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The requirement for communication towers increases due to the growing demand for 

power supply and telecommunication services. Recently, many attempts have been 

exerted to monitor the tower to ensure its excellent performance during operation. The 

capability of the tower to detect, localize, and quantify structural damage is the most 

important factor in maintaining excellent performance, reliability, and cost-

effectiveness and ensuring its stability and integrity. The dynamic analysis of tall 

slender towers is commonly performed in the frequency domain. However, the 

recorded frequencies can be noisy, random, unstable, and with skewed data. The 

damage, due to uncontrolled noise reciprocating motion in the machines or broadband 

noise from wind or other sources, is identified based on frequency testing in an 

operator. Therefore, this study aims to develop a new health monitoring system for 

communication towers based on AdaBoost, Bagging, and RUSBoost algorithms as 

hybrid algorithm, which can predict the damage by using noisy, random, unstable, and 

skewed frequency data with high accuracy. 

 

 

For this purpose, a UHPFRC tower with 30-m height is considered, and the finite 

element model (FEM) of the tower is developed. The modal frequencies of the tower 

are evaluated under various conditions of damage in concrete and connection in 

different parts of the tower by using finite element simulation. The results are used to 

develop the hybrid learning algorithm based on the AdaBoost, Bagging, and 

RUSBoost methods to predict the damage in the tower based on dynamic frequency 

domain. Therefore, 78 damage scenarios have been simulated by using finite element 

software to generate the frequency of the UHPFRC communication tower with various 

types of damage. The damage scenarios consist of losing bolts and vertical and 

horizontal cracks. The frequency before and after damage was set as input training 
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data, whereas the damage types and locations are set as output data (damage index). 

The verification results indicate that all the structural defects were predicted with high 

accuracy by the developed hybrid algorithm in cases of healthy and damaged 

structures. The full-scale UHPFRC communication tower is experimentally tested for 

dynamic frequencies to verify the numerical analysis results. The frequency response 

of the tower structure was obtained by exciting with an impact hammer at various 

points, and the acceleration of the tower structure was gathered through three 

accelerometer sensors attached at the top, middle, and bottom parts of the structure. 

Damaging the full-scale tower is not practical; thus, two different parts of the tower 

segments and their connections (1-2 and 2-3) are considered and tested experimentally 

with and without damage to validate the capability of the developed hybrid algorithm 

to detect damage. A dynamic actuator was used to cause damage in the tower segments 

by applying vibration force.  

 

 

In addition, a simple procedure is proposed to determine the optimal solution and 

predict the correlation factor and the frequency of the damaged communication tower 

by using the particle swarm optimization (PSO) method. This technique avoids the 

exhaustive traditional trial-and-error procedure to obtain the coefficient of the 

correlation factor of frequency for the damaged communication tower by conducting 

several analyses. The new assessments on the capability of the indicator to detect and 

quantify the defects are performed. For this purpose, the FEM is implemented to 

model three communication towers with a height of 15, 30, and 45m to develop the 

frequency correlation factor. The verification results indicate that the PSO technique 

can develop a correlation factor with acceptable accuracy to predict the damage. 
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Seiring dengan kemajuan dalam bidang telekomunikasi dan juga penyiaran, keperluan 

untuk menyediakan menara komunikasi turut menunjukkan peningkatan. Sehingga 

kini, beberapa penyelidikan telah dijalankan untuk memantau menara komunikasi 

bagi memastikan prestasi yang optimum semasa operasi. Keupayaan untuk mengesan, 

menempatkan dan mengira kuantiti kerosakan struktur merupakan faktor utama untuk 

mengekalkan prestasi, kebolehpercayaan, keberkesanan kos serta memastikan 

kestabilan dan integriti menara telekomunikasi. Analisis dinamik terhadap menara 

tinggi langsing biasanya dijalankan dalam frekuensi domain. Walau bagaimanapun, 

frekuensi yang direkodkan boleh menjadi bising, rawak, tidak stabil, dan dengan data 

yang condong. Kerosakan tersebut yang disebabkan oleh pergerakan hingar yang tidak 

terkawal dalam mesin atau bunyi jalur lebar dari angin atau sumber lain, dikenalpasti 

berdasarkan ujian frekuensi dalam pengendali.  

