
© C
OPYRIG

HT U
PM 

 
UNIVERSITI PUTRA MALAYSIA 

 
A ROBUST HIGH ACCURACY CARDIOVASCULAR DISEASE 

DETECTION SYSTEM BASED ON ECG ENERGY CONCENTRATION 
TIME-FREQUENCY ANALYSIS SUPPORTED BY THRESHOLD AND 

INTELLIGENT CLASSIFIER 
 

 
 
 
 
 
 
 
 
 

AHMED FAEQ HUSSEIN 
 
 
 
 
 
 
 
 
 
 
 
 

FK 2018 77 



© C
OPYRIG

HT U
PM

i 

A ROBUST HIGH ACCURACY CARDIOVASCULAR DISEASE 
DETECTION SYSTEM BASED ON ECG ENERGY CONCENTRATION 
TIME-FREQUENCY ANALYSIS SUPPORTED BY THRESHOLD AND 

INTELLIGENT CLASSIFIER

By

AHMED FAEQ HUSSEIN 

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, 
in Fulfillment of the Requirements for the Degree of Doctor of Philosophy 

June 2018



© C
OPYRIG

HT U
PM

ii

COPYRIGHT 

All material contained within the thesis, including without limitation text, logos, icons, 
photographs, and all other artwork, is copyright material of Universiti Putra Malaysia 
unless otherwise stated. Use may be made of any material contained within the thesis 
for non-commercial purposes from the copyright holder. Commercial use of material 
may only be made with the express, prior, written permission of Universiti Putra 
Malaysia. 

Copyright © Universiti Putra Malaysia  



© C
OPYRIG

HT U
PM

iii

DEDICATION 

To the soul of my father and to my dear mother who have taken great pains to  

growing me up 

And 

To my teachers who providing me with best education 



© C
OPYRIG

HT U
PM

i 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 
the requirement for the degree of Doctor of Philosophy 

A ROBUST HIGH ACCURACY CARDIOVASCULAR DISEASE 
DETECTION SYSTEM BASED ON ECG ENERGY CONCENTRATION 
TIME-FREQUENCY ANALYSIS SUPPORTED BY THRESHOLD AND 

INTELLIGENT CLASSIFIER

By

AHMED FAEQ HUSSEIN 

June 2018  

Chairman :   Associate Professor Shaiful Jahari Hashim, PhD 
Faculty :   Engineering 

Globally, cardiovascular diseases (CVDs) are the primary cause of deaths.  According 
to the most recent statistics of the World Health Organization (WHO), CVDs mortality 
rates are expected to range between 246 deaths for 100,000 population in 2015 to 264 
for 100,000 population in 2030. Reportedly, nearly half of them do not indicated any 
prior symptoms or experienced any pain of heart attack. Moreover, about 25% of 
CVDs patients were unable to get timely medical aid at the critical time especially 
those who experienced heart problems at the late stages and who live in remote places. 
High accuracy out-of-hospital detection of CVDs is, therefore, vital to prevent 
complications of the heart that may lead to sudden death or disability.  
Electrocardiogram (ECG) represents cardiac condition as electrical signal waveforms. 
However, the interpretation of these waveforms is still very challenging because the 
signals are mainly composite of eight different signals from various heart components 
namely atriums, ventricles, sinus node, AV-node, and common bundles. The non-
stationary and multi-frequency nature of ECG signal waveforms makes the use of 
Time-Frequency Distributions (TFDs) for analysis, inevitable.  
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The main aim of this study is to develop a high accuracy scheme for CVDs detection, 
including ischemia and arrhythmia, for multi-lead and long intervals ECG signal 
waveforms. The scheme is based on non-linear TFD analysis supported by threshold 
technique and intelligent machine learning classifier namely Support Vector Machine 
(SVM). In addition to the new TFD scheme, the use of multi-leads instead of single 
lead, and 1-minute interval instead of beats or frames for classification, contributes to 
the improvement of detection performance.  In addition to the venerable MIT database, 
a 7-lead low power ECG device is also designed and implemented. It is used for raw 
ECG data acquisition to further evaluate the proposed scheme for the ECG data 
outside the MIT ECG database and enable the real-time CVDs detection capability. 
The ECG data collected from this device have also been evaluated for both normal 
and abnormal cases. The proposed scheme is examined and evaluated with various 
normal and abnormal ECG cases that cover CVDs namely arrhythmia and ischemia. 
The datasets used in this study comes mainly from MIT ECG database where it is used 
for the classifier training and performance evaluation as well.  

