UNIVERSITI PUTRA MALAYSIA

EFFECTIVENESS OF AN EDUCATION INTERVENTION ON HEPATITIS C TREATMENT ADHERENCE AMONG LIBYAN PATIENTS IN A MEDICAL CENTER IN TRIPOLI

SAMIA IBRAHIM MOHAMED ADAM

FPSK(P) 2018 27
EFFECTIVENESS OF AN EDUCATION INTERVENTION ON HEPATITIS C TREATMENT ADHERENCE AMONG LIBYAN PATIENTS IN A MEDICAL CENTER IN TRIPOLI

By

SAMIA IBRAHIM MOHAMED ADAM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

May 2018
DEDICATION

This thesis dedicated to my parents, Mr. Ibrahim Mohamed Adam and Mrs. Mabaroka Mansour Hasan. To my husband, children, siblings, and friends. They all gave me continuous support and inspired me to be optimistic and successful.
EFFECTIVENESS OF AN EDUCATION INTERVENTION ON HEPATITIS C TREATMENT ADHERENCE AMONG LIBYAN PATIENTS IN A MEDICAL CENTER IN TRIPOLI

By

SAMIA IBRAHIM MOHAMED ADAM

May 2018

Chairman: Salmiah Md. Said, MBBS, MComMed
Faculty: Medicine and Health Sciences

Hepatitis C infection is a communicable disease caused by hepatitis C virus (HCV). The standard treatment of HCV infection is a combination of Ribavirin (RBV) and Pegylated interferon (PegIFN) for six months or one year. The long duration and the side effects of dual treatment have an enormous impact on patients’ treatment adherence and health-related quality of life (HRQL). This study aims to evaluate the effectiveness of an education intervention to improve treatment adherence as its primary outcome and to improve secondary outcomes including knowledge, general self-efficacy (GSE), virological response, physical components score (PCS), and mental components score (MCS) of HRQL.

A single-blind, randomized controlled trial was conducted among 103 patients in Tripoli Medical Center, Libya. The patients who were undergoing treatment with PegIFN and RBV randomly allocated by concealment block randomization, 51 patients to the intervention group and 52 patients to the control group. The intervention group received educational material consisted of a one-day session of PowerPoint presentation, booklet, discussion, and demonstration of PegIFN injection and muscle exercise. The control group received the same educational material at the end of the study. Reliable and valid Arabic questionnaires were used to collect the data at baseline, 3-months, and 6-months post-intervention. The questionnaires were collected information about socio-demographic factors, treatment adherence, knowledge of HCV, self-efficacy, HRQL, and social support. The data was analyzed using SPSS version 22. Generalized Estimating Equation (GEE) was applied to assess the effectiveness of the educational intervention.

The findings showed no significant difference between the intervention group and the control group at baseline regarding the primary outcome, secondary outcomes, sociodemographic, social support, and medical history variables. Post-intervention, the
GEE results (between the groups) demonstrated significantly higher changes in RBV, PegIFN, and total treatment adherence for the intervention group than the control group. The adjusted odds ratio (AOR) for RBV, PegIFN, and total treatment adherence were 2.639 (95% CI: 1.305, 5.335), 2.458 (95% CI: 1.175, 5.144), and 3.234 (95% CI: 1.621, 6.452), respectively. However, there were no significant changes within the intervention group over time.

For secondary outcomes, the GEE results between the groups (overall from baseline to 6-months) showed significantly higher changes for the intervention group than the control group, such as: for a virologic response, the AOR was 2.473 (95% CI: 1.111, 5.505). For hepatitis C knowledge, the AOR was 4.894 (95% CI: 2.842, 8.429). The AOR of GSE was 3.661 (95% CI: 1.233, 10.873). For PCS and MCS of HRQL, the AOR was 15.642 (95% of CI: 4.786, 51.118) and 25.662 (95% CI: 5.514, 119.434), respectively. The GEE results within the intervention group revealed significant changes (p<0.001) for the virologic response, hepatitis C knowledge, and GSE at 3-months and 6-months, but for MCS at 3-month only. These results provide evidence of the effectiveness of the educational intervention to sustain treatment adherence and HRQL and to improve HCV knowledge and self-efficacy.

