DEVELOPMENT OF OPTIMIZED DAMAGE PREDICTION METHOD FOR HEALTH MONITORING OF ULTRA HIGH PERFORMANCE FIBER-REINFORCED CONCRETE COMMUNICATION TOWER

SARAH JABBAR GATEA

FK 2018 75
DEVELOPMENT OF OPTIMIZED DAMAGE PREDICTION METHOD FOR HEALTH MONITORING OF ULTRA HIGH PERFORMANCE FIBER-REINFORCED CONCRETE COMMUNICATION TOWER

By

SARAH JABBAR GATEA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

June 2018
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

DEVELOPMENT OF OPTIMIZED DAMAGE PREDICTION METHOD FOR HEALTH MONITORING OF ULTRA HIGH PERFORMANCE FIBER-REINFORCED CONCRETE COMMUNICATION TOWER

By

SARAH JABBAR GATEA

June 2018

Chairman : Associate Professor Farzad Hejazi, PhD
Faculty : Engineering

The requirement for communication towers increases due to the growing demand for power supply and telecommunication services. Recently, many attempts have been exerted to monitor the tower to ensure its excellent performance during operation. The capability of the tower to detect, localize, and quantify structural damage is the most important factor in maintaining excellent performance, reliability, and cost-effectiveness and ensuring its stability and integrity. The dynamic analysis of tall slender towers is commonly performed in the frequency domain. However, the recorded frequencies can be noisy, random, unstable, and with skewed data. The damage, due to uncontrolled noise reciprocating motion in the machines or broadband noise from wind or other sources, is identified based on frequency testing in an operator. Therefore, this study aims to develop a new health monitoring system for communication towers based on AdaBoost, Bagging, and RUSBoost algorithms as hybrid algorithm, which can predict the damage by using noisy, random, unstable, and skewed frequency data with high accuracy.

For this purpose, a UHPFRC tower with 30-m height is considered, and the finite element model (FEM) of the tower is developed. The modal frequencies of the tower are evaluated under various conditions of damage in concrete and connection in different parts of the tower by using finite element simulation. The results are used to develop the hybrid learning algorithm based on the AdaBoost, Bagging, and RUSBoost methods to predict the damage in the tower based on dynamic frequency domain. Therefore, 78 damage scenarios have been simulated by using finite element software to generate the frequency of the UHPFRC communication tower with various types of damage. The damage scenarios consist of losing bolts and vertical and horizontal cracks. The frequency before and after damage was set as input training
data, whereas the damage types and locations are set as output data (damage index). The verification results indicate that all the structural defects were predicted with high accuracy by the developed hybrid algorithm in cases of healthy and damaged structures. The full-scale UHPFRC communication tower is experimentally tested for dynamic frequencies to verify the numerical analysis results. The frequency response of the tower structure was obtained by exciting with an impact hammer at various points, and the acceleration of the tower structure was gathered through three accelerometer sensors attached at the top, middle, and bottom parts of the structure. Damaging the full-scale tower is not practical; thus, two different parts of the tower segments and their connections (1-2 and 2-3) are considered and tested experimentally with and without damage to validate the capability of the developed hybrid algorithm to detect damage. A dynamic actuator was used to cause damage in the tower segments by applying vibration force.

In addition, a simple procedure is proposed to determine the optimal solution and predict the correlation factor and the frequency of the damaged communication tower by using the particle swarm optimization (PSO) method. This technique avoids the exhaustive traditional trial-and-error procedure to obtain the coefficient of the correlation factor of frequency for the damaged communication tower by conducting several analyses. The new assessments on the capability of the indicator to detect and quantify the defects are performed. For this purpose, the FEM is implemented to model three communication towers with a height of 15, 30, and 45m to develop the frequency correlation factor. The verification results indicate that the PSO technique can develop a correlation factor with acceptable accuracy to predict the damage.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH RAMALAN KEROSAKAN OPTIMUM UNTUK PEMANTAUAN KESIHATAN MENARA KOMUNIKASI MENGGUNAKAN FIBER KONKRIT BERTETULANG BERPRESTASI TINGGI

Oleh

SARAH JABBAR GATEA

Jun 2018

Pengerusi : Profesor Madya Farzad Hejazi, PhD
Fakulti : Kejuruteraan

Oleh yang demikian, matlamat utama penyelidikan ini dijalankan adalah membangunkan sistem pemantauan kesihatan yang baru untuk menara komunikasi berdasarkan algoritma AdaBoost, Bagging, dan RUSBoost sebagai algoritma hibrid, yang boleh meramalkan kerosakan melalui data frekuensi yang bising, rawak, tidak stabil, dan condong dengan ketepatan yang tinggi.

Bagi tujuan ini, sebuah menara UHPFRC berketinggian 30 meter dibina Model Unsur Terhingga (FEM) bagi menara tersebut telah dibangunkan. Frekuensi modal menara dinilai dalam pelbagai keadaan kerosakan konkrit dan sambungan di bahagian menara yang berlainan menggunakan simulasi unsur terhingga. Keputusan yang diperoleh digunakan untuk membangunkan algoritma pembelajaran hibrid berdasarkan kaedah
AdaBoost, Bagging, dan RUSBoost untuk meramalkan kerosakan di menara berdasarkan domain frekuensi dinamik. 78 senario kerosakan telah disimulasikan dengan menggunakan perisian unsur terhingga untuk menjana frekuensi menara komunikasi UHPFRC dengan pelbagai jenis kerosakan. Senario kerosakan terdiri daripada kehilangan bolt dan retakan menegak dan mendatar.

