Subsurface flow
TDS	Total Dissolved Solids
TF	Translocation Factor
TSS	Total Suspended Solids
UN	United Nation
WHO	World Health Organization
WQI	Water Quality Index
Zn	Zinc

C

CHAPTER 1

INTRODUCTION

1.1 Overview

The presence of natural resources such as water has aided man in adapting to his environment. Their application in domestic, industrial, farming and recreational activities makes them an indispensable assets to man. However, these human activities in addition to the natural factors play an important role in the shrinking of water resources as well as the pollution of the water with substances that may have a direct effect on the health of the living organisms (Hogan, 2012).

Lake is a type of water resources that are designated as places of reflection, recreation, and rehabilitation in addition to serving as storm water retention pond in some instances, but as with all other water bodies, they are being subjected to an increasing pressure and stress by contaminants which results in most of them being degraded (USEPA, 2009). Malaysia has about 90 lakes created to serve the nation in different capacities (Sharip *et al.*, 2008) with the water quality of the majority of them classified as polluted (Mohkeri, 2002). Contaminants like heavy metals and other organic substances are found in discharges/effluents from different sources that include atmospheric deposition, runoff from impervious areas, sewerage treatment plants, and mining industries as well as agro-allied industries (Jackson *et al.*, 2012; Mburu *et al.*, 2013) that usually end up in the water resources, resulting in the degradation of the water quality.

Constructed wetlands (CWs) are biologically designed ecosystems which are imitations of natural wetlands that serve as biofilters to remove various ranges of substances such as nutrients, xenobiotics - a foreign substances that are present within a biological system when they are not expected to be present(Nor Aripin, 2008), organic pollutants, and trace metals from industrial and domestic wastewater discharges within a semi-controlled environment (Brix, 1997; Maine *et al.*, 2007; Vymazal *et al.*, 2010; Zhi and Ji, 2012). CWs are currently being studied for their water quality improvement of different water bodies in different part of the world (Saeed *et al.*, 2012; Zhang *et al.*, 2012; Avila *et al.*, 2013; Martin *et al.*, 2013; Mouru*et al.*, 2013).

1.2 Statement of research problems

Among the importance of freshwater ecosystem like lake is its suitability for aquaculture, sources of food, recreational activities and education. However, due to the climatic changes, anthropogenic activities and rapid expansion in infrastructural development, the available freshwater ecosystem are becoming polluted (UN Water, 2008). The infrastructures usually in the forms of mills, plants, sewerage treatment plants, housing estates as well as domestic and agricultural activities exerts threats to the freshwater quality (Lee *et al.*, 2006; Baha-Elden*et al.*, 2008; Mokhtar *et al.*, 2009b and Juhair*et al.*, 2011). These have been the situations in tropical countries especially the developing ones, where the treatment of effluents before being discharged into water bodies is of low priorities (Konnerup *et al.*, 2011). Moreover, very little information has been reported on the deployment of CWs as contaminant treatment media in the developing countries despite its relative acceptance in the other part of the world (Bojcevska and Tonderski, 2007).

NAHRIM have a pond with natural lake-like features that serve as the storm water retention ponds and the recreational needs of the staffs. The water quality in this pond was affected by the pollution from sewerage treatment plant, sullage water from the administrative office, hydraulic laboratory and runoff from the impervious area surrounding the ponds as well as erosion during heavy rainfall with the combined discharge rate of the contaminants of 163.82m³/ day (NAHRIM, 2012). Wetlands were constructed to check these contaminants from the sources before getting to the lake. However, assessments of remediation potential of the wetlands with respect to NAHRIM lake water quality improvement have not been carried out. Hence, an attempt was made in this study to assess the effectiveness of NAHRIM constructed wetlands in improving NAHRIM lake water quality to stipulated standard for lake water bodies, designed for recreational contacts by the Department of Environment National Water Quality Standard.

1.3 Objectives of the research

Thus, the objectives of this research are:

- 1) To establish the baseline concentrations of the water quality parameters and heavy metals of the NAHRIM Lake.
- 2) To evaluate the remediation process of the NAHRIM Constructed wetlands through the assessment of accumulation of heavy metals and other parameters in the wetlands aquatic plants, the sediments and water components.
- 3) To determine the level of water quality improvement at the lake through comparison of the water quality data pre and post constructed wetlands.

REFERENCES

- Abdullah, A. O. O. A. M., Ramli, M. F., and Sood, A. M. (2012). Factors affecting agricultural land use for vegetables production-a case study of the state of Selangor, Malaysia. *African Journal of Agricultural Research*, 7(44): 5939-5948.
- Abubakar, U. S., Zulkifli, S. Z., and Ismail, A. (2018). Heavy metals bioavailability and pollution indices evaluation in the mangrove surface sediment of Sungai Puloh, Malaysia. *Environmental Earth Sciences*, 77(6):225
- Adhikari, A.R., Acharya, K., Shanahan, S. A., Zhou, X. (2010). Removal of nutrients and metals by constructed and naturally created wetlands in the Las Vegas alley, Nevada. *Environmental Monitoring and Assessment*, 180(1-4):97-113.
- Ahluwalia, S. S., and Goyal, D., (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. *Bioresources Technology*, 98 (12):2243-2257.
- Akinbile, C. O., Yusoff, M. S., Talib, S. H. A., Hasan, Z. A., Ismail, W. R., and Samsudin, U. (2013). Qualitative analysis and classification of surface water in Bukit Merah Reservoir in Malaysia. *Water Science and Technology: Water Supply*, 13(4):1138-1145.
- al-Badaii, F., Shuhaimi-Othman, M., and Gasim, M. B. (2013). Water quality assessment of the Semenyih River, Selangor, Malaysia. *Journal of chemistry*.
- Ali, H., Khan, E., and Sajad, M.A. (2013). Phytoremediation of heavy metals-concepts and applications. *Chemosphere*, 91(7):869-881.
- Alkarkhi, A. F., Ahmad, A., and Easa, A. M. (2009). Assessment of surface water quality of selected estuaries of Malaysia: multivariate statistical techniques. *The Environmentalist*, 29(3):255-262.
- Amarasinghe, B. M. W. P. K., and Williams, R. A. (2007). Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. *Chemical Engineering Journal*, 132(1-3):299-309.
- Amneera, W. A., Najib, N. W. A. Z., Yusof, S. R. M., and Ragunathan, S. (2013). Water quality index of Perlis River, Malaysia. *International Journal on Civil and Environmental Engineering*, 13(2):1-6.
- Anning, A. K., Korsah, P. E., and Addo-Fordjour, P. (2013) .Phytoremediation of wastewater with *Limnocharisflava*, *Thalia geniculata and Typha latifolia* in constructed wetlands, *International Journal of Phytoremediation*, 15(5):452-64.