Keywords: Hepatitis C, treatment adherence, randomized controlled trial, education intervention, Tripoli Medical Center
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KEBERKESANAN INTERVENSI PENDIDIKAN TERHADAP KEPATUHAN RAWATAN HEPATITIS C DALAM KALANGAN PESAKIT LIBYA DI SEBUAH PUSAT PERUBATAN TRIPOLI

Oleh

SAMIA IBRAHIM MOHAMED ADAM

Mei 2018

Fakulti: Perubatan dan Sains Kesihatan

Hepatitis C adalah satu penyakit berjangkit yang disebabkan oleh virus hepatitis C (HCV). Rawatan standard bagi jangkitan ini adalah gabungan Ribavirin (RBV) dan Pegylated interferon (PegIFN) untuk 6 bulan atau satu tahun. Tempoh rawatan yang lama dan kesan sampingannya memberikan impak yang besar terhadap kepatuhan rawatan pesakit dan kualiti kehidupan berkaitan dengan kesihatan (HRQL). Objektif kajian ini adalah untuk menilai keberkesanan intervensi pendidikan bagi mempertingkatkan kepatuhan rawatan sebagai hasil utama, dan mempertingkatkan hasil sekunder yang meliputi pengetahuan, keberkesanan efikasi-kendiri umum (GSE), tindakbalas virologi, skor komponen fizikal (PCS) dan skor komponen mental (MCS) bagi HRQL.

Hasil kajian menunjukkan tidak terdapat perbezaan yang signifikan di antara kumpulan intervensi dan kumpulan kawalan di permulaan berkenan hasil utama, hasil sekunder,
pemboleh-ubah sosio-demografi, sokongan sosial, dan sejarah perubatan. Selepas intervensi, keputusan GEE (di antara kumpulan) menunjukkan perubahan signifikan yang lebih tinggi bagi RBV, PegIFN dan keseluruhan kepatuhan rawatan bagi kumpulan intervensi berbanding kumpulan kawalan. Nisbah odd terlaras (AOR) untuk RBV, PegIFN dan keseluruhan kepatuhan rawatan adalah 2.639 (95% CI: 1.305, 5.335), 2.458(95% CI: 1.175, 5.144), dan 3.234 (95% CI: 1.621, 6.452) mengikut urutan. Bagaimanapun, tiada perubahan yang signifikan dalam kumpulan intervensi dari masa ke masa.

Untuk hasil sekunder, keputusan GEE diantara kumpulan (keseluruhan dari permulaan hingga 6 bulan) menunjukkan perubahan signifikan yang lebih tinggi bagi kumpulan intervensi berbanding kumpulan kawalan, seperti: untuk tindak balas virologi, AOR adalah 2.473 (95% CI: 1.111, 5.505). Untuk pengetahuan tentang hepatitis C, AOR adalah 4.894 (95% CI: 2.842, 8.429). AOR bagi GSE adalah 3.661 (95% CI: 1.233, 10.873). Bagi PCS dan MCS HRQL, AOR adalah 15.642 (95% of CI: 4.786, 51.118) dan 25.662 (95% CI: 5.514, 119.434). Keputusan GEE dalam kumpulan intervensi dan kumpulan kawalan menunjukkan perubahan yang signifikan (p<0.001) untuk tindakbalas virologi, pengetahuan hepatitis C, dan GSE pada 3-bulan dan 6-bulan, tetapi untuk MCS pada 3-bulan sahaja. Keputusan-keputusan ini memberikan bukti keberkesanan intervensi pendidikan untuk mengekalkan kepatuhan rawatan dan HRQL dan untuk meningkatkan pengetahuan HCV dan efikasi kendiri.

Kata kunci: Hepatitis C, pematuhan rawatan, percubaan terkawal rawak, campur tangan pendidikan, Pusat Perubatan Tripoli.
ACKNOWLEDGEMENTS

First and foremost, all praises to Allah the Almighty for giving me the strength and greatest courage to complete this thesis. I would like to express my sincere gratitude to my supervisor Dr. Salmiah Md. Said for her continuous support, for her patience, motivation, and immense knowledge. Her guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my Ph.D. study.