Frekuensi sebelum dan selepas kerosakan ditetapkan sebagai data latihan input, manakala jenis dan lokasi kerosakan ditetapkan sebagai data output (indeks kerosakan). Keputusan pengesahan menunjukkan bahawa semua kerosakan struktur telah diramalkan oleh pembangunan algoritma hibrid dalam kedua-dua kes iaitu kesihatan dan kerosakan dengan darjah ketepatan yang tinggi dalam mengesan kerosakan. Menara komunikasi UHPFRC berskala penuh telah diuji secara eksperimen bagi mendapatkan frekuensi dinamik untuk mengesahkan keputusan analisis berangka.

Tindak balas frekuensi struktur menara diperoleh dengan cara menarik menara dengan tukul kesan pada pelbagai titik, dan pecutan struktur menara dikumpulkan melalui tiga sensor meter pecutan yang diletakkan di bahagian atas, tengah, dan bahagian bawah struktur. Merosakan keseluruhan menara adalah tidak praktikal; oleh itu, dua bahagian berbeza dari segmen menara dan sambungan mereka (1-2 dan 2-3) diambil kira dan diuji secara eksperimen dengan dan tanpa kerosakan untuk mengesahkan keupayaan algoritma hibrid yang telah dibangunkan untuk mengesan kerosakan. Penggerak dinamik digunakan untuk mengakibatkan kerosakan di segmen-segmen menara melalui daya getaran.

ACKNOWLEDGEMENTS

First of all, I am so thankful to Allah the Almighty that gave me the opportunity to finish my meaningful study.

I would like to express my deepest gratitude and be thankful my supervisor Assoc. Prof. Dr. Farzad Hejazi for his enormous patience in guiding, encouraging, and advising me in the process of conducting my research. I have been extremely lucky to have a supervisor who have a great insight and care about my work, and who responded to my queries timely and promptly. His positive approach and outlook boosted up confidence in me to aspire research and finish in stipulated time. I would certainly never forget his endeavoring driving my spirits and contributing his time and skills in editing and produce my thesis. Therefore, my adorability to my supervisor with stand with in me for his incredible support, with which it would never been possible to finish this work.

Besides of my supervisor, I would like to extend my thanks for the supervisor's committee members: Professor Dato’ Ir. Dr. Mohd Saleh Jaafar, Assoc. Prof. Ir. Dr. Raizal Saifulnaz Muhammad Rashid, Ir. Dr. Voo Yen Lai for their insightful comments and encouragement. Although for their hard questions which let me to open my research wider with various perspectives.

Also, my special thanks go to all my friends, colleagues, and the staff of structural laboratory of Civil Engineering Department of UPM for their assistance. I'm grateful and acknowledges the Ministry of Science, Technology, and Innovation (MOSTI) of Malaysia for their support to this research work.
I am very thankful for the prayer and everlasting love from the most important people in my life my sisters, especially my elder sister Muntaha. Their support and encouragement gave me the spirit and energy to always think out of the box and be the best among the rest.

Besides, I give my special thanks to Mr. Jabir AL-hassani, for his help, his encouragement, as well as his moral supports throughout writing this thesis and my life in general.

Last but not least, I would like to thank the Ministry of Municipalities in Iraq for their support and all who involved directly or indirectly in the process of this study.
I certify that a Thesis Examination Committee has met on 1 June 2018 to conduct the final examination of Sarah Jabbar Gatea on her thesis entitled "Development of Optimized Damage Prediction Method for Health Monitoring of Ultra High Performance Fibre-Reinforced Concrete Communication Tower" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Nasri bin Sulaiman, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Izian binti Abd Karim, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Bujang bin K. Huat, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Shahria Alam, PhD
Associate Professor
Shahria Alam
Canada
(External Examiner)

RUSLI HAJI ABDULLAH, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 30 July 2018
This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Farzad Hejazi, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Dato' Mohd Saleh Jaafar, PhD
Professor, Ir
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Raizal Saifulnaz Muhammad Rashid, PhD
Associate Professor, Ir
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Voo Yen Lai, PhD
Adjunct Professor, Ir
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Billie F Spencer, PhD
Professor
Faculty of Engineering
University of Illinois
(External Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature: ______________________ Date: ______________

Name and Matric No: Sarah Jabbar Gatea, GS46013
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: _____________________________
Name of Chairman of Supervisory Committee: Associate Professor Dr. Farzad Hejazi

Signature: _____________________________
Name of Member of Supervisory Committee: Professor Dato' Dr. Mohd Saleh Jaafar

Signature: _____________________________
Name of Member of Supervisory Committee: Associate Professor Dr. Raizal Saifulnaz Muhammad Rashid

Signature: _____________________________
Name of Member of Supervisory Committee: Dr. Voo Yen Lai

Signature: _____________________________
Name of Member of Supervisory Committee: Professor Dr. Billie F Spencer
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxiii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Introduction 1