 

 

Oleh yang demikian, matlamat utama penyelidikan ini dijalankan adalah 

membangunkan sistem pemantauan kesihatan yang baru untuk menara komunikasi 

berdasarkan algoritma AdaBoost, Bagging, dan RUSBoost sebagai algoritma hibrid, 

yang boleh meramalkan kerosakan melalui data frekuensi yang bising, rawak, tidak 

stabil, dan condong dengan ketepatan yang tinggi. 

 

 

Bagi tujuan ini, sebuah menara UHPFRC berketinggian 30 meter dibina Model Unsur 

Terhingga (FEM)  bagi menara tersebut telah dibangunkan. Frekuensi modal menara 

dinilai dalam pelbagai keadaan kerosakan konkrit dan sambungan di bahagian menara 

yang berlainan menggunakan simulasi unsur terhingga. Keputusan yang diperoleh 

digunakan untuk membangunkan algoritma pembelajaran hibrid berdasarkan kaedah 
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AdaBoost, Bagging, dan RUSBoost untuk meramalkan kerosakan di menara 

berdasarkan domain frekuensi dinamik. 78 senario kerosakan telah disimulasikan 

dengan menggunakan perisian unsur terhingga untuk menjana frekuensi menara 

komunikasi UHPFRC dengan pelbagai jenis kerosakan. Senario kerosakan terdiri 

daripada kehilangan bolt dan retakan menegak dan mendatar. 

 

 

Frekuensi sebelum dan selepas kerosakan ditetapkan sebagai data latihan input, 

manakala jenis dan lokasi kerosakan ditetapkan sebagai data output (indeks 

kerosakan). Keputusan pengesahan menunjukkan bahawa semua kerosakan struktur 

telah diramalkan oleh pembangunan algoritma hibrid dalam kedua-dua kes iaitu 

kesihatan dan kerosakan dengan darjah ketepatan yang tinggi dalam mengesan 

kerosakan. Menara komunikasi UHPFRC berskala penuh telah diuji secara 

eksperimen bagi mendapatkan frekuensi dinamik untuk mengesahkan keputusan 

analisis berangka.  

 

 

Tindak balas frekuensi struktur menara diperoleh dengan cara menarik menara dengan 

tukul kesan pada pelbagai titik, dan pecutan struktur menara dikumpulkan melalui tiga 

sensor meter pecutan yang diletakkan di bahagian atas, tengah, dan bahagian bawah 

struktur. Merosakkan keseluruhan menara adalah tidak praktikal; oleh itu, dua 

bahagian berbeza dari segmen menara dan sambungan mereka (1-2 dan 2-3) diambil 

kira dan diuji secara eksperimen dengan dan tanpa kerosakan untuk mengesahkan 

keupayaan algoritma hibrid yang telah dibangunkan untuk mengesan kerosakan. 

Penggerak dinamik digunakan untuk mengakibatkan kerosakan di segmen-segmen 

menara melalui daya getaran. 

 

 

Sebagai tambahan, satu prosedur mudah dicadangkan untuk menentukan penyelesaian 

yang optimum dan meramalkan faktor korelasi dan frekuensi menara komunikasi yang 

rosak menggunakan kaedah Particle Swarm Optimization (PSO). Teknik ini 

mengelakkan prosedur percubaan-dan-kesilapan tradisional yang komprehensif untuk 

mendapatkan pekali faktor korelasi frekuensi untuk menara komunikasi yang rosak 

dengan menjalankan beberapa analisis. Penilaian baru keupayaan indikator untuk 

mengesan dan mengukur kecacatan dilakukan.Bagi tujuan ini, FEM dilaksanakan 

untuk mencontohi tiga menara komunikasi dengan ketinggian 15, 30, dan 45 meter 

untuk membangunkan faktor korelasi frekuensi. Hasil pengesahan menunjukkan 

bahawa teknik PSO boleh membangunkan faktor korelasi dengan ketepatan yang 

boleh diterima untuk meramalkan kerosakan. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Introduction 