The proposed scheme contributes to a very high overall accuracy, sensitivity and 
specificity of more than 99% for CVDs detection.  The results for arrhythmia detection 
are 99.39% accuracy, 99.38% sensitivity, and 99.44% specificity.  The results for 
ischemia detection are 99.10% accuracy, 99.09% sensitivity, and 99.13% specificity. 
These results indicate that the proposed scheme is suitable for CVDs detection and 
can be an excellent platform for automated CVDs detection systems providing on-
demand or continuous monitoring for long time duration at high accuracy.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah 

SISTEM PENGESANAN PENYAKIT KARDIOVASKULAR  
TEGAP BERKETEPATAN TINGGI BERDASARKAN ANALISIS MASA-

FREKUENSI KEPEKATAN TENAGA ECG DISOKONG DENGAN 
PENGELAS AMBANG DAN PINTAR 

Oleh 

AHMED FAEQ HUSSEIN 

Jun 2018 

Pengerusi :   Profesor Madya Shaiful Jahari Hashim, PhD 
Fakulti :   Kejuruteraan 

Secara global, penyakit kardiovaskular (CVD) merupakan antara penyebab utama 
kematian. Menurut laporan statistik terkini Pertubuhan Kesihatan Sedunia (WHO), 
kadar kematian penyakit CVD dijangka berlaku sebanyak 246 kematian bagi 
penduduk seramai 100,000 orang pada 2015 sehingga 264 kematian bagi 100,000 
orang pada 2030. Hampir separuh daripada pesakit kardiovaskular tidak mengalami 
sebarang gejala awal atau serangan jantung. Tambahan lagi, hampir 25% pesakit CVD 
tidak mendapat bantuan perubatan pada waktu kritikal, terutamanya pesakit yang 
menghidapi masalah jantung pada tahap terakhir dan tinggal di kawasan pedalaman. 
Oleh itu, ketepatan pengesanan CVD di luar hospital adalah penting bagi mengelak 
komplikasi jantung yang boleh membawa kepada kematian mengejut atau kehilangan 
upaya. Elektrokardiogram (ECG) memaparkan keadaan jantung dalam bentuk 
gelombang isyarat elektrik. Walau bagaimanapun, mentafsir bentuk gelombang itu 
masih merupakan satu cabaran kerana sebahagian besar isyarat tersebut merangkumi 
lapan isyarat berbeza daripada pelbagai komponen jantung, iaitu atrium, ventrikel, nod 
sinus, nod atrioventrikel (AV), dan berkas AV. Ciri-ciri bentuk gelombang isyarat 
elektrik yang tidak bergerak dan mempunyai pelbagai frekuensi membolehkan 
penggunaan Pengagihan Frekuensi Masa (TFD) dalam analisis. 
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Tujuan utama kajian ini adalah untuk membangunkan satu skema ketepatan tinggi 
untuk pengesanan CVD, termasuk iskemia dan aritmia, bagi bentuk gelombang isyarat 
ECG berselang panjang. Skema ini adalah berdasarkan analisis TFD bukan linear, 
yang disokong oleh kaedah pengambangan dan pengelas pembelajaran mesin, 
khususnya Mesin Vektor Sokongan (SVM). Selain daripada skema TFD yang baharu, 
penggunaan pelbagai petunjuk berbanding petunjuk tunggal dan selangan satu minit 
berbanding denyutan atau kerangka untuk pengelasan menyumbang kepada 
penambahbaikan prestasi pengesanan. Di samping pangkalan data MIT yang masyhur, 
alat ECG berkuasa rendah dengan 7 pentunjuk turut direka dan diguna pakai. Alat 
ECG ini diguna untuk memperoleh data mentah ECG bagi menilai skema cadangan 
untuk data ECG di luar pangkalan data ECG MIT dan membolehkan pengesanan CVD 
masa nyata. Data ECG yang dikumpul melalui alat ini juga dinilai untuk kes normal 
dan luar biasa. Skema cadangan ini memeriksa dan menilai pelbagai kes ECG normal 
dan luar biasa yang merangkumi penyakit kardiovaskular seperti aritmia dan iskemia. 
Set data yang diguna dalam kajian ini khususnya diambil daripada pangkalan data 
ECG MIT dan diguna pakai untuk latihan pengelasan dan penilaian prestasi. 