1.2 Background 1

1.3 Problem statement 7

1.4 Objectives 8

1.5 Scope and Limitation of Structure 8

1.6 Organization 9

2 LITERATURE REVIEW

2.1 SHM based on global dynamic responses 10

2.2 Structural health monitoring based change in natural frequencies 13

2.2.1 Health monitoring of bridges 24

2.2.2 Health monitoring of high-rise buildings 25

2.2.3 Health monitoring of dams 26

2.2.4 Health monitoring of towers 27

2.3 Damage detection by using learning technique 30

2.3.1 Ensemble method 30

2.3.1.1 Bagging 32

2.3.1.2 Adaptive Boosting 34

2.3.1.3 RUSBoost algorithm 37

2.4 Particle Swarm Optimization Algorithm 38

2.5 Summary 40

3 METHODOLOGY

3.1 Introduction 41

3.2 Health monitoring of communication tower 41

3.3 The outlines design for communication tower 44

3.3.1 Compressive Strength for cylinder Specimens 47

3.4 Numerical modal analysis 48

3.4.1 Development of FEM 48
3.4.2 Screw and nut
3.4.3 Interactions
3.4.4 Meshing
3.4.5 Load and boundary condition
3.5 Experimental modal analysis
3.5.1 Excitation
3.5.2 Data acquisition and signal processing system
3.5.3 Accelerometers
3.5.4 Force transducer hammer
3.5.5 Software
3.5.6 Experimental test procedure
 3.5.6.1 Test 1: Full scale tower
 3.5.6.2 Testing procedure
3.6 Development of hybrid algorithm for damage detection of
UHPFRC communication tower as SHM system from papers
 3.6.1 Bagging
 3.6.2 Adaptive Boost Learning Approach
 3.6.3 RUSBoost
3.7 Verification of hybrid algorithm with case studies
 3.7.1 Case study 1: Segments 1–2
 3.7.1.1 Numerical modeling of UHPFRC tower segments 1-2
 3.7.2 Experimental analysis of segments 1-2
 3.7.3 Experimental testing of segments (1–2)
 3.7.3.1 Test setup of segments 1-2
 3.7.3.2 Testing procedure
 3.7.4 Verification of hybrid algorithm with case study 1
3.8 Case study 2: Segments 2–3
 3.8.1 Details of segments 2–3 in vertical position
 3.8.2 Test setup of Segments 2–3
 3.8.2.1 Testing procedure
 3.8.3 Verification of hybrid algorithm using case study 2
 3.8.4 Overall procedure for development and verification
 of hybrid algorithm for damage detection
3.9 Correlation factor of damaged frequency for UHPFRC
 communication tower
 3.9.1 Development of FEM model for 15, 30, 45m height
 communications towers 3.9.1
 3.9.2 Load and boundary condition
 3.9.3 Development of PSO algorithm for correlation factor of
 frequency of damage UHPFC communication tower
 3.9.3.1 Development of PSO algorithm
 3.9.3.2 Objective function
 3.9.4 Convergence criteria
 3.9.5 Implementing PSO for predicting the correlation factor
 of damage frequency of UHPFRC communication
tower
3.10 Summary
4 RESULTS AND DISCUSSION

4.1 Introduction 123
4.2 Numerical analysis 123
 4.2.1 FE results of UHPFRC communication tower in frequency domain 124
4.3 Experimental test of UHPFRC communication tower in frequency domain 129
 4.3.1 Experimental results of UHPFRC tower test in healthy condition 129
4.4 Validation of finite element frequency results for UHPFRC communication tower 134
4.5 Development of Hybrid algorithm for damage detection of UHPFRC communication tower papers 135
4.6 Testing of optimization Hybrid learning algorithm 137
4.7 Verification of Hybrid algorithm with case studies 138
 4.7.1 Case study 1: Segments 1-2 and connection 139
 4.7.1.1 Finite Element frequency analysis results for UHPFRC communication tower segments 1-2 139
 4.7.1.2 Experimental test of segments 1-2 in undamaged condition 142
 4.7.1.3 Experimental test of damaged segments 1-2 146
 4.7.1.4 Verification of FE results of Segments (1-2) 151
 4.7.1.5 Training and testing of Hybrid algorithm with segments 1-2 152
 4.7.2 Verification of objective function during optimization process 153
 4.7.3 Case study 2: Segments 2-3 154
 4.7.3.1 Finite Element frequency analysis results for UHPFRC communication tower segments 2-3 154
 4.7.3.2 Experimental test of undamaged segments 2-3 157
 4.7.3.3 Damaged segments 2-3 160
 4.7.3.4 Verification of FE results of Segments (2-3) 175
 4.7.3.5 Training and testing of Hybrid algorithm with segments 2-3 175
4.8 Development of dynamic frequency Correlation Factor for damage UHPFRC communication tower using Particle Swarm Optimization Algorithm (PSO) 179
 4.8.1 Verification of proposed model with case studies 181
 4.8.1.1 Case study 1 181
 4.8.1.2 Case study 2 183
4.9 Summary 185
5 CONCLUSION AND FUTURE WORK 186
5.1 General conclusion 186
5.2 Specified conclusion 188
 5.2.1 Finite element analysis of UHPFRC communication 188
tower in frequency domain
 5.2.2 Experimental test of UHPFRC communication tower in 188
frequency domain
 5.2.3 Development of learning Hybrid algorithm for damage 189
detection based on Adaptive Boosting, Bagging and
RUSBoost algorithms
 5.2.4 Development of correlation factor for damaged 190
frequency of UHPFRC communication tower
5.3 Suggestion for further research 190