Besides my advisor, I would like to thank the rest of my supervisory committee: Dr. Bahariah Khalid, Dr. Hayati Binti Kadir @ Shahar, Professor Dr. Mohamed Ali Daw, and Professor Maimunah Ismail for their insightful comments and encouragement. My sincere thanks also go to the Head of Infectious and Gastroenterology Department and my friends and colleagues in Tripoli Medical Centre, in Libya for all their support and help during the data collection. Special thanks to all patients for their cooperation and willingness to participate in the study.

Last but not the least, I would like to thank my parents, siblings, children, and friends for their moral support during my study. To my lovely son, “Mahmud” thank you for inspired me to be stronger in your special way.
I certify that a Thesis Examination Committee has met on 24 May 2018 to conduct the final examination of Samia Ibrahim Mohamed Adam on her thesis entitled "Effectiveness of an Education Intervention on Hepatitis C Treatment Adherence among Libyan Patients in a Medical Center in Tripoli" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Titi Rahmawati binti Hamedon, M Com Hlth
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Hejar binti Abd. Rahman, M Com Hlth
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Sherina binti Mohd Sidik, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Sunee Lagampan, PhD
Associate Professor
Mahidol University
Thailand
(External Examiner)

\[signature\]

RUSLI HAJI ABDULLAH, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 30 July 2018
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Salmiah Md. Said, MComMed
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Hayati Binti Kadir @ Shahar, M Com Hlth
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Bahariah Khalid, M Med
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Maimunah Ismail, PhD
Professor
Faculty of Educational Studies
Universiti Putra Malaysia
(Member)

Mohamed Ali Daw, Pharm D., PhD
Professor
Faculty of Medicine and Health Sciences
Tripoli University, Libya
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations, and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: __________________

Name and Matric No.: Samia Ibrahim Mohamed Adam GS36347
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __
Name of Chairman of Supervisory Committee: Dr. Salmiah Md. Said

Signature: __
Name of Member of Supervisory Committee: Dr. Hayati Binti Kadir @ Shahar

Signature: __
Name of Member of Supervisory Committee: Professor Dr. Bahariah Khalid