Skema cadangan ini menyumbang kepada ketepatan, kepekaan, dan kekhususan 
menyeluruh yang tinggi melebihi 99% bagi pengesanan CVD. Keputusan pengesanan 
aritmia ialah 99.39% ketepatan, 99.38% kepekaan, dan 99.44% kekhususan. Manakala 
keputusan bagi pengesanan iskemia ialah 99.10% ketepatan, 99.09% kepekaan, and 
99.13% kekhususan. Keputusan tersebut menunjukkan bahawa skema cadangan ini 
sesuai digunakan untuk mengesan penyakit kardiovaskular dan boleh dijadikan 
pelantar yang baik untuk sistem pengesanan CVD automatik dalam menyediakan 
pengawasan berdasarkan permintaan atau pengawasan berterusan untuk jangka masa 
yang lama pada ketepatan yang tinggi. 
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1 
 

       CHAPTER 1 

1 INTRODUCTION 

1.1 Overview 

Electrocardiogram (ECG) is a non-invasive method that is used as an interpretation 
tool for detecting heart diseases or cardiovascular diseases (CVD).  ECG signal is 
commonly used as a fundamental scheme for the detection and diagnosis of CVD.  
ECG is the record of potential bioelectric variation with respect to time as the heart 
beats.  It offers valuable information about the heart functional aspects and 
cardiovascular system as well. The ECG signals can vary from one to another due to 
the differences in the size of the human’s body anatomy. This can vary based on sex, 
age, body weight, heart location and chest dimension. As the ECG signal is the most 
commonly acquired non-invasive signal for the patient checking and monitoring 
process, it is important to have a highly accurate CVD problems detection based on 
ECG signal analysis. ECG recording can be achieved with the aid of surface electrodes 
(ECG sensors) on the limbs or chest. These electrodes sense the weak electrical ECG 
signals and transfer them to ECG device [1, 2]. 

In the medical evaluation, the CVD detection is based on the alteration in ECG signals 
that acquired during the test. The normal heartbeat in a regular rhythm will show the 
line tracing of the P, QRS, and T waves look normal. If there is any obvious changes 
in the line tracing of the P, QRS, T, thus the heart may have problems. Comparison of 
overall ECG signal pattern and shape allows doctors or physicians to identify various 
types of CVD [3]. 

The heart abnormality problems mainly divided into two types, namely arrhythmia 
and ischemia. Arrhythmia refers to any change from the regular electrical impulses 
sequence. The electrical impulses may be too slow, too fast, or erratically that can 
cause the heart to beat too fast, too slow, or erratically. When the heart does not beat 
correctly, it cannot pump blood effectively. When the heart could not pump blood 
efficiently, the lungs, brain and all other organs cannot work appropriately and may 
shut down or damage. On the other hand, Ischemia is a type of CVD that caused by 
narrowed arteries of the heart. When arteries are narrowed, the blood flows will be 
reduced and less oxygen supplies the heart muscle. This is also identified as coronary 
artery heart disease and can eventually lead to heart attack [4-6]. 
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To accurately characterise cardiovascular disease, a precise and reliable ECG 
waveform acquiring procedure is necessary. The ECG analysis procedure based on 
extracting the required features (information and characteristic) components from the 
ECG signal. The features are adequately representative of the physical heart situation 
and the heart disease problem. The non-stationary and multi-frequency components 
behaviour of biomedical signal activities makes the use of time-frequency 
distributions (TFDs) for analysis inevitable [7]. The time-frequency (TF) analysis 
provides simultaneous interpretations in both time and frequency domains enabling 
comprehensive presentation, explanation and interpretation of electrocardiogram 
(ECG) signals [8].  