REFERENCES 191
APPENDICES 208
BIODATA OF STUDENT 246
LIST OF PUBLICATIONS 247
<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The natural frequencies of different masonry towers</td>
</tr>
<tr>
<td>3.1</td>
<td>Tower details</td>
</tr>
<tr>
<td>3.2</td>
<td>Compressive Strength for 100-mm cylinder Specimens</td>
</tr>
<tr>
<td>3.3</td>
<td>The material properties of prestressed strand used</td>
</tr>
<tr>
<td>3.4</td>
<td>The material properties of steel reinforcement used</td>
</tr>
<tr>
<td>3.5</td>
<td>Damage type for UHPFC communication tower</td>
</tr>
<tr>
<td>3.6</td>
<td>Technical data of the hammer</td>
</tr>
<tr>
<td>3.7</td>
<td>Accelerometers Sensitivity</td>
</tr>
<tr>
<td>3.8</td>
<td>Experimental test procedure for UHPC communication tower</td>
</tr>
<tr>
<td>3.9</td>
<td>Damage Class type and Damage case number for UHPFRC communication tower</td>
</tr>
<tr>
<td>3.10</td>
<td>Experimental test procedure for UHPFRC communication tower</td>
</tr>
<tr>
<td>3.11</td>
<td>Damage type for UHPFC tower segments 1-2</td>
</tr>
<tr>
<td>3.12</td>
<td>Technical data of the hammer</td>
</tr>
<tr>
<td>3.13</td>
<td>Damage Class type and Damage case number for segments 1-2</td>
</tr>
<tr>
<td>3.14</td>
<td>Damage type and location for UHPFC tower segments 2-3</td>
</tr>
<tr>
<td>3.15</td>
<td>Damage Class type and Damage case number for segments 2-3</td>
</tr>
<tr>
<td>3.16</td>
<td>Main PSO parameters</td>
</tr>
<tr>
<td>3.17</td>
<td>PSO convergence parameters</td>
</tr>
<tr>
<td>4.1</td>
<td>Numerical results of frequency response for UHPFRC in healthy condition(no damage) and damage condition</td>
</tr>
<tr>
<td>4.2</td>
<td>Experimental frequency values for UHPFRC communication tower</td>
</tr>
<tr>
<td>4.3</td>
<td>Verification of experimental and numerical frequency results for the UHPFRC communication tower</td>
</tr>
</tbody>
</table>
4.4 Numerical frequency results of UHPFRC communication tower segment 1-2 140
4.5 Experimental frequency and damping values for UHPFRC communication tower segmental 1-2 before damage 144
4.6 Experimental frequency and damping values for UHPFRC communication tower segmental 1-2 before and after damage 150
4.7 Verification of experimental and numerical frequency results for the UHPFRC communication tower segments 1-2 151
4.8 Numerical frequency results of UHPFRC communication tower segment 2-3 155
4.9 Experimental frequency values for undamaged segmental 2-3 159
4.10 Experimental frequency values and variation for tower segmental 2-3 before and after damage 168
4.11 Experimental damping values for tower segmental 2-3 only 169
4.12 Verification of experimental and numerical frequency results for UHPFRC tower segment 2-3 175
4.13 Parameters used in the PSO algorithm model setting 181
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Principle and organization of an SHM system</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>(a),(b)(Left) I-35W Bridge in Minneapolis, Minnesota USA; (right) catastrophic failure after collapse on August 1, 2007</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Collapse of Railway Bridge near Bhagalpur</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>Collapse of 300m communication tower mast in northern Netherlands</td>
<td>4</td>
</tr>
<tr>
<td>1.5</td>
<td>Communication tower with 30 m height located in Malaysia</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>Tall slender monopoles with 50 m high installed in Portugal</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Hammer test by using the beam</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>A hammer test measurement on a railway track</td>
<td>22</td>
</tr>
<tr>
<td>2.4</td>
<td>Geumdang Bridge, Korea</td>
<td>25</td>
</tr>
<tr>
<td>2.5</td>
<td>Dams case study discussed by (Cantieni)</td>
<td>27</td>
</tr>
<tr>
<td>2.6</td>
<td>Simple Ensemble procedure introduced by Prusti (2015)</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>Methodology procedure</td>
<td>43</td>
</tr>
<tr>
<td>3.2</td>
<td>(a, b, c and d). Local detailed diagram</td>
<td>46</td>
</tr>
<tr>
<td>3.3</td>
<td>Compressive Strength test for cylinder Specimens</td>
<td>47</td>
</tr>
<tr>
<td>3.4</td>
<td>Developed UHPFRC communication tower</td>