Signature: __
Name of Member of Supervisory Committee: Professor Maimunah Ismail

Signature: __
Name of Member of Supervisory Committee: Professor Dr. Mohamed Ali Daw
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td></td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Problem Statements</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Significance of Study</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Research Questions</td>
<td>5</td>
</tr>
<tr>
<td>1.5 Research Objectives</td>
<td>6</td>
</tr>
<tr>
<td>1.5.1 General Objective</td>
<td>6</td>
</tr>
<tr>
<td>1.5.2 Specific Objectives</td>
<td>6</td>
</tr>
<tr>
<td>1.6 Hypothesis of the Study</td>
<td>7</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>8</td>
</tr>
<tr>
<td>LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1 Epidemiology of HCV Infection</td>
<td>8</td>
</tr>
<tr>
<td>2.2 Natural History of Hepatitis C Virus</td>
<td>10</td>
</tr>
<tr>
<td>2.3 Hepatitis C Virus Genotypes</td>
<td>10</td>
</tr>
<tr>
<td>2.4 Diagnosis and Staging of Liver Fibrosis</td>
<td>11</td>
</tr>
<tr>
<td>2.4.1 Histological Diagnosis by Biopsy</td>
<td>11</td>
</tr>
<tr>
<td>2.4.2 Blood Tests to Diagnose Liver Fibrosis</td>
<td>12</td>
</tr>
<tr>
<td>2.4.3 Medical Imagery Diagnosis</td>
<td>12</td>
</tr>
<tr>
<td>2.5 Hepatitis C Treatment and Virologic Response</td>
<td>12</td>
</tr>
<tr>
<td>2.6 Adherence to HCV Treatment</td>
<td>15</td>
</tr>
<tr>
<td>2.6.1 Measurement Methods of HCV Treatment Adherence</td>
<td>15</td>
</tr>
<tr>
<td>2.6.2 Reasons for Non-adherence to HCV Treatment</td>
<td>16</td>
</tr>
<tr>
<td>2.6.3 Predictors of Non-adherence to HCV Treatment</td>
<td>17</td>
</tr>
<tr>
<td>2.7 Interventions for Improving Adherence to HCV Treatment</td>
<td>21</td>
</tr>
<tr>
<td>2.7.1 Patient-level Interventions</td>
<td>21</td>
</tr>
<tr>
<td>2.7.2 Conditions or Adverse-events Management Interventions</td>
<td>21</td>
</tr>
<tr>
<td>2.7.3 Healthcare System-level Interventions</td>
<td>22</td>
</tr>
<tr>
<td>2.7.4 Therapy-related Interventions</td>
<td>22</td>
</tr>
<tr>
<td>2.7.5 Social and Economic Interventions</td>
<td>22</td>
</tr>
<tr>
<td>2.8 Effectiveness of Health Educational Intervention to Improve Treatment Adherence</td>
<td>23</td>
</tr>
<tr>
<td>2.9 Effectiveness of Health Educational Intervention to Improve Virological Response</td>
<td>25</td>
</tr>
<tr>
<td>2.10 Effectiveness of Health Educational Intervention to Improve Knowledge of HCV</td>
<td>26</td>
</tr>
</tbody>
</table>
2.11 Effectiveness of Health Educational Intervention to Improve Self-efficacy 29
2.12 Quality of Life of Hepatitis C Patients 30
 2.12.1 Background 30
 2.12.2 Effectiveness of Health Educational Intervention to Improve HRQL 32
2.13 Social Cognitive Theory (Bandura) 33
 2.13.1 Background 33
 2.13.2 The Main Concepts of Social Cognitive Theory 34
 2.13.3 Applications of Social Cognitive Theory 36
2.14 Conceptual Framework 37

3 METHODOLOGY 40
3.1 Study Location 40
3.2 Study Design 41
3.3 Study Duration 41
3.4 Sampling 41
 3.4.1 Sampling Population 41
 3.4.2 Sampling Frame 42
 3.4.3 Sampling Unit 42
 3.4.4 Selection Criteria 42
 3.4.5 Sample Size 43
3.5 Recruitment 44
3.6 Randomization and Concealment Allocation 44
3.7 Intervention Strategies 46
 3.7.1 Development of the Intervention 46
 3.7.2 Implementation of the Educational Intervention 47
 3.7.3 Evaluation of the Educational Intervention 47
 3.7.4 Contamination Issue 48
3.8 Data Collection Technique 48
3.9 Study Instruments 50
 3.9.1 Part I: Personal Information 50
 3.9.2 Part II: Adherence Questionnaire 50
 3.9.3 Part III: Hepatitis C Knowledge Scale 51
 3.9.4 Part IV: General Self-efficacy Scale 51
 3.9.5 Part V: Health-related Quality of Life Questionnaire (SF-36v2) 51
 3.9.6 Part VI: Social Support Questionnaire 6 (SSQ6) 52
 3.9.7 Checklist of Patient Medical History 52
3.10 Quality Control of Study Instruments 52
 3.10.1 Translation of the Questionnaires 52
 3.10.2 Validity of the Study Questionnaire 53
 3.10.3 Internal Consistency Reliability 57
 3.10.4 Content and Face Validity of the Intervention 58
3.11 Study Variables and Operational Definition 58
 3.11.1 Primary Outcome Variable 58
 3.11.2 Secondary Outcome Variables 59
 3.11.3 Independent Variables 60
3.12 Data Analysis 61
3.13 Strategy of Data Analysis 62
 3.13.1 Intention to Treat Analysis 62
3.13.2 Method of Handling Missing Data 62
3.14 Research Ethics 63