The nature of ECG signals are whereby the transitory disease signs may appear 
arbitrarily on the time domain scale. Hence, the method to diagnose the abnormality 
by individual beat or frame (number of few beats) is difficult, time-consuming and 
disposed to human errors. An alternative is to use computational techniques for 
automatic heart disease diagnosis. An automatic system of heart disease classification 
from acquired ECG signals can be divided into four steps as follows: (1) ECG signal 
pre-processing; (2) ECG signal segmentation; (3) feature extraction; and (4) 
classification process. In each of the four steps, a valid action is taken and the final 
objective is the heart disease identification [9]. 

Automated and robust ECG CVD classification and detection technique is the use of 
artificial intelligence, pattern recognition algorithms, and knowledge bases to figure 
out automatically the CVD of traced ECG that obtained usually from a patient [10]. 
Where the robust algorithm can perform a wide range of datasets solutions without 
need to resetting its parameters. Many researchers have reported automated or semi-
automated classification and detection of CVD based on the features extracted from 
ECG signals. However, most of them use a single beat or frame (few beats) as a base 
to extract the related features. This selection of using only a few limited beats may be 
useful to aid the expert physician or cardiologist. Unfortunately, it is very limited to 
provide an accurate interpretation to the screening by the general practitioners (GP) at 
the hospitals or out-of-hospital self-checking with wearable ECG devices [11]. 
Besides, mobile health (mHealth) devices assessments can be used as clinical decision 
support tools at the point-of-care that can decrease the treatment time and improve the 
long-term outcomes among patients with rheumatic and structural heart diseases 
(SHD) [12, 13]. 

1.2 Problem Statements 

In analysing the CVDs, the required disease components should be extracted as 
features from the ECG signal. The ECG signal waveforms properties are related to 
both ventricular bases and atria, and they represent the heart and cardiovascular system 
conditions. As the nature of ECG signal waveforms characteristics are both multi-
component and non-stationary, spectral components of various ventricular and atria 
based signals are overlapped with each other.  The usage of traditional time-based 
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analysis method, therefore, can provide an unacceptable error rate during the CVD 
episodes.  Moreover, atria based signal waveforms are narrower thus challenging to 
track and observe it. The joint TFDs are used in these cases in order to improve CVD 
detection accuracy by analysing the overlapping signal components and thus better in 
isolating and differentiating the CVDs activities. To make matter worst, the ECG 
signal is also non-stationary with non-linear characteristics.  Unfortunately, most of 
the existing techniques employed for ECG are based CVD detection mainly used 
linear techniques [9, 14]. 

The main research problems to be addressed in this thesis as follow: 

i. The clinical ECG devices with 12-lead are normally large, heavy and expensive 
and they are only available in hospitals.  Moreover, it cannot provide a raw data 
by itself unless it is connected by expensive hospital or clinic network and 
provide just a paper based printed ECG results. Holter monitor can be used out-
of-hospital to record extended duration of ECG (for examples 24 hours) but 
only after the CVD is confirmed upon patients with approved prescription from 
cardiologist. They are not suitable for screening purposes. There is a gap for 
out-of-hospital ECG based devices, for screening CVDs [15-18]. A range of 
handheld devices produce diagnostic quality lead I or single-lead ECGs [11, 
19]. Besides, commercial ECG devices that used in hospitals and clinics These 
results are printout by using a thermal printer which is a non-permanent printing 
and can be erased after few months [20, 21].  