<td>50</td>
</tr>
<tr>
<td>3.5</td>
<td>Reinforcement details for UHPFRC tower</td>
<td>51</td>
</tr>
<tr>
<td>3.6</td>
<td>Bolt and nuts geometry</td>
<td>52</td>
</tr>
<tr>
<td>3.7</td>
<td>(a, b, c, d, e and f). Tower and segments meshing</td>
<td>53</td>
</tr>
<tr>
<td>3.8</td>
<td>Load and boundary condition for UHPFC tower</td>
<td>54</td>
</tr>
<tr>
<td>3.9</td>
<td>Vertical and horizontal crack for UHPFC communication tower</td>
<td>57</td>
</tr>
<tr>
<td>3.10</td>
<td>Damage index (DI)</td>
<td>58</td>
</tr>
<tr>
<td>3.11</td>
<td>Functions for FRF Generation for UHPFRC communication tower</td>
<td>60</td>
</tr>
<tr>
<td>3.12</td>
<td>Impact hummer for testing of UHPFRC communication tower</td>
<td>62</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>3.13</td>
<td>Impact Testing</td>
<td></td>
</tr>
<tr>
<td>3.14</td>
<td>OROS36 with 8 channels</td>
<td></td>
</tr>
<tr>
<td>3.15</td>
<td>The setup of analyzer and software</td>
<td></td>
</tr>
<tr>
<td>3.16</td>
<td>Accelerometer (KS77C.10)</td>
<td></td>
</tr>
<tr>
<td>3.17</td>
<td>Force transducer</td>
<td></td>
</tr>
<tr>
<td>3.18</td>
<td>Main menu of the MODAL software</td>
<td></td>
</tr>
<tr>
<td>3.19</td>
<td>UHPFRC communication tower through MODAL software</td>
<td></td>
</tr>
<tr>
<td>3.20</td>
<td>Install the accelerometers for UHPFRC tower</td>
<td></td>
</tr>
<tr>
<td>3.21</td>
<td>Marking the knocking point for UHPFRC tower</td>
<td></td>
</tr>
<tr>
<td>3.22</td>
<td>(a and b) Setup the data logger at UHPFRC tower</td>
<td></td>
</tr>
<tr>
<td>3.23</td>
<td>Recorded the acceleration data using NVGATE software</td>
<td></td>
</tr>
<tr>
<td>3.24</td>
<td>Transfer acceleration data from NVGATE to MODAL software</td>
<td></td>
</tr>
<tr>
<td>3.25</td>
<td>(a and b) Generate of Modal frequency</td>
<td></td>
</tr>
<tr>
<td>3.26</td>
<td>The bagging classification</td>
<td></td>
</tr>
<tr>
<td>3.27</td>
<td>Graphical idea of the adaptive boosting</td>
<td></td>
</tr>
<tr>
<td>3.28</td>
<td>Communication tower segments 1-2 and 2-3 details</td>
<td></td>
</tr>
<tr>
<td>3.29</td>
<td>Finite element modeling for tower segments 1-2</td>
<td></td>
</tr>
<tr>
<td>3.30</td>
<td>Meshing of Tower segments 1-2</td>
<td></td>
</tr>
<tr>
<td>3.31</td>
<td>Reinforcement details for segments 1-2</td>
<td></td>
</tr>
<tr>
<td>3.32</td>
<td>(a, b and c) Construct of UHPFRC communication tower segments 1-2</td>
<td></td>
</tr>
<tr>
<td>3.33</td>
<td>Boundary condition of tower segments 1-2</td>
<td></td>
</tr>
<tr>
<td>3.34</td>
<td>Impact hammer for testing tower segments (1-2 and 2-3) only</td>
<td></td>
</tr>
<tr>
<td>3.35</td>
<td>UHPFRC communication tower segments 1-2</td>
<td></td>
</tr>
<tr>
<td>3.36</td>
<td>Using dynamic actuator to damage the UHPFRC tower segments 1-2</td>
<td></td>
</tr>
<tr>
<td>3.37</td>
<td>Displacement Vs time</td>
<td></td>
</tr>
</tbody>
</table>
3.38 UHPFRC segments 1-2 details
3.39 Boundary condition of tower segment 1-2 as located in horizontal position
3.40 (a, b and c). Install the accelerometers for segments 1-2 in horizontal position
3.41 Marking the knocking point for segments 1-2 in horizontal position
3.42 (a and b). Set up for segments 1-2
3.43 (a and b). applying load by using dynamic actuator
3.44 Creating segments 1-2 model through MODAL software
3.45 Obtaining the FRFs data
3.46 Identifying Model parameters
3.47 FE modeling for tower segments 2–3
3.48 Boundary condition for tower segments 2-3
3.49 Segments 2-3 meshing
3.50 (a and c). Reinforcement details for segments 2-3
3.51 (a, b and c). Construct of UHPFRC communication tower segment 2-3
3.52 UHPFRC segmental 2-3 details
3.53 boundary condition of tower segment 1-2 and segment 2-3
3.54 Install the accelerometers for segment 2-3 in vertical position
3.55 (a and b). Marking the knocking point for segment 2-3 in vertical position
3.56 (a, b and c): Setup the Data logger for segment modeled 2-3
3.57 Extension plate for dynamic actuator
3.58 (a, b and c). Installation of the extension plate for dynamic actuator
3.59 UHPFRC segments 2-3 by using MODAL software
3.60 Identification of Modal parameters
3.61 Methodology procedure for development of hybrid algorithm
3.62 (a, b and c) UHPFRC communication towers with 15, 30, 45m height