Major civil engineering structures, such as bridges, dams, offshore installations, and 

towers, are an important part of the wealth of a country. The maintenance costs of 

these structures are substantially high even with a small percentage of reduction in 

maintenance cost amounts to considerable savings. Structural health monitoring 

(SHM) is one of the most effective maintenance methods. Detection of early problems, 

such as cracks at critical locations, delimitations, corrosion, and spalling of concrete, 

can help prevent catastrophic failure and impairment of the structural system and 

reduce the maintenance cost. Furthermore, SHM can improve the serviceability and 

functionality and increase the lifespan of structures, thereby helping the national 

economy significantly. Thus, SHM of civil structures is becoming increasingly 

popular worldwide because of its potential application in maintenance and 

construction management.  

1.2 Background 

Structural health monitoring (SHM) is a process in which certain strategies are 

implemented for determining the presence, location and severity of damages and the 

remaining life of structure after the occurrence of damage. Health monitoring is 

typically used to track and evaluate the performance, symptoms of operational 

incidents and anomalies due to deterioration or damage as well as health during and 

after extreme events (Aktan et al., 1998). Damage identification is the basic objective 

of SHM. 

Damage is determined at four main levels as presented by Rytter (1993). 

Level 1: identification of the existence of damage; 

Level 2: identification of the existence and location of damage; 

Level 3: identification of the existence, location, and severity of damage; and 

Level 4: identification of the existence, location, and severity of damage and 

prediction of the remaining life of the residual structure. 

 

 

The ability of a system to determine the structural condition in long-term monitoring 

to prevent damage is a main feature of SHM. A good SHM system can locate and 

detect damage at an early stage (Li and Hao, 2016). The SHM system is installed 

permanently on a structure to monitor its conditions on a continuous basis and provide 

information on every structural component. In principle, sensors (accelerometers) are 

installed in the structure to gather the response measurements caused by internal or 
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external forces. The measurements are then transmitted to a centralized computer that 

stores and processes the data collected by the sensors. Once stored in the centralized 

computer, the data can be analyzed automatically by software programs or manually 

by human experts. Many data analysis approaches have been developed to assess the 

integrity of structures.  

The SHM system uses non-destructive sensing in-situ and analyzes the characteristics 

of a structural system to detect fault occurrence, find its location, and evaluate its 

seriousness to estimate its consequences on the structure’s residual life. SHM has been 

used for structural safety or maintenance of existing structures; rapid estimation of 

structural damage after an earthquake; evaluation of the remaining life of structures; 

rehabilitation and modification of structures; and management, maintenance, or repair 

of historic buildings (Rainieri et al., 2008). The SHM principle, as reported by 

Balageas (2006), is shown in Figure 1.1. 

 
 

Figure 1.1 : Principle and organization of an SHM system 

 

 

SHM aims to provide a non-destructive estimation of the structural state at any wanted 

moment of its remaining lifetime. Engineers should ensure the safe operations of the 

structure when its system integrity is estimated. Civil structures, such as buildings, 

dams, and bridges, and slender structures, such as towers and masts or wind turbines, 

are flexible and have low structural damping characteristics because they are sensitive 

to dynamic load. The durability and safety of civil structures are important in ensuring 

industrial prosperity and societal economy. Unfortunately, many aging civil structures 

are deteriorating because of cruel environmental conditions, uninterrupted loading, 

and inadequate maintenance. For example, the I-35W Bridge in Minneapolis, 

Minnesota, catastrophically failed on August 1, 2007 without warning, resulting in the 

death of 13 motorists (Figure 1.2) as reported by Swartz et al., (2007). 
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(a) (b) 

 

Figure 1.2 : (a),(b)(Left) I-35W Bridge in Minneapolis, Minnesota USA; (right) 

catastrophic failure after collapse on August 1, 2007 

(Source : Associated Press, 2007) 

 

 

Furthermore, railways, especially their axles, undergo fatigue damage due to corrosion 

or load impact from vehicles, which lead to failure, passenger casualties, and even 

accidents. Therefore, an SHM system for railway axles can help eliminate service 

failure (Rolek et al., 2016). For example, a 150-year-old bridge near the Bhagalpur 

railway station in India’s Bihar state collapsed as shown in Figure 1.3. 