- APHA, (2005). Standard methods for the examination of water and wastewater. 21st Edition, American Public Health Association, Washington, DC, 10-15.
- Arain, B., Kazi, G., Jamali, K., Afridi, I., Jalbani, N., Sarfiraz, A., Baig, A., Kandhro, A., and Memon, A. (2008). Time saving modified BCR sequential extraction procedure for the fraction of Cd, Cr, Cu, Ni, Pb and Zn in sediment samples of polluted lake. *Journal of Hazardous Material*, 160:235–239.
- Archer, C. (2004). *Cyperus papyrus* L. South African National Biodiversity Institute (SANBI). http://www.plantzafrica.com/plantcd/cyperuspap.htm
- Arias, M. E., and Brown, M. T. (2009). Feasibility of using constructed treatment wetlands for municipal wastewater treatment in the Bogotá Savannah, Colombia. *Ecological Engineering*, 35(7):1070-1078.
- Aris, A. Z., Abdullah, M. H., Praveena, S. M., Yusoff, M. K., and Juahir, H. (2010). Extenuation of saline solutes in shallow aquifer of a small tropical island: a case study of Manukan Island, North Borneo. *Environment Asia*, 3:84-92.
- Ashraf, M. A., Maah, M. J., and Yusoff, I. (2012). Evaluation of natural phytoremediation process occurring at ex-tin mining catchment. *Chiang Mai Journal of Science*, 40(2):198-213.
- Astel, A., Biziuk, M., Przyjazny, A., and Namie´snik, J. (2006). Chemometrics in monitoring spatial and temporal variations in drinking water quality, *Water Research*, 40(8):1706–1716,
- Ávila, C., Salas, J. J., Martín, I., Aragón, C., and García, J. (2013). Integrated treatment of combined sewer wastewater and stormwater in a hybrid constructed wetland system in southern Spain and its further reuse. *Ecological Engineering*, 50:13-20.
- Bahaa-Eldin, E. A. R., Yusoff, I., Rahim, S. A., Wan Zuhairi, W. Y., and Abdul Ghani, M. R. (2008). Heavy metal contamination of soil beneath a waste disposal site at Dengkil, Selangor, Malaysia. *Soil and Sediment Contamination*, 17(5):449-466.
- Balasubramanian, N., Kojima, T., Ahmed Basha, C. and Srinivasakannan, C., (2009). Removal of arsenic from aqueous solution using electrocoagulation. *Journal of Hazardous Materials*, 167:966-969.

Beentje, H. J. (2017). Cyperus papyrus. The IUCN Red List of Threatened Species 2017: e.T164158A66891399. http://dx.doi.org/10.2305/IUCN.UK.2017

Bhateria, R., and Jain, D. (2016). Water quality assessment of lake water: a review. *Sustainable Water Resources Management*, 2(2):161-173.

- Białowiec, A., Davies, L., Albuquerque, A., and Randerson, P. F. (2012). The influence of plants on nitrogen removal from landfill leachate in discontinuous batch shallow constructed wetland with recirculating subsurface horizontal flow. *Ecological Engineering*, 40, 44-52.
- Billing, K. and Biles, P. (2007). The Lotus: Know it and grow it. International Water lily and Water Gardening Society. 47.
- Bojcevska, H., and Tonderski, K. (2007). Impact of loads, season, and plant species on the performance of a tropical constructed wetland polishing effluent from sugar factory stabilization ponds. *Ecological engineering*, 29(1):66-76.
- Boutilier, L., Jamieson, R., Gordon, R., and Lake, C. (2011).Modeling *E. coli* fate and transport in treatment wetlands using the water quality analysis and simulation program. *Environmental Science and Health*. 46:680–691.
- Boyd, C.E. (1990) Water Quality in Ponds for Aquaculture. *Birmingham Publishing Co.*, Alabama, USA.
- Bringolf, R. B., Heltsley, R. M., Newton, T. J., Eads, C. B., Fraley, S. J., Shea, D., and Cope, W. G. (2010). Environmental occurrence and reproductive effects of the pharmaceutical fluoxetine in native freshwater mussels. *Environmental Toxicology and Chemistry*, 29:1311-1318.
- Brix, H. (1997). Do macrophytes play a role in constructed treatment wetlands? *Water Science and Technology*, 35(5):11-17.
- Brüssow, H., Canchaya, C and Hardt W. D. (2004). Phages and the evolution of bacterial pathogens: From genomic rearrangements to lysogenic conversion. *MicrobiologyandMolecularBiologyReview*, 68:560-602.

Cabomba furcata (Cabombaceae), (2011). Malaysia biodiversity information system (MyBIS). Retrieved from http://www.mybis.gov.my/art/130.

- Calheiros, C. S. C., Rangel, A. O. S. S., and Castro, P. K. L. (2007). Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater. *WaterResources*, 41:1790–98.
- Cempel, M., and Nikel, G. (2006). Nickel: A review of its sources and environmental toxicology. *Polish Journal of Environmental Studies*, 15(3).
- Chakraborty, P., Babu, P. R., Vudamala, K., Ramteke, D., and Chennuri, K. (2014). Mercury speciation in coastal sediments from the central east coast of India by modified BCR method. *Marine Pollution Bulletin*, 81(1):282-288.
- Chapman, P. M., Allard, P. J., and Vigers, G. A. (1999). Development of sediment quality values for Hong Kong special administrative region: a possible model for other jurisdictions. *Marine Pollution Bulletin*, 38(3):161-169.

- Chaudhry, T. M., Hayes, W. J., Khan, A. G., and Khoo, C. S., (1998).Phytoremediation focusing on accumulator plants that remediate metal-contaminated soils. *Australian Journal of Ecotoxicology*, 4: 37–51.
- Chen, H. Y., Teng, Y. G., Lu, S. J., Wang, Y. Y., & Wang, J. S. (2015). Contamination features and health risk of soil heavy metals in China. *Science of the Total Environment*, 512–513:143–153.
- Chen, J. C., Wang, K. S., Chen, H., Lu, C. Y., Huang, L. C., Li, H. C., Peng, T. H., and Chang, S. H. (2010). Phytoremediation of Cr (III) by *Ipomoneaaquatica* (water spinach) from water in the presence of EDTA and chloride: Effects of Cr speciation. *Bioresources Technology*, 101(9):3033-3039.
- Cheng, Z., Liu, J., Qiu, C., and Xiao, B., (2000). The role of plants in channel-dyke and field irrigation systems for domestic wastewater treatment in an integrated eco- engineering system. *EcologicalEngineering*, 16:235-241.
- Chin, D. A. (2006). Water Quality Engineering in Natural Systems, Wiley Interscience, John Wiley & Sons, Inc., Hoboken, New Jersey.
- Christopher, O. A., Mohd, S. Y., Siti, H., Abu Talib, Z., Abu Hasan, W., Roslan, I. and Ummunajwa, S. (2013) Qualitative analysis and classification of surface water in Bukit Merah Reservoir in Malaysia. Water Science and Technology: Water Supply, 13(4):1138-1145.
- Claudio, I., Tuttolomondo, T., La Bella, S., Leone, R., and Licata, M. (2013). Effects of plant species in a horizontal subsurface flow constructed wetland– phytoremediation of treated urban wastewater with *Cyperus alternifolius* L. and *Typha latifolia* L. in the West of Sicily (Italy). *Ecological Engineering*, 61:282-291.
- Codd, G. A. (1995). Cyanobacterial toxins: occurrence, properties and biological significance. *Water Science and Technology*, 32(4):149-156.
- Constructed wetland images (2016) via Google image search from https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd =&cad=rja&uact=8&ved=0ahUKEwjnivrS1f_XAhWHOY8KHRuHA6E QjRwIBw&url=https%3A%2F%2Fwww.slideshare.net%2FAnkit7733%2 Fconstructed-wetland&psig=AOvVaw23aazPZtZ3K_cz-WCngJ Y&ust=1512999230239659. (Retrieved on 24th July, 2016).
- Corwin, D. L., Loague, K., and Ellsworth, T. R. (1999). Advanced information technologies for assessing nonpoint source pollution in the Vadose Zone: conference overview," *Journal of Environmental Quality*, 28(2):357–365.
- De Stefani, G., Tocchetto, D., Salvato, M., and Borin, M. (2011). Performance of a floating treatment wetland for in-stream water amelioration in N. E. Italy. *Hydrobiologia*, 674:157-167.