4 RESULTS 64
4.1 Response Rates 64
4.2 Data Distribution 65
4.3 Characteristics of Total Sample at Baseline 66
 4.3.1 Characteristics of Sociodemographic and Social Support at Baseline 66
 4.3.2 Characteristics of Medical History at Baseline 66
 4.3.3 Characteristics of Outcome Variables at Baseline 67
4.4 Comparisons of the Patients in Intervention and Control Group at Baseline 68
 4.4.1 Comparisons of Socio-demographic Factors and Social Support in the Intervention and Control Groups at Baseline 68
 4.4.2 Comparisons of Medical History Factors in the Intervention and Control Groups at Baseline 69
4.5 Comparisons of Outcome Variables in the Intervention and Control Groups at Baseline 70
4.6 The Change of Outcome Variables between Intervention and Control groups at 3-Months 71
4.7 The Changes in Outcome Variables between the Intervention and Control groups at 6-Month 72
4.8 Changes in the Primary Outcome within Intervention and Control Groups Over Times 73
4.9 Changes in the Secondary Outcome Variables within the Intervention and Control groups Over Time 75
 4.9.1 Changes in the Frequency of Virological Response within Intervention and Control Groups Over Time 75
 4.9.2 Changes in Mean Score of Hepatitis C Knowledge within Intervention and Control groups Over Time 76
 4.9.3 Changes in General Self-Efficacy Mean Score within the Intervention and Control groups Over Time 77
 4.9.4 Changes in the Mean Score of PCS of HRQL within the Intervention and Control groups Over Time 78
 4.9.5 Changes in the Mean Score of MCS of HRQL within the Intervention and Control groups Over Time 78
4.10 Generalized Estimated Equation (GEE) to Measure the Changes of Primary Outcome between and within the Intervention and Control Groups over time 79
 4.10.1 Generalized Estimated Equation (GEE) to Measure the Changes of RBV Treatment Adherence between and within the Intervention and Control Groups over time 79
 4.10.2 Generalized Estimated Equation (GEE) to Measure the Changes of PegIFN Treatment Adherence between and within Intervention and Control Groups over time 81
 4.10.3 Generalized Estimated Equation (GEE) to Measure the Changes in Total Treatment Adherence between and within the Intervention and Control Groups over time 83
and within Intervention and Control Groups over time

4.11 Generalized Estimated Equation (GEE) to Measure the Changes of Secondary Outcome Variables between and within Intervention and Control Groups over time

4.11.1 GEE to Measure the Changes of Virological Response Between and Within Intervention and Control Groups Over Time

4.11.2 GEE to Measure the Changes of Hepatitis C Knowledge between and within Intervention and Control Groups over time

4.11.3 GEE to Measure Changes of General self-efficacy (GSE) Between and Within Intervention and Control Groups Over Time

4.11.4 GEE to Measure the Changes in Physical component score (PCS) Between and Within Intervention and Control Groups over time

4.11.5 GEE to Measure the Changes in Mental component score (MCS) Between and Within Intervention and Control Groups Over Time