 

Figure 1.3 : Collapse of Railway Bridge near Bhagalpur 

(Shanker, 2009) 

 

 

Towers are among the most important structures because they enable the installation 

of equipment that allow various services, such as television, radio, and mobile 

communications. Damage is the main cause of structural failure and often occurs in 

structures. The absence of an alarm for structural damage and deterioration from 

loading, joint failure, and so on may cause tremendous disasters. As an example of 

tower failure, a 300-m communication tower mast in northern Netherlands collapsed 

as shown in Figure 1.4. 
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Figure 1.4 : Collapse of 300m communication tower mast in northern 

Netherlands 

(Source : http://johnmarsyla.blogspot.my/2011/07/dutch-tv-tower-collapses-after-

fire.html) 

 

 

Many methods have been utilized to identify and locate damage in civil structures. 

The current non-destructive (NDT) damage identification techniques are based on 

visual inspection, acoustic emission, radiography, X-ray, eddy current, and ultrasonic 

and stress waves. The competence of these methods is limited to the accessibility of 

the structural location in limited areas and depends on the initial information 

concerning the probability of damage. Moreover, these methods are costly and time-

consuming when applied to large structures and cannot identify damage without 

testing the entire structure. In addition, damages that are deep inside the structure may 

not be detected by these methods. Problems arise due to human errors because these 

methods require human experts to detect changes that indicate structural damage. 

Therefore, NDT damage identification methods are often insufficient for evaluating 

the condition of structural systems, especially when the damage is not observable. 

Vibration-based methods serve both as local and global damage identification 

approaches to identify the severity and location of damage. These methods are based 

on the principle that reducing the stiffness of structural systems leads to a change in 

their dynamic characteristics, such as the natural frequencies of the structure (Hakim 

et al., 2015). 

The modern development of the SHM system for detecting damage depends on the 

mode of vibration. The physical characteristics of the structure directly affect the 

structure vibration characteristics. The stiffness of the structure changes when the 

structure is damaged and the vibration characteristics change as well. 
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When a structure is damaged, the stiffness decreases, which leads to the decrease of 

the natural frequencies of the system. Fatigue damage can arise when the structure is 

excited by the load impact and the load frequency is near the structural frequency. 

Therefore, natural frequencies are the most common dynamic parameters used in 

damage detection. According to the CEN. (2006), the first natural frequency is 

undoubtedly a key parameter in estimating the response of the structure (Antunes et 

al., 2012). 

Natural frequencies can be easily obtained from a dynamic measurement anywhere on 

the system and are a common and popular damage indicator. Natural frequencies are 

used to detect damage in structural systems because changes in the structural 

properties result in shifts in these frequencies. Besides, natural frequencies can be used 

to detect damage because it can be quickly and easily conducted. Moreover, frequency 

measurements can be taken with relatively good accuracy, and doubts on the measured 

frequencies can be easily evaluated if the experimental measurements are conducted 

under perfectly controlled experimental conditions. The modal parameters, such as 

natural frequencies, can be determined from the acquired data through the 

experimental modal analysis test. However, in real-world scenarios, the recorded of 

low and high frequencies can be randomly unstable, noisy, and with skewed data, due 

to some uncontrolled noise, such as reciprocating motion in a machine, rotating 

imbalance in an automobile engine, or broadband noise from wind or road conditions 

in a vehicle, which should be resolved.  