- Devi, M. P., Reddy, M. V., Juwarkar, A., Sarma, P. N., and Mohan, S. R. V. (2011). Effect of Co- culture and Nutrients Supplementation on Bioremediation of Crude Petroleum Sludge. *Clean–Soil, Air, Water*: 39(10):900-907.
- Dhote, S. and Dixit, S. (2009). Water quality improvement through macrophytes. A review. *EnvironmentalMonitoringandAssessment*, 152:149-153.
- Dipu, S. (2013). Phytoremediation of Heavy Metals from industrial effluent using Constructed wetland technology. *Applied Ecology and Environmental Sciences*, 1(5):92-97.
- Dipu, S., Kumar, A. A and Thanga, V. S. G. (2011). Phytoremediation of dairy effluent by Constructed wetland technology. *Environmentalist*, 31:263-278.
- Dirican, S. (2015). Assessment of Water Quality Using Physico-chemical Parameters of Çamlıgöze Dam Lake in Sivas, Turkey. *Ecologia*, 5(1):1-7.
- Dosnon-Olette, R., Couderchet, M., and Eullaffroy, P. (2009). Phytoremediation of fungicides by aquatic macrophytes: toxicity and removal rate. *Ecotoxicology and Environmental Safety*, 72(8), 2096-2101.
- Doyle, M. P., and M. C. Erickson. 2006. Closing the door on the faecal coliform assay. *Microbe* 1(4):162–163.
- Duruibe, J. O., Ogwuegbu, M.O.C and Egwurugwu, J. N. (2007). Heavy Metal pollution and human biotoxic effects. *International Journal of Physical Sciences*, 2(5):112-118.
- Ekengele, L. N., Blaise, A., and Jung, M. C. (2017). Accumulation of heavy metals in surface sediments of Lere Lake, Chad. *Geosciences Journal*, 21(2):305-315.
- EPA, (1993). Constructed wetland for wastewater treatment and wildlife habitat. Office of Research and Development, EPA 832-R-93-005,
- EPA, (2006). Region III BTAG freshwater sediment screening benchmarks. Environmental Protection Agency. Available athttps://www.epa.gov/sites/production/files/201509/documents/r3_btag_f _sediment_benchmarks_8-06.pdf (Retrieved on 12th October, 2017).
- EPA, (2009). *Drinking Water Contaminants*; United States Environmental Protection Agency, Washington, DC, USA.
- EPA, (2012). US Environmental Protection Agency, Lead in Air.

EPA. (2004). Constructed treatment wetlands. Office of water, 843- F-03-013,

- Finley, R.L., Collignon, P., Larsson, D.J., McEwen, S.A., Li, X.Z., Gaze, W.H., Reid-Smith, R., Timinouni, M., Graham, D.W., and Topp, E., (2013). The scourge of antibiotic resistance: the important role of the environment. *Clinical Infectious Diseases*, 57(5):704-710.
- Fong, P. P., and Molnar, N. (2008). Norfluoxetine induces spawning and parturition in estuarine and freshwater bivalves. *Bulletin of Environmental Contamination and Toxicology*, 81:535-538.
- Gan, S., Lau, E. V., and Ng, H. K. (2009). Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). *Journal of Hazardous Materials*, 172(2-3):532-549.
- Gandaseca, G., Noraini, R., Johan, I., and Mohd, I. J. (2010). Comparative study of water quality at different peat swamp forest of Batang Igan, Sibu Sarawak. *American Journal of Environmental Sciences*, 6(5): 416-421.
- Gandaseca, S., Rosli, N., Ngayop, J., and Arianto, C. I. (2011). Status of water quality based on the physico-chemical assessment on river water at Wildlife Sanctuary Sibuti Mangrove Forest, Miri Sarawak. *American Journal of Environmental Sciences*, 7(3):269.
- Gao, J., Zhang, J., Ma, N., Wang, W., Ma, C., and Zhang, R. (2015). Cadmium removal capability and growth characteristics of *Irissibirica* in subsurface vertical flow constructed wetlands. *Ecological Engineering*, 84:443-450.
- Gasim, M. B., Azmin, W. N., and Yaziz, M. I. (2012). Land use change and their impact on water quality in the Semenyih River, Selangor, Malaysia, *JournalTechnologyMineral*, 2:103–111.
- Gasim, M. B., Toriman, M. E., Muftah, S., Barggig, A., Aziz, N. A. A., Azaman, F., and Muhamad, H. (2015). Water quality degradation of Cempaka Lake, Bangi, Selangor, Malaysia as an impact of excessive E. coli and nutrient concentrations. *Malaysian Journal of Analytical Sciences*, 19(6):1391-1404.
- Gasim, M. B., Toriman, M. E., Rahim, S. A., Islam, M. S., Che, T. C., and Juahir, H. (2006). Hydrology, water quality and land-use assessment of Tasik Chini's feeder rivers, Pahang, Malaysia. *Geografia-Malaysian Journal of Society and Space*, 2(1).
- Gaworecki, K. M. and Klaine, S. J. (2008). Behavioural and biochemical responses of hybrid striped bass during andafter fluoxetine exposure. *Aquatic Toxicology*, 88:207-213.
- Ghosh, M., and Singh, S. (2005). A review on phytoremediation of heavy metals and utilization of it's by products. *Applied Ecology and Environmental Research*, 3(1):1-18.

- Gooding, C. H. (1985). Reverse osmosis and ultrafiltration solvent separation problems. *Chemical Engineering*, 92:56-62.
- Grall, J., and Chauvaud, L. (2002). Marine eutrophication and benthos: the need for new approaches and concepts. *Global Change Biology*, 8(9):813-830.
- Gupta, P., Roy, S., Mahindrakar, A.B. (2012). Treatment of water using water hyacinth, water lettuce and vetiver grass. A review. *Resources and Environment*, 2:202-215.
- Haase, H., Plum, L. M., and Rink, L. (2010). The essential toxin: impact of zinc on human health. *International Journal of Environmental Research and Public Health*, 7(4):1342-1365.
- Habibah, H., Theng, L. P., Jusoh, K., Razali, A. M., Ali, F. B., and Ismail, B. S. (2011).
 Speciation of heavy metals in paddy soils from selected areas in Kedah and Penang, Malaysia. *African Journal of Biotechnology*, 10(62):13505-13513.
- Hach, C. (2005). DR5000 Water analysis handbook: Drinking Water, Wastewater, Seawater, Boiler/cooling Water, Ultrapure Water. 5th Edn. Hach Chemical Company, Loveland, Colorado, USA.
- Hani, A. and Pazira, E., (2011). Heavy metals assessment and identification of their sources in Agricultural Soils of Southern Tehran, Iran. Environmental Monitoring and Assessment, 176(1-4):677-691.
- Hansen, H. K., Nunez, P., Raboy, D., Schippacasse, I. and Grandon, R., (2007). Electro-coagulation in wastewater containing arsenic: Comparing different process designs. *Electrochimica Acta*, 52:3464-3470.
- Hazelton, P.D., Cope, W.G., Mosher, S., Pandolfo, T.J., Belden, J.B., Barnhart, M.C. and Bringolf, R.B. (2013). Fluoxetine alters adult freshwater mussel behaviour and larval metamorphosis. *Science of the Total Environment*,94-100.
- Headley, T. R., and Tanner, C. C. (2012). Constructed wetlands with floating emergent macrophytes: an innovative stormwater treatment technology. *Critical Reviews in Environmental Science and Technology*, 42(21):2261-2310.
- Hinck, J. E., Blazer, V. S., Schmitt, C. J., Papoulias, D. M., and Tillitt, D. E. (2009). Widespread Occurrence of Intersex in Black Basses (*Micropterus* sp.) from US Rivers, 1995-2004. *Aquatic Toxicology*, 95:60-70.
- Hogan, C. M. (2012). Heavy metal. In: *Encyclopaedia of Earth*. Eds. Cutler J. Cleveland (Washington, D.C.: Environmental Information Coalition, National Council for Science and the Environment).
- Hooda, P. S. (2010). Assessing bioavailability of soil trace elements. *Trace elements in soils*, 229-265.