5 DISCUSSION

5.1 Baseline Data on Socio-demographic Variables and Social Support 98

5.2 Baseline Data on Medical History Factors 98

5.3 Effect of Education Intervention on Hepatitis C Treatment Adherence 99

5.4 Effect of Intervention on Virologic Response 101

5.5 Effect of Educational Intervention on Hepatitis C Knowledge 103

5.6 Effect of Intervention on General Self-Efficacy 104

5.7 Effect of Intervention on Health-Related Quality of Life (HRQL) 105

6 SUMMARY, CONCLUSION, AND RECOMMENDATIONS FOR FUTURE RESEARCH

6.1 Summary 107

6.2 Conclusion 107

6.3 Strengths of the Study 108

6.4 Limitation of the Study 108

6.5 Recommendation 109

REFERENCES 110

APPENDICES 123

BIODATA OF STUDENT 190

LIST OF PUBLICATIONS 191
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Categorization of Arabic countries according to prevalence of hepatitis C</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>First line treatment recommendations for HCV treatment</td>
<td>13</td>
</tr>
<tr>
<td>3.1</td>
<td>Sample size calculation</td>
<td>43</td>
</tr>
<tr>
<td>3.2</td>
<td>Outline of hepatitis C education intervention</td>
<td>48</td>
</tr>
<tr>
<td>3.3</td>
<td>Information collected at three-time points</td>
<td>49</td>
</tr>
<tr>
<td>3.4</td>
<td>Summary results of exploratory factor analysis of study instruments</td>
<td>55</td>
</tr>
<tr>
<td>3.5</td>
<td>Summary results of internal consistency reliability of study instruments</td>
<td>57</td>
</tr>
<tr>
<td>4.1(a)</td>
<td>Characteristics of sociodemographic and social support at baseline</td>
<td>66</td>
</tr>
<tr>
<td>4.1(b)</td>
<td>Characteristics of medical history at baseline</td>
<td>67</td>
</tr>
<tr>
<td>4.1(c)</td>
<td>Characteristics of outcome variables at baseline</td>
<td>68</td>
</tr>
<tr>
<td>4.2(a)</td>
<td>Characteristics of socio-demographic factors and social support in the intervention and control groups at baseline</td>
<td>68</td>
</tr>
<tr>
<td>4.2(b)</td>
<td>Characteristics of medical history factors in the intervention and control groups at baseline</td>
<td>69</td>
</tr>
<tr>
<td>4.2(c)</td>
<td>Comparison of outcome variables in the intervention and control groups at baseline</td>
<td>70</td>
</tr>
<tr>
<td>4.3</td>
<td>Comparison of outcome variables between the intervention and control groups at 3-months</td>
<td>71</td>
</tr>
<tr>
<td>4.4</td>
<td>Comparison of outcome variables between the intervention and control groups at 6-months</td>
<td>72</td>
</tr>
<tr>
<td>4.5</td>
<td>Pairwise comparison of knowledge mean score within the intervention group over time</td>
<td>76</td>
</tr>
<tr>
<td>4.6</td>
<td>Pairwise comparison of knowledge mean score within control group over time</td>
<td>77</td>
</tr>
<tr>
<td>4.7</td>
<td>Pairwise comparison of GSE mean score within intervention group over time</td>
<td>77</td>
</tr>
<tr>
<td>4.8</td>
<td>Pairwise comparison of GSE mean score within control group over time</td>
<td>78</td>
</tr>
<tr>
<td>4.9</td>
<td>Pairwise comparison of MCS mean score within intervention group over time</td>
<td>79</td>
</tr>
<tr>
<td>4.10</td>
<td>The overall result of GEE for RBV treatment adherence</td>
<td>80</td>
</tr>
<tr>
<td>4.11</td>
<td>GEE for RBV treatment adherence between and within intervention and control groups over time</td>
<td>80</td>
</tr>
<tr>
<td>4.12</td>
<td>GEE for RBV treatment adherence between and within intervention and control groups over time after adjusting other variables</td>
<td>81</td>
</tr>
<tr>
<td>4.13</td>
<td>The overall result of GEE for PegIFN treatment adherence</td>
<td>81</td>
</tr>
<tr>
<td>4.14</td>
<td>GEE for PegIFN treatment adherence between and within intervention and control groups over time</td>
<td>82</td>
</tr>
<tr>
<td>4.15</td>
<td>GEE for PegIFN treatment adherence between and within intervention and control groups over time after adjusting other variables</td>
<td>82</td>
</tr>
<tr>
<td>4.16</td>
<td>The overall result of GEE for total treatment adherence</td>
<td>83</td>
</tr>
<tr>
<td>4.17</td>
<td>GEE for total treatment adherence between and within intervention and control groups over time</td>