ii. The using of TFDs for analysing ECG is necessary according to the ECG signal 
nature which is multi-component and non-stationary characteristics [22, 23]. In 
addition, The fact that the ECG signal itself can characterize hundreds of CVDs 
[24]. However, the optimised selection of TFD that can give a better 
interpretation still represents a challenge, where there is no fixed criteria to 
evaluate TFDs to analyse ECG signal.  

iii. The CVD contains two main categories namely arrhythmia and ischemia. 
However, the CVD patient may have either arrhythmia or ischemia, and a causal 
relation between arrhythmia and ischemia may be presented in some patients 
[25]. Most researches focused and developed the analysing method for only a 
single CVD type independently either arrhythmia or ischemia artefact. This will 
lead to much reduced overall accuracy where the potential patient might have 
various types of CVD and not properly or comprehensively tested [26-28]. 
Furthermore, the connection or the overlapped between arrhythmia and 
ischemia is not clearly established but this may be due to the lack of accurate 
detection methods [26, 29]. 

iv. In CVD detection, the minimum acceptable arbitrary analysis duration is 30 
seconds [17]. But, to the best of author knowledge, the longer analysis intervals 
such as 30 seconds or one minute and longer duration are not being considered. 
The longer period analysis is crucial for providing high accuracy for 
interpretation process [11, 30]. 
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1.3 Motivation 

According World Health Organization (WHO) report, the Heart and CVDs are the 
number one or the first cause of death globally where more people die annually from 
heart and cardiovascular diseases than from any other cause. An estimated 17.7 million 
death caused by heart disease in 2015, representing 31% of all global deaths. The 
WHO mortality projections from 2004 to 2030 that were designed with equivalent 
approaches to those applied in the inventive global burden of disease study state that 
the CVD death for aging are expected to increase to 23.3 million in 2030. In Malaysia, 
the heart diseases caused death to 36% of all deaths in 2014 which represent the 
number one or the first cause of death [31, 32]. The mortality is only part of the 
problem because most the patients who survived from CVDs problems, for example 
heart attack or myocardial infarction, will probably experience complication and 
becomes disable for the rest of their life.  Extra care and cost are need for their living 
and recovery. 

Many factors make the CVDs being the most mortal disease around the world.  More 
than 75% of heart diseases deaths occur in low-income and middle-income countries 
where the treatment of this disease is at a very high cost comparative to their cost of 
living [33-35].  The American Heart Association (AHA) reports that the heart attacks 
treatment cost ($207.3 billion) were two of the ten most expensive hospital principal 
discharge diagnoses in 2016 [36].  Moreover, many potential heart patients have no 
prior symptoms (asymptomatic) to identify the heart problem such as silent ischemia, 
paroxysmal atrial fibrillation, and Brugada syndrome cases [37-39].  

As the world population ages, massive pressure is being placed on the medical health 
care delivery system to improve the quality of care services while dropping overall 
costs. The existing quality of clinical care can only be improved when the health care 
system becomes expressively more efficient. One way to decrease health services 
costs while keeping quality of care that is to make available systems that monitor an 
individual as they go around their everyday activities as well as reducing the required 
doctor's visits times. Physicians can customise these systems to screen individuals 
recovering from a present cardiac condition, those at risk, and those facing cardiac 
discomfort. The home based or out-of-hospitals monitoring for individual over 
extended periods of time can be useful to help a physician to track disease progression. 
Earlier disease state detection can then lead to earlier intervention and treatment. 
Moreover, to monitoring disease progression, physiological monitoring on everyday 
basis can help establish normal physiology for an individual and can offer comment 
for more targeted treatments. 
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The ambulatory or one channel portable ECG monitoring device has established its 
rule particularly as an indicator for infrequent episodes and therapeutic control [40]. 
The accessibility of high-performance low-cost computing technology contributes to 
the improvements of ECG detection techniques by providing a reliable solution for an 
accurate and intelligent interpretation. The rising cost of health care will make 
admission of patient to the hospitals unnecessary without a screening results 
confirmation.  A new design for portable ECG device for high accuracy CVD 
detection will assist in making the potential patient to be less hospital dependent. 