- Hounkpè, J. B., Kélomè, N. C., Adèchina, R., and Lawani, R. N. (2017). Assessment of heavy metals contamination in sediments at the lake of Ahémé in southern of Benin (West Africa). *Journal of Materials and Environmental Sciences*, 8(12):4369-4377.
- Hussein, H.; Farag, S.; and Moawad, H. (2004). Isolation and characterization of Pseudomonas resistant to heavy metals contaminants. *Arabian Journal of Biotechnology*, 7:13–22.
- Idris, A. M. (2008). Combining multivariate analysis and geochemical approaches for assessing heavy metal level in sediments from Sudanese harbors along the Red Sea coast. *Microchemical Journal*, 90(2):159-163.
- Idriss, A. A., and Ahmad, A. K. (2013). Heavy metals nickel and chromiumin sediments in the Juru River, Penang, Malaysia. *Journal of Environmental Protection*, 4(11):1245.
- ILEC, (2007). Integrated Lake Basin Management: An Introduction. Kusatsu, Japan: International Lake Environment Committee Foundation; http:// www.ilec.or.jp/en/wp/wpcontent/uploads/2013/03/ILBM_Report_E_07oct 02.pdf (Retrieved: 15 June 2017).
- Ismail, A. (1993). Heavy metal concentrations in sediments off Bintulu, Malaysia. *Marine Pollution Bulletin*, 26(12):706–707.
- Ismail, A., Chiu, P. K and Yap, C. K. (2005). Conference on innovations and technologies in oceanography for sustainable development.
- Ismail, B. S., Islam, M. S., Barzani, G. M., Sahibin, A. R., and EKhwan, T. M. (2012). Hydrological assessment and water quality characteristics of Chini Lake, Pahang, Malaysia. *American-Eurasian Journal of Agricultural and Environmental Science*, 12(6):737-749.
- Jackson, B. P., Taylor, V.F., Punshon, T., and Cottingham, K. L. (2012). Arsenic concentration and speciation in Infant formulas and first foods. *Pure Applied Chem*istry, 84(2):215-223.
- Jadia, D, C., and Fulekar, M.H. (2009). Phytoremediation of Heavy Metals: Recent Techniques, *AfricanJournalofBiotechnology*, 8(6):921-928.
- Järup, L. (2003). Hazards of heavy metal contamination. *British medical bulletin*, 68(1):167-182.
- Jean-Paul, B., Li, X., Liu, Y., Triplet, S., and Michaud, L. (2014). Effect of oxidation– reduction potential on performance of European sea bass (Dicentrarchuslabrax) in recirculating aquaculture systems. Aquaculture International, 22(4):1263-1282.

- Jirawan, T., Wipawan, S., and Thiravetyan, P. (2012) Phosphorus removal from domestic wastewater by *Echinodorus cordifolius* L., *Journal of Environmental Science and Health*, Part A, 47(5):794-800
- Jomjun, N., Siripen, T., Maliwan, S., Jintapat, N., Prasak, T., Somporn, C., and Petch, P. (2010). Phytoremediation of arsenic in submerged soil by wetland plants. *International Journal of Phytoremediation*, 13(1):35-46.
- Juahir, H., Zain, S. M., Yusoff, M. K., Hanidza, T. T., Armi, A. M., Toriman, M. E., and Mokhtar, M. (2011). Spatial water quality assessment of Langat River Basin (Malaysia) using environmetric techniques. *Environmental monitoring and assessment*, 173(1-4):625-641.
- Jung, H. B., Yun, S. T., Mayer, B., Kim, S. O., Park, S. S., and Lee, P. K. (2005). Transport and sediment–water partitioning of trace metals in acid mine drainage: an example from the abandoned Kwangyang Au–Ag mine area, South Korea. *Environmental Geology*, 48(4-5):437-449.
- Kadhum, S. A., Ishak, M. Y., and Zulkifli, S. Z. (2016). Evaluation and assessment of baseline metal contamination in surface sediments from the Bernam River, Malaysia. *Environmental Science and Pollution Research*, 23(7):6312-6321.
- Kadhum, S. A., Ishak, M. Y., Zulkifli, S. Z., and binti Hashim, R. (2015). Evaluation of the status and distributions of heavy metal pollution in surface sediments of the Langat River Basin in Selangor Malaysia. *Marine Pollution Bulletin*, 101(1):391-396.
- Kadlec, R. H. (2009). Comparison of free water and horizontal subsurface treatment wetlands, *Ecological Engineering*, 35(2):159-174.
- Kadlec, R. H., and Wallace, S. (2008). Treatment wetlands. CRC press.
- Kalu, O., U., Sapari, N., Yusof, K. W., Asadpour, R., and Olisa, E. (2014). Water quality assessment of ex-mining Lakes in Perak, Malaysia as alternative source of water supply. *Applied Mechanics and Materials*, (567).
- Kamaruddin, I. S., Kamal, A. M., Christianus, A., Daud, S. K., and Abit, L. Y. (2011).
 Fish community in pengkalangawi-pulaudula section of Kenyir Lake, Terengganu, Malaysia. *Journal of Sustainability Science and Management*, 6(1):89-97.
- Kew Seed Information Database, (2015). *Cyperus papyrus L.* Kew, UK: Royal BotanicGardens. http://data.kew.org/sid/SidServlet?ID=7263&Num=gcm #Salt. (Retrieved on 22nd May, 2017).
- Khalik, W. M. A. W. A., and Abdullah, M. P. (2012). Seasonal influence on water quality status of Temenggor Lake, Perak. *Malaysian Journal Analytical Sciences*, 16:163-171.