Machine learning methods for damage identification and detection have been 

presented by many researchers. Several methods have been investigated by 

researchers to estimate various types of damage, with the aim to develop approaches 

to determine the locations of damage or monitor the origin of damage. Machine 

learning has been widely used in SHM. There are two types of learning, supervised 

and unsupervised. In supervised learning should have info on the structure undamaged 

and damaged. On the other hand, are the unsupervised learning algorithms, in which 

case the information of the structure without damage is not available (Vitola Oyaga et 

al., 2016).  Most of SHM systems for identifying damage in the structures based on 

an unsupervised learning method.  

Recently, the need for communication towers has increased with the requirements for 

active communication, especially in the advent of radar, television, and radio. The 

configuration complexity of towers and the limited access to the structure, especially 

the inner part of the tower with a hollow section, make the monitoring of towers a 

challenging issue in maintenance. Therefore, a new health monitoring system for 

communication towers for damage detection with high accuracy is urgently needed. 

The dynamic analysis of tall slender towers is commonly preferred in the frequency 

domain based on the frequency-dependent character of both of the wind loads and the 

mechanical properties of the structure. SHM is essential for determining the structural 

integrity and ensuring the lifetime of such structures. A key parameter to be monitored 
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is the acceleration from which the natural frequencies of the structure can be 

determined. The changes verified in natural frequencies can be related to the 

degradation of the structure, and this parameter is an excellent indicator of structural 

health that allows preventive actions when necessary, thereby saving money and even 

lives (Antuneset al., 2012).  

Therefore, this study aims to develop a new health monitoring system that can work 

with noisy, random, unstable, and skewed data for an ultra-high fiber performance-

reinforced concrete (UHPFRC) communication tower, with 30-m height, located in 

Malaysia (Figure 1.5) by using frequency domain analysis. For this purpose, a hybrid 

learning algorithm based on the AdaBoost, Bagging, and RUSBoost algorithms is 

implemented to identify damage in the UHPFRC communication tower through the 

frequency domain data. Frequency response functions (FRFs) for damaged and 

healthy structures are determined using the excitation caused by an impact hammer 

and the signal collected by three accelerometer sensors that are attached to appropriate 

positions. The training samples for the algorithm are generated using the finite element 

(FE) method, and experiments are performed to obtain the testing samples. In addition, 

two cases that involve tower segments 1–2 and 2–3 are considered invalidating the 

hybrid learning algorithm for damage detection.  

 

Figure 1.5 : Communication tower with 30 m height located in Malaysia 
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1.3 Problem statement 

This research treats the problem of damage evaluation in communication tower in 

order to ensure their integrity and safety. In recent times, structural health monitoring 

(SHM) has attracted much attention in both research and development. SHM covered 

both local and global methods of damage identification (Zapico and González, 2006). 

In the local case, the assessment of the state of a structure is performed either by direct 

visual inspection or using experimental techniques such as ultrasonic, magnetic 

particle inspection, radiography and eddy current. A characteristic of all these 

techniques is that their applications require a prior localization of the damaged zones. 

The limitations of the local methodologies can be overcome by using vibration-based 

methods, which give a global damage assessment. 

The most common vibration-based damage detection techniques include changes to 

mode shapes, modal curvatures, flexibility curvatures, strain energy curvatures, modal 

strain energy, flexibility and stiffness matrices. The other vibration-based techniques 

include numerical model updating and neural network based methods. The amount of 

literature in non-destructive vibration methods is quite large for treating single damage 

scenarios, however is limited for multiple damage scenarios. Most existing methods 

are based on a single criterion and most authors demonstrate these methods mainly in 

beam-like or plate-like elements.  

Towers are one of the most important physical supports for the installation of radio 

equipment used for various services, such as radio, television and/or mobile 

communications. The dynamic analysis of tall slender towers is commonly performed 

in the frequency domain. 

Therefore, developing a new system for damage detection in the communication tower 

structure and a health monitoring system with high accuracy are urgently required. 

However, the following challenges exist in tower maintenance: 

The development of SHM for tall cylindrical structures, such as communication 

towers, is required due to the difficulty in measuring low-frequency responses. 

 The configuration of the tower is complex and access to the body of the structure 

is limited, especially at the internal part of the tower that ensures structural 

integrity and stability. 