3.63 Velocity and position updates in PSO for 2D parameter space

3.64 Flowchart of hybrid PSO--for calculating correlation factor for damaged frequency in UHPFRC communication tower

4.1 (a, b, c). Impact hammer test for UHPFRC communication tower

4.2 Envelope of FRFs recorded at different accelerometer points for UHPFRC communication tower

4.3 Stabilization chart to calculate the frequency of UHPFRC tower

4.4 Running of hybrid algorithm for UHPFRC communication tower

4.5 Measured vs. predicted for frequency of damage and healthy UHPFRC communication tower by using Hybrid learning algorithm

4.6 Damage detection by using a Hybrid algorithm for UHPFRC communication tower with numerical results

4.7 Damage detection by using a Hybrid algorithm for UHPFRC communication tower with experimental results

4.8 (a and b). Knocking of segments 1-2 at different points before damage

4.9 Envelope of FRFs recorded at different accelerometers points for UHPFRC communication tower segments 1-2 before damage

4.10 Stabilization chart to calculate the frequency of segments 1-2 before damage

4.11 Undamaged segments 1-2

4.12 (a, b, c and d). Knocking of segments 1-2 at different points before and after damage

4.13 FRFs recorded at different accelerometer points for segments 1-2 after damage

4.14 Stabilization chart to calculate the frequency of segments 1-2 after damage

4.15 Mode shape of damage segments 1-2

4.16 Running of hybrid algorithm for segments 1-2

4.17 Measured vs. predicted for frequency of damage and healthy segments 1-2 by using Hybrid learning algorithm

xix
4.18 Damage detection by using a hybrid algorithm for segments 1-2
4.19 (a, b and c). Knocking bolted foundation segment after adding epoxy
4.20 Envelope FRFs recorded at different accelerometer points for undamaged segments 2-3
4.21 Stabilization chart to calculate the frequency of segments 2-3 before damage
4.22 Mode shape for healthy segments 2-3
4.23 (a and b). Knocking un bolted and bolted foundation segments before adding epoxy
4.24 Knocking segments (2-3) with 75 mm damage
4.25 Knocking segments (2-3) with 150 mm damage in a different position
4.26 Envelope FRFs recorded at different accelerometer points for unbolted foundation segments
4.27 Envelope FRFs recorded at different accelerometer points for bolted to foundation with epoxy at connection segments
4.28 Envelope FRFs recorded at different accelerometer points for losing bolt in segments connection
4.29 Envelope FRFs recorded at different accelerometer points for 75 mm damage pushing by using dynamic actuator
4.30 Envelope FRFs recorded at different accelerometer points for 150 mm damage pushing by using dynamic actuator
4.31 (a, b, c and d). Stabilization chart to calculate the frequency of segments 2-3 with different damage cases
4.32 (a, b, c, d, gand e). Mode shape of damage and undamaged segments 2-3 verification study
4.33 Running of hybrid algorithm for segments 1-2
4.34 Measured vs. predicted for frequency of damage and healthy segments 2-3 by using Hybrid learning algorithm
4.35 Damage detection by using a hybrid algorithm for segments 2-3
4.36 Convergence process for different swarm sizes
4.37 Measured vs. predicted correlation factor for frequency of damage UHPFRC communication tower by using PSO algorithm
4.38 (a, b, c). Comparisons between the model predictions and measured frequency for tower damaged with 15m height

4.39 (a, b, c). Comparisons between the model predictions and measured frequency for damaged tower with 45m height
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Modelling with modal Software</td>
</tr>
<tr>
<td>B</td>
<td>The general structure of Hybrid learning algorithm for UHPFRC communication tower</td>
</tr>
<tr>
<td>C</td>
<td>The general structure of PSO algorithm</td>
</tr>
<tr>
<td>D</td>
<td>Appendix D</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Major civil engineering structures, such as bridges, dams, offshore installations, and towers, are an important part of the wealth of a country. The maintenance costs of these structures are substantially high even with a small percentage of reduction in maintenance cost amounts to considerable savings. Structural health monitoring (SHM) is one of the most effective maintenance methods. Detection of early problems, such as cracks at critical locations, delimitations, corrosion, and spalling of concrete, can help prevent catastrophic failure and impairment of the structural system and reduce the maintenance cost. Furthermore, SHM can improve the serviceability and functionality and increase the lifespan of structures, thereby helping the national economy significantly. Thus, SHM of civil structures is becoming increasingly popular worldwide because of its potential application in maintenance and construction management.

1.2 Background

Structural health monitoring (SHM) is a process in which certain strategies are implemented for determining the presence, location and severity of damages and the remaining life of structure after the occurrence of damage. Health monitoring is typically used to track and evaluate the performance, symptoms of operational incidents and anomalies due to deterioration or damage as well as health during and after extreme events (Aktan et al., 1998). Damage identification is the basic objective of SHM.

Damage is determined at four main levels as presented by Rytter (1993).

Level 1: identification of the existence of damage;
Level 2: identification of the existence and location of damage;
Level 3: identification of the existence, location, and severity of damage; and
Level 4: identification of the existence, location, and severity of damage and prediction of the remaining life of the residual structure.

The ability of a system to determine the structural condition in long-term monitoring to prevent damage is a main feature of SHM. A good SHM system can locate and detect damage at an early stage (Li and Hao, 2016). The SHM system is installed permanently on a structure to monitor its conditions on a continuous basis and provide information on every structural component. In principle, sensors (accelerometers) are installed in the structure to gather the response measurements caused by internal or
external forces. The measurements are then transmitted to a centralized computer that stores and processes the data collected by the sensors. Once stored in the centralized computer, the data can be analyzed automatically by software programs or manually by human experts. Many data analysis approaches have been developed to assess the integrity of structures.

The SHM system uses non-destructive sensing in-situ and analyzes the characteristics of a structural system to detect fault occurrence, find its location, and evaluate its seriousness to estimate its consequences on the structure’s residual life. SHM has been used for structural safety or maintenance of existing structures; rapid estimation of structural damage after an earthquake; evaluation of the remaining life of structures; rehabilitation and modification of structures; and management, maintenance, or repair of historic buildings (Rainieri et al., 2008). The SHM principle, as reported by Balageas (2006), is shown in Figure 1.1.

![Figure 1.1: Principle and organization of an SHM system](image)

SHM aims to provide a non-destructive estimation of the structural state at any wanted moment of its remaining lifetime. Engineers should ensure the safe operations of the structure when its system integrity is estimated. Civil structures, such as buildings, dams, and bridges, and slender structures, such as towers and masts or wind turbines, are flexible and have low structural damping characteristics because they are sensitive to dynamic load. The durability and safety of civil structures are important in ensuring industrial prosperity and societal economy. Unfortunately, many aging civil structures are deteriorating because of cruel environmental conditions, uninterrupted loading, and inadequate maintenance. For example, the I-35W Bridge in Minneapolis, Minnesota, catastrophically failed on August 1, 2007 without warning, resulting in the death of 13 motorists (Figure 1.2) as reported by Swartz et al., (2007).
Furthermore, railways, especially their axles, undergo fatigue damage due to corrosion or load impact from vehicles, which lead to failure, passenger casualties, and even accidents. Therefore, an SHM system for railway axles can help eliminate service failure (Rolek et al., 2016). For example, a 150-year-old bridge near the Bhagalpur railway station in India’s Bihar state collapsed as shown in Figure 1.3.