- Khuan, Y.L., Hamzah, N., and Jailani, R. (2002). Prediction of water quality index based on artificial neural network. *Research* and *Development, Selangor*, 157-161.
- Kivaisi, A. K. (2001). The potential for constructed wetlands for wastewater treatment and reuse in developing countries: a review. *Ecological Engineering*, 16(4):545-560.
- Konnerup, D., Trang, N. T. D., and Brix, H. (2011). Treatment of fish pond water by recirculating horizontal and vertical flow constructed wetlands in the tropics. *Aquaculture*, 313(1-4):57-64.
- Krieg, N.R and Holt, J. G. (1984). Eds. *Bergey's Manual of Systematic Bacteriology*. Baltimore: Williams, 408-20.
- Kumar, J. I., Soni, H. R., Kumar, N. and Bhatt, I. (2008). Macrophytes in phytoremediation of heavy metal contaminated water and sediments in Pariyej Community Reserve, Gujarat, India. *Turkish Journal of Fisheries* and Aquatic Sciences, 8:193-200.
- Lalevic, B., Raicevic, V., Kikovic, D., Jovanovich, L., Momirovic, G. S., Jovic, J., Talaie, A.R and Morina, F. (2012). Biodegradation of MTBE by bacteria isolated from Oil landfill leachates using ion exchange resin. *Desalination*, 254(1-3):154–161.
- Langergraber, G. (2007). Modeling of processes in subsurface flow constructed wetlands: A Review. Vadose Zone Journal, 7:830–842.
- Lawton, L. A., and Codd, G. A. (1991). Cyanobacterial (blue- green algal) toxins and their significance in UK and European waters. *Water and Environment Journal*, 5(4):460-465.
- Lee, H., Y., Abdullah, M. P., Yi, C. S., Mokhtar, M., and Ahmad, R. (2006). Development of possible indicators for sewage pollution for the assessment of Langat River ecosystem health. *Malaysian Journal of Analytical Sciences*, 10(1):15-26.
- Lema, E., Machunda, R., and Njau, K. N. (2014). Influence of macrophyte types towards agrochemical phytoremediation in a tropical environment. *International Journal of Engineering Research and General Science*, 2(5).
- Lim, P. E., Mak, K. Y., Mohamed, N., and Noor, A. M. (2003). Removal and speciation of heavy metals along the treatment path of wastewater in subsurface flow constructed wetlands. *Water Science* and *Technology*, 48(5):307-313.
- Lin, C. C., and Lin, H. L. (2005). Remediation of soil contaminated with the heavy metal (Cd^{2+).} *Journal of hazardous materials*, 122(1-2):7-15.

- Lu, X., Kruatrachue, M., Pokethitiyook, P., and Homyok, K. (2004). Removal of cadmium and zinc by water hyacinth, *Eichhornia crassipes. Science Asia*, 30(93):93-103.
- Maine, M.A., Suné, N., Hadad, H., Sanchez, G. And Bonetto, C. (2007a). Removal efficiency of a constructed wetland for wastewater treatment according to vegetation dominance. *Chemosphere*, 68:1105-1113.
- Mamun, A. A., Idris, A., Sulaiman, W. N. A., and Muuyibi, S. A. (2007). A revised water quality index proposed for the assessment of surface water quality in Malaysia. *Pollution Research*, 26(4):523.
- Manahan, S.E. (1997). Environmental Science and Technology, Lewis Publishers, New York.
- Mantovi, P., Piccinni, S., Lina, F., Marmiroli, M and Marmiroli, N. (2007). Treating wastewater from Cheese productions in HSSF constructed wetlands. *Proceedings* of the *InternationalConference* on *MultiFunctions* of *WetlandSystems*, Padova, Italy.
- Marchand, L., Mench, M., Jacob, D. L., and Otte, M. L. (2010). Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: A Review. *Environmental Pollution*, 158(12):3447-3461.
- Martín, M., Oliver, N., Hernández-Crespo, C., Gargallo, S., and Regidor, M. C. (2013). The use of free water surface constructed wetland to treat the eutrophicated waters of Lake L'Albufera de Valencia (Spain). *Ecological Engineering*, 50:52-61.
- Masbough, A., Prankowski, K., Hall, K. J and Duff, S.J.B. (2005). The effectiveness of constructed wetlands for treatment of wood waste leachates. *EcologicalEngineering*, 25:552-66.
- Masters, G.M. (1998). Introduction to Environmental Engineering and Science, 2nd Edition, *Prentice Hall, Inc.*, New Jersey.
- Matschullat, J., (2002). Arsenic in the geosphere A review. Science and Total Environment, 249:297-312.
- Mburu, N., Tebitendwa, S. M., Rousseau, D. P., Van Bruggen, J. J. A., and Lens, P. N. (2012). Performance evaluation of horizontal subsurface flow-constructed wetlands for the treatment of domestic wastewater in the tropics. *Journal of Environmental Engineering*, 139(3):358-367.
- MCcaull, J., and Crossland, J. (1974). Water Pollution, *Harcourt Brace Jovanovich*, *Inc.*, USA.

- McLean, O (1982). Method of soil analysis. In: Page AL et al. (Eds.). Soil pH analysis. Madison, Wisconsin, 199–224
- Mellem, J. J., Baijnath, H., and Odhav, B. (2012). Bioaccumulation of Cr, Hg, As, Pb, Cu and Ni with the ability for hyperaccumulation by *Amaranthus dubius*. *African Journal of Agricultural Research*, 7(4):591-596.
- Mo, C. and Neilson, B. 1994. Standardization of oyster soft dry weight measurements. *Water Research* 28: 243–246.
- Mohanty, M., Pattnaik, M. M., Mishra, A. K., and Patra, H. K. (2012). Bioconcentration of Chromium. An *in-situ* phytoremediation study at South Kaliapani Chromite Mining Area of Orissa, India. *Environmental Monitoring Assessment*, 184(2):1015-1024.
- Mohd, S. N., Majid, N. M., Shazili, N. A. M., and Abdu, A. (2013). Assessment of *Melaleucacajuputias* heavy metals phytoremediator for sewage sludge contaminated soil. *American Journal of Applied Sciences* 10(9): 1087-1092.
- Mohkeri, S. (2003) Community approaches in restoration of Kelana Jaya lakes and Pencala River. Global Environment Centre, Malaysia.
- Mokhtar, H., Morad, N., and Fizri, F. F. A. (2011). Phytoaccumulation of Copper from Aqueous Solutions using Eichhornia crassipes andCentellaasiatica. International Journal of Environmental Science and Development, 2(3):205-210.
- Mood, N. C., OTHMAN, N. F. M. A., and ADHAM, M. I. (2017). Effectiveness of Lake Remediation towards Water Quality: Application in Varsity Lake, University of Malaya, Kuala Lumpur. *Sains Malaysiana*, 46(8):1221-1229.
- Moss, T. C. (2011). Plant fact sheet for powdery *Thalia* (*Thalia dealbata*). USDA-Natural Resources Conservation Service, Jamie L. Whitten Plant Materials Center, Coffeeville, MS 38922.
- Moussavi, G. and Barikbin, B. (2010). Biosorption of Chromium (VI) from Industrial wastewater onto *Pistachio* hull waste biomass. *Chemical Engineering Journal*, 162(3):893-900.
- Mucha, A. P., Vasconcelos, M. T. S., and Bordalo, A. A. (2003). Macrobenthic community in the Douro estuary: relations with trace metals and natural sediment characteristics. *Environmental pollution*, 121(2):169-180.
- Mudgal, V., Madaan, N and Mudgal, A. (2010). Heavy Metals in Plants: Phytoremediation: Plants used to remediate heavy metal pollution. *AgricultureandBiologyJournalofNorthAmerica*, 1(1):40-46.
- Muller, G. (1981). The heavy metal pollution of the sediments of Neckars and its tributary: stocktaking. *Chemiker-Zeitung*, 105:157–164.