 Many SHM systems for identifying damage in the structures using the frequency 

domain response are based on an unsupervised learning mode, which is 

challenging in precisely detecting and tracking damage in long-term monitoring. 

 In an SHM system, the sensor network should be fail-safe during online 

monitoring. That is, the sensor should not be damaged after being installed in a 

structure. Otherwise, a redundancy algorithm is used to acclimatize to the new 

sensor network when one or more sensors are damaged. 
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1.4 Objectives 

The main aim of this study is development of Structural Health Monitoring System 

(SHM) for Ultra High Performance Fibre Concrete (UHPFC) communication tower 

to detect damage in the structure as well in the joints. Therefore, the objectives of this 

study are listed as follows: 

 To evaluate the response of communication tower in frequency domain under 

various damage condition by using numerical study through FE and experimental 

test.  

 To develop the hybrid optimized prediction method as health monitoring system 

based on Adaptive Boosting, Bagging and RUSBoost algorithms for identification 

damage type and location of UHPFC communication tower.  

 To verify the developed health monitoring system for damage identification in 

UHPFC communication tower through conducting experimental modal test on 

various segments of tower in healthy and damaged condition in frequency domain 

by using of impact hammer.  

 To develop frequency correlation factor for UHPFRC communication tower with 

consider of structure damage. 

 

 

1.5 Scope and Limitation of Structure 

To achieve the objectives, the following steps are followed in the present study: 

1. In order to develop an SHM system for communication tower, 30-m high 

UHPFRC communication tower in Malaysia is constructed. The tower consists 

of three segments with 10m long. The segments are linked to each other by using 

bolts and nuts. Besides, Eight presterss tendons used for reinforced UHPFRC 

tower. 

2. FE simulation (ABAQUS software) is used to generate the frequency results of 

the UHPFRC communication tower to develop an SHM system based on the 

AdaBoost, Bagging, and RUSBoost algorithms for damage detection of UHPFRC 

communication tower. 

3. Different damage scenarios are created using the FE method. These damages 

consist of removing bolts, vertical cracks and  horizontal cracks. 

4. Experimental modal analysis using the impact hammer test is conducted to test 

the  UHPFRC tower with 30m height in a healthy condition to verify and validate 

the FE method and the proposed system 

5. Two case studies that involve UHPFRC tower segments 1–2 and 2–3 are 

considered to validate the proposed model under healthy and damage conditions 

by using a dynamic actuator. The FE method and experimental modal analysis 

are applied. 

6. The particle swarm optimization (PSO) method is implemented for the 

optimization correlation factor.  
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The present study has the following limitations: 

1- The large size of the communication tower reduces the experimental testing for the 

full-scale UHPFRC communication tower. 

2- The UHPFC material is considered. 

3- The hollow circular tower is considered.  

 

 

1.6 Organization 

Chapter 1 highlights the importance and the definition of the problem chosen for the 

present investigation along with the objectives and scope of the study. 

Chapter 2 introduces a review of health monitoring system, background of the 

theories of damage detection technique in frequency domain for communication tower 

and different other structures. 

Chapter 3 presents the development procedure of 3D nonlinear communication 

tower, testing method with experimental set up in the performing procedure through 

experimental modal analysis (EMA), development of hybrid learning algorithm for 

damage detection of UHPFRC communication based on Adaptive boosting, Bagging 

and RUSBoost algorithm through frequency domain and development correlation 

factor of frequency for damage UHPFRC communication tower, different parametric 

study has been investigated. 

Chapter 4 discuss FE results and experimental results for UHPFRC communication 

tower in frequency domain as been presented in this chapter, also,  the application of 

the developed Hybrid learning algorithm to structural damage identification in the  

UHPFRC communication tower has been presented and verified through constructing 

two of tower segments (1-2 and 2-3). Then, the developed correlation factor of 

frequency for damage UHPFRC communication tower has been presented. Besides, 

the parametric study results has been carried out.  

Chapter 5 presents the conclusion drawn from this study with the suggestion for the 

further research in this area. 
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