![Figure 1.3: Collapse of Railway Bridge near Bhagalpur](Shanker, 2009)

Towers are among the most important structures because they enable the installation of equipment that allow various services, such as television, radio, and mobile communications. Damage is the main cause of structural failure and often occurs in structures. The absence of an alarm for structural damage and deterioration from loading, joint failure, and so on may cause tremendous disasters. As an example of tower failure, a 300-m communication tower mast in northern Netherlands collapsed as shown in Figure 1.4.
Many methods have been utilized to identify and locate damage in civil structures. The current non-destructive (NDT) damage identification techniques are based on visual inspection, acoustic emission, radiography, X-ray, eddy current, and ultrasonic and stress waves. The competence of these methods is limited to the accessibility of the structural location in limited areas and depends on the initial information concerning the probability of damage. Moreover, these methods are costly and time-consuming when applied to large structures and cannot identify damage without testing the entire structure. In addition, damages that are deep inside the structure may not be detected by these methods. Problems arise due to human errors because these methods require human experts to detect changes that indicate structural damage. Therefore, NDT damage identification methods are often insufficient for evaluating the condition of structural systems, especially when the damage is not observable. Vibration-based methods serve both as local and global damage identification approaches to identify the severity and location of damage. These methods are based on the principle that reducing the stiffness of structural systems leads to a change in their dynamic characteristics, such as the natural frequencies of the structure (Hakim et al., 2015).

The modern development of the SHM system for detecting damage depends on the mode of vibration. The physical characteristics of the structure directly affect the structure vibration characteristics. The stiffness of the structure changes when the structure is damaged and the vibration characteristics change as well.
When a structure is damaged, the stiffness decreases, which leads to the decrease of the natural frequencies of the system. Fatigue damage can arise when the structure is excited by the load impact and the load frequency is near the structural frequency. Therefore, natural frequencies are the most common dynamic parameters used in damage detection. According to the CEN. (2006), the first natural frequency is undoubtedly a key parameter in estimating the response of the structure (Antunes et al., 2012).

Natural frequencies can be easily obtained from a dynamic measurement anywhere on the system and are a common and popular damage indicator. Natural frequencies are used to detect damage in structural systems because changes in the structural properties result in shifts in these frequencies. Besides, natural frequencies can be used to detect damage because it can be quickly and easily conducted. Moreover, frequency measurements can be taken with relatively good accuracy, and doubts on the measured frequencies can be easily evaluated if the experimental measurements are conducted under perfectly controlled experimental conditions. The modal parameters, such as natural frequencies, can be determined from the acquired data through the experimental modal analysis test. However, in real-world scenarios, the recorded of low and high frequencies can be randomly unstable, noisy, and with skewed data, due to some uncontrolled noise, such as reciprocating motion in a machine, rotating imbalance in an automobile engine, or broadband noise from wind or road conditions in a vehicle, which should be resolved.

Machine learning methods for damage identification and detection have been presented by many researchers. Several methods have been investigated by researchers to estimate various types of damage, with the aim to develop approaches to determine the locations of damage or monitor the origin of damage. Machine learning has been widely used in SHM. There are two types of learning, supervised and unsupervised. In supervised learning should have info on the structure undamaged and damaged. On the other hand, are the unsupervised learning algorithms, in which case the information of the structure without damage is not available (Vitola Oyaga et al., 2016). Most of SHM systems for identifying damage in the structures based on an unsupervised learning method.

Recently, the need for communication towers has increased with the requirements for active communication, especially in the advent of radar, television, and radio. The configuration complexity of towers and the limited access to the structure, especially the inner part of the tower with a hollow section, make the monitoring of towers a challenging issue in maintenance. Therefore, a new health monitoring system for communication towers for damage detection with high accuracy is urgently needed.

The dynamic analysis of tall slender towers is commonly preferred in the frequency domain based on the frequency-dependent character of both of the wind loads and the mechanical properties of the structure. SHM is essential for determining the structural integrity and ensuring the lifetime of such structures. A key parameter to be monitored
is the acceleration from which the natural frequencies of the structure can be determined. The changes verified in natural frequencies can be related to the degradation of the structure, and this parameter is an excellent indicator of structural health that allows preventive actions when necessary, thereby saving money and even lives (Antunes et al., 2012).

Therefore, this study aims to develop a new health monitoring system that can work with noisy, random, unstable, and skewed data for an ultra-high fiber performance-reinforced concrete (UHPFRC) communication tower, with 30-m height, located in Malaysia (Figure 1.5) by using frequency domain analysis. For this purpose, a hybrid learning algorithm based on the AdaBoost, Bagging, and RUSBoost algorithms is implemented to identify damage in the UHPFRC communication tower through the frequency domain data. Frequency response functions (FRFs) for damaged and healthy structures are determined using the excitation caused by an impact hammer and the signal collected by three accelerometer sensors that are attached to appropriate positions. The training samples for the algorithm are generated using the finite element (FE) method, and experiments are performed to obtain the testing samples. In addition, two cases that involve tower segments 1–2 and 2–3 are considered invalidating the hybrid learning algorithm for damage detection.