- Nadimikeri, J., Ganugapenta, S., Chinnapolla, S. R. R. B., Ballari, L., Madiga, R., Nirmala, K., and Tella, L. P. (2018). Assessment of heavy metal pollution from the sediment of Tupilipalem Coast, southeast coast of India. *International Journal of Sediment Research*.
- NAHRIM, (2012). Study on the Status of eutrophication of Lakes in Malaysia. Seri Kembangan: NAHRIM Complex, Malaysia.
- NAHRIM, (2012). Water quality status of Tasik NAHRIM. In. Muhammad FadhilKasim., Eds. Report on Water quality of Tasik NAHRIM. Unpublished.
- Nakamura, M. (2007). Improving basin governance toward integrated Lake/Reservoir Management, a global challenge. In Colloquium on Lakes and Reservoir Management: Status and Issues eds A. Anton, S. Zakaria, F. M. Yusoff, L. Jin, LK Sim and Z. Sharip, 1-13.
- Nasrabadi, T., Bidhendi, G. N., Karbassi, A., and Mehrdadi, N. (2010). Evaluating the efficiency of sediment metal pollution indices in interpreting the pollution of Haraz River sediments, southern Caspian Sea basin. *Environmental monitoring and assessment*, 171(1-4):395-410.
- Naveedullah, N., Hashmi, M. Z., Yu, C., Shen, C., Muhammad, N., Shen, H., and Chen, Y. (2016). Water quality characterization of the siling reservoir (Zhejiang, China) using water quality index. *CLEAN–Soil, Air, Water*, 44(5):553-562.
- Nguyen, Q.V. (2001). Lotus for Export: An agronomic and physiological study. *RIRDC Publication No 01/32*, Rural Industries research and Development Corporation, Canberra.
- Ning, R.Y. (2002). Arsenic removal by reverse osmosis. Desalination, 143:237-241.
- NOAA, (1999). Screening quick reference tables.
- Noller, B. N., Woods, P. H and Ross, B. J. (1994). Case studies of wetland filtration of mine waste water in constructed and naturally occurring systems in Northern Australia. *WaterScienceandTechnology*, 29:257-66.
- Onwubuya, K., Cundy, A., Puschenreiter, M., Kumpiene, J., Bone, B., Greaves, J., Teasdale, P., Mench, M., Tlustos, P., Mikhalovsky, S. and Waite, S., (2009). Developing decision support tools for the selection of gentle remediation approaches. *Science of the Total Environment*, 407(24):6132-6142.
- Orderud, G. I., and Vogt, R. D. (2013). Trans-disciplinarity required in understanding, predicting and dealing with water eutrophication. *International Journal of Sustainable Development and World Ecology*, 20(5):404-415.

- Painter, M. M., Buerkley, M.A., Julius, M.L., Vajda, A.M., Norris, D.O., Barber, L.B., Furlong, E.T., Schultz, I.M.M. and Schoenfuss, H.L. (2009). Antidepressants at environmentally relevant concentrations affect predator avoidance behaviour of Larval Fathead Minnows (*Pimephales promelas*). *Environmental Toxicology and Chemistry*, 28:2677-2684.
- Pereira, L. S., Ribas, J. L. C., Vicari, T., Silva, S. B., Stival, J., Baldan, A. P., and de Assis, H. S. (2016). Effects of ecologically relevant concentrations of cadmium in a freshwater fish. *Ecotoxicology and Environmental safety*, 130:29-36.
- Pilon-Smits, E. (2005). Phytoremediation. *Annual Review of Plant Biology*, 56(1):15-39.
- Pivertz E, Bruce. (2001). Phytoremediation of contaminated soil and ground water at hazardous waste sites. Environmental Research Services Corporation. *EPA*/540/S- 01/500.
- Prasad, M. N. V. (2004). Phytoremediation of metals in the environment for sustainable development process. *Indian National Science Academy*, B70 (1):71-98.
- Praveena, S. M., Radojevic, M., Abdullah, M. H., and Aris, A. Z. (2008). Application of sediment quality guidelines in the assessment of mangrove surface sediment in Mengkabong lagoon, Sabah, Malaysia, *Journal of Environmental Health Science and Engineering*, 5(1):35-42.
- Pruden, A., Larsson, D. G. J., Amézquita, A., Collignon, P., Brandt, K. K., Graham, D.W., Lazorchak, J. M., Suzuki, S., Silley, P., Snape, J. R., Topp, E., Zhang, T. and Zhu, Y. G. (2013). Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. *Environmental Health Perspectives*, 121:878-885.
- Puigagut J., Caselles-Osorio A., Vaello N. and García J. (2008). Fractionation, biodegradability and particle-size distribution of organic matter in horizontal subsurface-flow constructed wetlands. Wastewater Treatment, *Plant Dynamics* and *Management in Constructed and Natural Wetlands*, 289-297.
- Radojevic, M., and Bashkin, V. (2007). *Practical environmental analysis*. Royal society of chemistry.
- Rai, P. K. (2015). What makes the plant invasion possible? Paradigm of invasion mechanisms, theories and attributes. *Environmental Skeptics and Critics*, 4(2):36.
- Rajakaruna, N., Tompkins, K.M., and Pavicevic, P. G. (2006). Phytoremediation: An affordable green technology for the clean-up of metal- contaminated sites in Sri Lanka. *Ceylon Journal of Science. (Biological Sciences)*, 35:25-39.

- Ramadas, K. (2008). Report on Governance Sector: Position paper on Governance of Lakes in Malaysia strategy Plan: Strategies for the sustainable development and management of Lakes and Reservoirs in Malaysia Volume 2. Kuala Lumpur: ASM and NAHRIM; 2009.
- Raskin, I. and Ensley, B. D. (2000). Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment. *John Wiley Publishers*, New York.
- Ravena, O. (2001). Ecological monitoring for water body management. In: Timmerman J. G. (Ed.), Proceedings of the International Workshop on Information for Sustainable Water Management (25-28 Sept 2000), 157-167.
- Ribeiro, A. B., Mateus, E. P., Ottosen, M. L. and Nielsen, G. B. (2000). Electrolytic removal of Cu, Cr, and As from chromated Copper Arsenate-treated Timber waste. *Environmental Science and Technology*, 34(5):784-788.
- Rodríguez-Barroso, M. R., García-Morales, J. L., Oviedo, M. C., and Alonso, J. Q. (2010). An assessment of heavy metal contamination in surface sediment using statistical analysis. *Environmental Monitoring and Assessment*, 163(1-4): 489-501.
- Romano, N. and Zeng, C. (2007). Effects of potassium on nitrate mediated alterations of osmo-regulation in marine crabs, *Aquatic Toxicology*, 85(3): 202–208.
- Rosegrant, M.W. and Cai, X., (2001). Water scarcity and food security: alternative futures for the 21st century. *Water Science and Technology*, 43(4):61-70.
- Rostom, N. G., Shalaby, A. A., Issa, Y. M., and Afifi, A. A. (2017). Evaluation of Mariut Lake water quality using Hyperspectral Remote Sensing and laboratory works. *The Egyptian Journal of Remote Sensing and Space Science*, 20:S39-S48.
- Rozema, E. R., Rozema, L. R., and Zheng, Y. (2016). A vertical flow constructed wetland for the treatment of winery process water and domestic sewage in Ontario, Canada: Six years of performance data. *Ecological Engineering*, 86:262-268.
- Rusea, G., Fazli, B., Sharifuddin, S.S., and Muhammad, A. (2011). Preliminary report for conservation of Tasik NAHRIM water quality.
- Sabri, N. A. S. M., Abdullah, M. P., and Mat, S. (2014, September). Monitoring and assessment of water quality of Tasik Cempaka, Bangi. In *AIP Conference Proceedings* (Vol. 1614, No. 1, pp. 342-346). AIP.
- Sabri, N. A. S. M., Abdullah, M. P., Mat, S., Elfithri, R., and Khalik, W. M. A. W. M. (2016). Evaluation of Hydrochemistry Variation in Water Quality of Cempaka Lake, Malaysia using Multivariate Statistical Analysis. *Journal* of Materials and Environmental Science, 7(12):4403-4410.