1.4 Objectives  

This project aims to develop a multi-leads robust CVD detection scheme. The basic 
concept of this development is based on using TFDs supported by intelligent classifier. 
This scheme can be achieved in effective way to satisfy the following: 

i. To design and implement a wearable, wireless ECG device sensor for 
continuous monitoring that used to acquire ECG signals. The proposed device 
has the ability to capture multi-leads ECG signal and save it in to individual 
files. 

ii. To develop a robust high accuracy out-of-hospital CVD detection scheme by 
employing joint time-frequency (TF) related ECG features with new definition 
of interpretation interval that is satisfy the clinical requirements. This scheme 
is optimization to use a single algorithm for analysing both CVDs arrhythmia 
and ischemia by using joint time-frequency distribution (TFD) that is 
supported by intelligent classifier.      

iii. To validate the proposed CVD detection scheme in terms of accuracy, 
sensitivity and specificity. 
 
 

Table 1.1 illustrates the contribution matrix of this study with respect to other works. 

Table 1.1 : Contribution matrix of proposed work 
 

Contribution Features Proposed Work Other Works 
ECG data from high mobility device �� × 

High accuracy, sensitivity and 
specificity (>99%) for both 

arrhythmia and ischemia detection 
�� × 

Use 1-minute ECG quantum with 
continuous sequence of beats instead 

of beat based 
� × 

Related TF features  � �  
TFD in analysis  � �  

Automated feature extractions and 
classifications 

� �  

Multi-lead � �  
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1.5 Scope of the study 

In this study, the robust CVD detection system is proposed and evaluated as following:  

i. The system involve the designing and implementation of out of hospital 
handheld wearable ECG acquiring device that used by normal consumer for 
heart monitoring. 

ii. The screening of both CVDs (arrhythmia and ischemia) which can prevent the 
further complications and save the efforts and resources that can be used in 
another development.  

iii. Using of ECG datasets combinations to cover the CVDs cases, where two main 
datasets are employed in this study. First the MIT-Physionet datasets and 
second the collected datasets that gathered from normal individuals and 
ischemic patients from Ibn Al-Naffees Hospital for Cardiac Diseases in 
Baghdad, Iraq. 

iv. Analysing long ECG segments (interval) at a multi-lead capability instead of 
using a single lead interpretation. 

v. The using of ECG extracted features that denoted by QRS, ST and PR 
components to analyse type of CVDs. 

vi. The using of pattern recognition classifier to support the automation process. 
 
 

1.6 Thesis layout 

This thesis is arranged in such a way that it affords a continuous and smooth 
information flow to the reader, regarding the development and analysis of the heart 
disease detection system. There is a total of five main chapters that are subdivided into 
suitable sections. The main five chapters in this thesis are Introduction, Literature 
Review, Research Methodology, Results and Discussions, and finally Conclusions 
and Recommendation of the study. The content of each chapter is outlined as follow: 

Chapter 2 demonstrates the literature review and the methodologies of the previous 
studies of ECG analysis using the various applications and algorithms of features 
extraction and classifier are reviewed as well. This chapter deals with the past and 
current trends of the ECG analysis study. 

Chapter 3 will discuss the research methodology and system design of the project. 
This chapter explains how the project is organized and the flow of all the project 
operation part. This chapter discusses about the ECG acquiring signal device 
implementation and the design and implementation of analysis scheme algorithm that 
is based on Choi-Williams TFD and supported by SVM classifier. 
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Chapter 4 discusses the performance evaluation of proposed system. The ECG 
acquiring process evaluation, features extraction, and classification results of ECG 
analysis algorithm are discussed. All discussions that concentrate on the result and 
performance of the ECG signal gathering and analysing that gives a review the 
correlation of all methods. 

Chapter 5 discusses the conclusion and further development of the study. This chapter 
also presents and describes the problems, limitations and the recommendation for this 
study and overall heart disease analysis for the future development or modification.   
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