Figure 1.5 : Communication tower with 30 m height located in Malaysia
1.3 Problem statement

This research treats the problem of damage evaluation in communication tower in order to ensure their integrity and safety. In recent times, structural health monitoring (SHM) has attracted much attention in both research and development. SHM covered both local and global methods of damage identification (Zapico and González, 2006). In the local case, the assessment of the state of a structure is performed either by direct visual inspection or using experimental techniques such as ultrasonic, magnetic particle inspection, radiography and eddy current. A characteristic of all these techniques is that their applications require a prior localization of the damaged zones. The limitations of the local methodologies can be overcome by using vibration-based methods, which give a global damage assessment.

The most common vibration-based damage detection techniques include changes to mode shapes, modal curvatures, flexibility curvatures, strain energy curvatures, modal strain energy, flexibility and stiffness matrices. The other vibration-based techniques include numerical model updating and neural network based methods. The amount of literature in non-destructive vibration methods is quite large for treating single damage scenarios, however is limited for multiple damage scenarios. Most existing methods are based on a single criterion and most authors demonstrate these methods mainly in beam-like or plate-like elements.

Towers are one of the most important physical supports for the installation of radio equipment used for various services, such as radio, television and/or mobile communications. The dynamic analysis of tall slender towers is commonly performed in the frequency domain.

Therefore, developing a new system for damage detection in the communication tower structure and a health monitoring system with high accuracy are urgently required. However, the following challenges exist in tower maintenance:

The development of SHM for tall cylindrical structures, such as communication towers, is required due to the difficulty in measuring low-frequency responses.

- The configuration of the tower is complex and access to the body of the structure is limited, especially at the internal part of the tower that ensures structural integrity and stability.
- Many SHM systems for identifying damage in the structures using the frequency domain response are based on an unsupervised learning mode, which is challenging in precisely detecting and tracking damage in long-term monitoring.
- In an SHM system, the sensor network should be fail-safe during online monitoring. That is, the sensor should not be damaged after being installed in a structure. Otherwise, a redundancy algorithm is used to acclimatize to the new sensor network when one or more sensors are damaged.
1.4 Objectives

The main aim of this study is development of Structural Health Monitoring System (SHM) for Ultra High Performance Fibre Concrete (UHPFC) communication tower to detect damage in the structure as well in the joints. Therefore, the objectives of this study are listed as follows:

- To evaluate the response of communication tower in frequency domain under various damage condition by using numerical study through FE and experimental test.
- To develop the hybrid optimized prediction method as health monitoring system based on Adaptive Boosting, Bagging and RUSBoost algorithms for identification damage type and location of UHPFC communication tower.
- To verify the developed health monitoring system for damage identification in UHPFC communication tower through conducting experimental modal test on various segments of tower in healthy and damaged condition in frequency domain by using of impact hammer.
- To develop frequency correlation factor for UHPFRC communication tower with consider of structure damage.

1.5 Scope and Limitation of Structure

To achieve the objectives, the following steps are followed in the present study:

1. In order to develop an SHM system for communication tower, 30-m high UHPFRC communication tower in Malaysia is constructed. The tower consists of three segments with 10m long. The segments are linked to each other by using bolts and nuts. Besides, Eight prestress tendons used for reinforced UHPFRC tower.
2. FE simulation (ABAQUS software) is used to generate the frequency results of the UHPFRC communication tower to develop an SHM system based on the AdaBoost, Bagging, and RUSBoost algorithms for damage detection of UHPFRC communication tower.
3. Different damage scenarios are created using the FE method. These damages consist of removing bolts, vertical cracks and horizontal cracks.
4. Experimental modal analysis using the impact hammer test is conducted to test the UHPFRC tower with 30m height in a healthy condition to verify and validate the FE method and the proposed system.
5. Two case studies that involve UHPFRC tower segments 1–2 and 2–3 are considered to validate the proposed model under healthy and damage conditions by using a dynamic actuator. The FE method and experimental modal analysis are applied.
6. The particle swarm optimization (PSO) method is implemented for the optimization correlation factor.
The present study has the following limitations:

1- The large size of the communication tower reduces the experimental testing for the full-scale UHPFRC communication tower.
2- The UHPFC material is considered.
3- The hollow circular tower is considered.

1.6 Organization

Chapter 1 highlights the importance and the definition of the problem chosen for the present investigation along with the objectives and scope of the study.

Chapter 2 introduces a review of health monitoring system, background of the theories of damage detection technique in frequency domain for communication tower and different other structures.

Chapter 3 presents the development procedure of 3D nonlinear communication tower, testing method with experimental set up in the performing procedure through experimental modal analysis (EMA), development of hybrid learning algorithm for damage detection of UHPFRC communication based on Adaptive boosting, Bagging and RUSBoost algorithm through frequency domain and development correlation factor of frequency for damage UHPFRC communication tower, different parametric study has been investigated.

Chapter 4 discuss FE results and experimental results for UHPFRC communication tower in frequency domain as been presented in this chapter, also, the application of the developed Hybrid learning algorithm to structural damage identification in the UHPFRC communication tower has been presented and verified through constructing two of tower segments (1-2 and 2-3). Then, the developed correlation factor of frequency for damage UHPFRC communication tower has been presented. Besides, the parametric study results has been carried out.

Chapter 5 presents the conclusion drawn from this study with the suggestion for the further research in this area.
REFERENCES

BSI, L., and BS, P. 116, 1983, ''. *Method for Determination of Compressive Strength of Concrete Cubes*

192

Cantieni, R. Dams. *Encyclopedia of Structural Health Monitoring*

Kaynardağ, K., and Soyöz, S. STRUCTURAL HEALTH MONITORING OF A TALL BUILDING.