- Saeed, T., and Sun, G. (2012). A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media. *Journal of environmental management*, 112:429-448.
- Said, K. S., Shuhaimi, M., and Kutty, A. (2011). The water quality and metal concentrations of Cempaka Lake, Selangor, Malaysia. WIT Transactions on Ecology and the Environment, 148:47-52.
- Said, K. S., Shuhaimi-Othman, M., and Ahmad, A. K. (2012a). AmpangHilir Lake, Selangor, Peninsular Malaysia. *Pakistan Journal of Biological Sciences*, 15(9):437-447.
- Said, K. S., Shuhaimi-Othman, M., and Ahmad, A. K. (2012b). The evaluation of water quality and metal concentrations of Titiwangsa lake, Selangor, Peninsular Malaysia. *Pakistan Journal of Biological Science*, 15(10):459-468.
- Sakakibara, M., Ohmori, Y., Ha, N. T. H., Sano, S., and Sera, K. (2011). Phytoremediation of heavy metal- contaminated water and sediment by *Eleocharisacicularis. CLEAN–Soil, Air, Water*, 39(8):735-741.
- Salem, H. M., Eweida, E. A., and Farag, A. (2000). Heavy metals in drinking water and their environmental impact on human health. *ICEHM2000, Cairo University, Egypt*: 542-556.
- Salem, Z. B., Laffray, X., Ashoour, A., Ayadi, H., and Aleya, L. (2014). Metal accumulation and distribution in the organs of Reeds and Cattails in a constructed treatment wetland (Etueffont, France). *Ecological Engineering*, 64:1-17.
- Santos Bermejo, C., Beltrán, R., and Gómez Ariza, L. (2003). Spatial variations of heavy metals contamination in sediments from Odiel River (Southwest Spain), *Environmental International*. 29:69–77.
- Sarma, H. (2011). Metal Hyperaccumulation in Plants: A review focusing on phytoremediation technology. *Journal of Environmental Science and Technology*, 4:118-138.
- Selvaraj K., Ram Mohan, V., and Szefer, P. (2004). Evaluation of metal contamination in coastal sediments of the Bay of Bengal, India: geochemical and statistical approaches, *Marine Pollution Bulletin*. 49(3):174–185.
- Şener, Ş., Şener, E., and Davraz, A. (2017). Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Science of the Total Environment, 584:131-144.

- Shafiq, Z. M., Ruddin, M. S. A. S., Zarul, H. H., Khaled, P., Syaiful, M., and Maznah, W. O. W. (2014). The effect of seasonal changes on freshwater fish assemblages and environmental factors in Bukit Merah Reservoir (Malaysia). *Transylvanian Review of Systematical and Ecological Research*, 16(1):97-108.
- Shaharuddin, S., Chan, N. W., Zakaria, N. A., Ab Ghani, A., Chang, C. K., and Roy, R. (2014). Constructed wetlands as a natural resource for water quality improvement in Malaysia. *Natural Resources*, 5(8):292-298.
- Sharma, V.K. and Sohn, M., (2009). Aquatic arsenic: toxicity, speciation, transformations, and remediation. *Environmental International*, 35:743-759.
- Shen, D. S., He, R., Liu, X. W and Ling, Y. (2006). Effects of pentachlorophenol and COD concentration in influents on operational behaviour of up flow sludge blavarat reactor. *JournalofHazardousMaterials*, 136:645-653.
- Shen, Z., Zhang, Q., and Yue, C., (2006). The spatial pattern of land use/land cover in the water supplying area of the Middle-Route of the South-to-North Water Diversion (MR-SNWD) Project, Acta Geographica Sinica, 61(6):633-644,
- Shuhaimi-Othman, M., Ahmad, A. K and Hoon, L. P. (2010). Heavy metal concentrations in Fanworth (*Cabombafurcata*) from lake Chini, Malaysia. *World Academy of Science, Engineering and Technology*, 41, 107.
- Shuhaimi-Othman, M., Ahmad, A., Mushrifah, I., and Lim, E. C. (2007). Seasonal influence on water quality and heavy metals concentration in Tasik Chini, Peninsular Malaysia. In *Proceedings of Taal2007: The 12th World Lake Conference*. 300: 303.
- Shuhaimi-Othman, M., Lim, E. C., and Mushrifah, I. (2008). Water quality changes in Chini Lake, Pahang, West Malaysia. *Environmental Monitoring and Assessment*, 131(1-3):279-292.
- Sibal, L. N., and Espino, M. P. B. (2018). Heavy metals in lake water: a review on occurrence and analytical determination. *International Journal of Environmental Analytical Chemistry*, 1-19.
- Sim, C. H., Yusoff, M. K., Shutes, B., Ho, S. C., and Mansor, M. (2008). Nutrient removal in a pilot and full scale constructed wetland, Putrajaya city, Malaysia. *Journal of Environmental Management*, 88(2):307-317.
- Siti-Munirah, M. Y., and Chew, M. Y. (2010). Cabombaceae, a new family record for Peninsular Malaysia. *Malayan Nature Journal*, 62(3):241-248.

- Song, S., Lopez-Valdivieso, A., Hernandez Campos, D.J., Peng, C., Monroy-Fernandez, M.G., and Razo-Soto, I. (2006). Arsenic removal from high arsenic water by enhanced coagulation with ferric ions and coarse calcite. *Water Research*, 10:361–372.
- Sooknah, R.D and Wilkie, A.C. (2004). Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure Wastewater. *EcologicalEngineering*, 22:27-42.
- Sow, Y., Ismail, A., and Zulkifli, Z (2013) An assessment of heavy metal bioaccumulation in Asian swamp eel, *Monopterus albus*, during plowing stages of a paddy cycle. *Bulletin of Environmental Contamination and Toxicology*, 1–7
- Srivastava, J., Gupta, A., and Chandra, H. (2008). Managing water quality with aquatic macrophytes. *Review of Environmental Science and Biotechnology*, 7:255–266.
- Sujaul, M. I., Hossain, M. A., Sobahan, M. A., Zularisam, A. W., and Aziz, E. A. (2012). Spatial Variation of Water Quality Parameters in Gebeng Industrial Area, Pahang, Malaysia. In *Proceedings of International Conference on Environment, Chemistry and Biology IPCBEE, Hong Kong.*
- Sultan, K., Shazili, N. A., and Peiffer, S. (2011). Distribution of Pb, As, Cd, Sn and Hg in soil, sediment and surface water of the tropical river watershed, Terengganu (Malaysia). *Journal of Hydroenvironment Research*, 5(3):169-176.
- Syed, N. I. S., Syuhaida, A. W. A., Praveena, S. M., & Suriyani, A. (2014). The comparison of phytoremediation abilities of water mimosa and water hyacinth. ARPN Journal of Science and Technology, 4(12):722-731.
- Talukdar, S and Bhardwaj, S. (2013). Bioremediation of Heavy metals using metal hyperaccumulators plants, in fungi as bioremediators" (Ed. E. M. Goltapeh, Y. R. Danesh and A. Varma), Springer, New York, 467-480.
- Tan, S.G., and Yap, C.K., (2006). Biochemical and molecular indicators in aquatic ecosystems: current status and further applications in Malaysia. *Aquatic Ecosystem Health and Management*, 9:227–236.
- Temminghoff, E. E. J. M., and Houba, V. J. G. (2004). *Plant analyses procedures*. (Kluwer Academic Publishers: Dodrecht, The Netherlands).
- The Earth water resources (2016). via Google image search from https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd =&cad=rja&uact=8&ved=0ahUKEwjQ9I7e2P_XAhWFN48KHa5VDfcQj RwIBw&url=https%3A%2F%2Fwater.usgs.gov%2Fedu%2Fearthwherew ater.htmL&psig=AOvVaw2AxNIxmLaV1IZJwBL9s8Zb&ust=151300381 9299261. (Retrieved on 24th July, 2016).

- The Lake water zones. (2016) via Google image search from https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd =&cad=rja&uact=8&ved=0ahUKEwj5viG2f_XAhUjTI8KHeMyBW0QjR wIBw&url=http%3A%2F%2Fwww.Lakeaccess.org%2Fecology%2FLak ecologyprim9.htmL&psig=AOvVaw3KLLkC0PjhspM2rD9KlGi&ust=15 13003935872385. (Retrieved on 30th September, 2016).
- Thiravetyan, P., and Teamkao, P. (2010). Phytoremediation of ethylene glycol and it derivatives by the burhead plant (*Echinodoruscordifolius* L.): Effect of molecular size, *Chemosphere*, 81:1069-1074.
- Thomas, R., Meybeck, M., and Beim, A. (1996). Chapter 7 Lakes. In Chapman D (ed.) Water Quality Assessment A Guide to Use of Biota, Sediments and Water *Environmental Monitoring Second edition*. UNESCO, WHO, UNEP,
- Tripathy, B.D., and Upadhyay, A.R. (2003). Dairy effluent polishing by aquatic macrophytes. *Water*, *AirandSoilPollution*, 9:377-385.
- Turekian, K., and Wedepohl, H (1961). Distribution of the elements in some major units of the earth's crust. *Geological Society of America Bulletin*, 72:175
- UN Water, (2008). Tackling a Global Crisis: International Year of Sanitation. Available at, http://www.wsscc.org/fileadmin/files (Retrieved: 12 October, 2017).
- UN Water, (2017). Wastewater: Generation and impact on Environment and Human health. Available at, http://www.unwater.org/publications/world-water-development-report-2017. (Retrieved: 12th October, 2017).
- Vymazal, J. (2005). Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. *Ecological Engineering*, 25(5), 478-490.
- Vymazal, J. (2010). Constructed wetlands for wastewater treatment: five decades of experience, *Environmental Science and Technology*, 45(1):61-69.
- Vymazal, J. (2011). Plants used in constructed wetlands with horizontal subsurface flow: A review. *Hydrobiologia*, 674(1):133-156.
- Vymazal, J., and Kröpfelová, L. (2009). Removal of organics in constructed wetlands with horizontal sub-surface flow: a review of the field experience. *Science of the Total Environment*, 407(13):3911-3922.
- Vymazal, J. (2007). Removal of nutrients in various types of Constructed wetlands. *Science of the Total Environment*, 380(1):48-65.
- Walker Jr, W. W. (1983). Significance of eutrophication in water supply reservoirs. *Journal (American Water Works Association)*, 38-42.

- Wan, L., Ahmad, A., and Mohamad, Z. (2012). Spatial variability of metals in surface water and sediment in the Langat River and geochemical factors that influence their water-sediment interactions. *The Scientific World Journal*, (1–4):652150.
- Wang, J., Ye, S., Laws, E. A., Yuan, H., Ding, X., and Zhao, G. (2017). Surface sediment properties and heavy metal pollution assessment in the Shallow Sea Wetland of the Liaodong Bay, China. *Marine Pollution Bulletin*, 120(1-2):347-354.
- Wang, Q., Cui, Y., and Dong, Y. (2002). Phytoremediation of polluted waters potentials and prospects of wetland plants. *Engineering in Life Sciences*, 22:199-208
- Wang, W., Gao, J., Guo, X., Li, W., Tian, X., and Zhang, R. (2012). Long-term effects and performance of two-stage baffled surface flow constructed wetland treating polluted river. *Ecological Engineering*, 49:93-103.
- Wedepohl, K. H. (1995). The composition of the continental crust. *Geochimica et Cosmochimica Acta*, 59(7), 1217-1232.
- Wetland International, (2013). Pollutant removal process in Constructed wetlands. Wetlands International, Malaysia.
- WHO, (2004). *Manganese and its Compounds: Environmental Aspects*. Geneva: World Health Organization.
- Yang, X., Feng, Y., He, Z., and Stoffella, P. J. (2005). Molecular mechanisms of Heavy Metal hyperaccumulation and phytoremediation. *Journal of Trace Elements in Medicine and Biology*, 18(4):339-353.
- Yanqun, Z., Yuan, L., Jianjun, C., Haiyan, C., Li, Q., and Schvartz, C. (2005). Hyperaccumulators of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. *Environment International*, 31(5):755-762.
- Yap, C.K., Ismail, A., Tan, S.G. and Abdul Rahim, I. (2003). Can the shell of the green-lipped mussel *Pernaviridis* (Linnaeus) from the west coast of Peninsular Malaysia be a potential biomonitoring material for Cd, Pb, and Zn? *Estuarine and Coastal Shelf Science*, 57: 623-630.
- Yap, D.W., Adezrian, J., Khairiah, J., Ismail, B.S., and Ahmad-Mahir, R. (2009). The uptake of heavy metals by paddy plants (*Oryzasativa*) in Kota Marudu, Sabah, Malaysia. American-Eurasian Journal of Agricultural and Environmental Science, 6(1):16-19.
- Yasir, A M., Mir, S. I., Zularisam, A. W., and Edriyana, A. A. (2017). Characterization of Chini Lake Water Quality with Malaysian WQI using Multivariate Statistical Analysis. *Bangladesh Journal of Botany*, 46(2):691-699.

- Yisa J. and Jimoh T. (2010). Analytical studies on water quality index of River Landzu, *American Journal of AppliedSciences*, 7(4):453-458.
- Zhai, J., Xiao, H. W., Kujawa-Roeleveld, K., He, Q., and Kerstens, S. M. (2011). Experimental study of a novel hybrid constructed wetland for water reuse and its application in Southern China. *Water Science and Technology*, 64(11):2177-2184.
- Zhang, D. Q., Tan, S. K., Gersberg, R. M., Zhu, J., Sadreddini, S., and Li, Y. (2012). Nutrient removal in tropical subsurface flow constructed wetlands under batch and continuous flow conditions. *Journal of Environmental Management*, 96(1):1-6.
- Zhi, W., and Ji, G. (2012). Constructed wetlands, 1991–2011: A review of research development, current trends, and future directions. *Science of the Total Environment*, 441:19-27.