<td>83</td>
</tr>
<tr>
<td>4.18</td>
<td>GEE for total treatment adherence between and within intervention and control groups over time after adjusting other variables</td>
<td>84</td>
</tr>
<tr>
<td>4.19</td>
<td>The overall result of GEE for the virological response</td>
<td>85</td>
</tr>
<tr>
<td>4.20</td>
<td>GEE for virological response between and within intervention and control groups over time</td>
<td>85</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.21</td>
<td>GEE for virological response between and within intervention and control groups over time after adjusting other variables</td>
<td>86</td>
</tr>
<tr>
<td>4.22</td>
<td>The overall result of GEE knowledge of hepatitis C</td>
<td>87</td>
</tr>
<tr>
<td>4.23</td>
<td>GEE for hepatitis C knowledge between and within intervention and control groups over time</td>
<td>87</td>
</tr>
<tr>
<td>4.24</td>
<td>GEE for hepatitis C knowledge between and within intervention and control groups over time after adjusting other variables</td>
<td>88</td>
</tr>
<tr>
<td>4.25</td>
<td>Pairwise Comparison of group⁎time over time for hepatitis C knowledge</td>
<td>89</td>
</tr>
<tr>
<td>4.26</td>
<td>The overall result of GEE for GSE</td>
<td>90</td>
</tr>
<tr>
<td>4.27</td>
<td>GEE for GSE between and within intervention and control groups over time</td>
<td>90</td>
</tr>
<tr>
<td>4.28</td>
<td>GEE for GSE between and within intervention and control groups over time after adjusting other variables</td>
<td>91</td>
</tr>
<tr>
<td>4.29</td>
<td>Pairwise Comparison of group⁎time over time for GSE</td>
<td>91</td>
</tr>
<tr>
<td>4.30</td>
<td>The overall result of GEE for PCS</td>
<td>92</td>
</tr>
<tr>
<td>4.31</td>
<td>GEE for PCS between and within intervention and control groups over time</td>
<td>93</td>
</tr>
<tr>
<td>4.32</td>
<td>GEE for PCS between and within intervention and control groups over time after adjusting other variables</td>
<td>93</td>
</tr>
<tr>
<td>4.33</td>
<td>Pairwise Comparison of group⁎time over time for PCS</td>
<td>94</td>
</tr>
<tr>
<td>4.34</td>
<td>The overall result of GEE for MCS</td>
<td>95</td>
</tr>
<tr>
<td>4.35</td>
<td>GEE for MCS between and within intervention and control groups over time</td>
<td>95</td>
</tr>
<tr>
<td>4.36</td>
<td>GEE for MCS between and within intervention and control groups over time after adjusting other variables</td>
<td>96</td>
</tr>
<tr>
<td>4.37</td>
<td>Pairwise comparison of group⁎time over time for MCS</td>
<td>97</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Bandura’s Triadic Reciprocal determinism</td>
<td>34</td>
</tr>
<tr>
<td>2.2</td>
<td>Conceptual framework of the effectiveness of educational intervention</td>
<td>39</td>
</tr>
<tr>
<td>3.1</td>
<td>Libya map (Source: Google maps)</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>Flow chart of study design and outcome evaluation</td>
<td>45</td>
</tr>
<tr>
<td>4.1</td>
<td>Flow chart of the response rate of the study</td>
<td>65</td>
</tr>
<tr>
<td>4.2(a)</td>
<td>RBV treatment adherence frequency</td>
<td>73</td>
</tr>
<tr>
<td>4.2(b)</td>
<td>PegIFN treatment adherence frequency</td>
<td>74</td>
</tr>
<tr>
<td>4.2(c)</td>
<td>Total treatment (RBV and PegIFN) adherence frequency</td>
<td>74</td>
</tr>
<tr>
<td>4.3</td>
<td>Virologic response frequency</td>
<td>75</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS / NOTATIONS / GLOSSARY OF TERMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤</td>
<td>Less than or equals to</td>
</tr>
<tr>
<td>≥</td>
<td>Greater than or equals to</td>
</tr>
<tr>
<td>AOR</td>
<td>Adjusted Odds Ratio</td>
</tr>
<tr>
<td>CBT</td>
<td>Cognitive Behavioral Therapy</td>
</tr>
<tr>
<td>CHC</td>
<td>Chronic Hepatitis C</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence Interval</td>
</tr>
<tr>
<td>DAAs</td>
<td>Direct-Acting Antivirals</td>
</tr>
<tr>
<td>EoTR</td>
<td>End-of-Treatment virological Response</td>
</tr>
<tr>
<td>EVR</td>
<td>Early Virological Response</td>
</tr>
<tr>
<td>GEE</td>
<td>Generalized Estimated Equation</td>
</tr>
<tr>
<td>GSE</td>
<td>General Self-Efficacy</td>
</tr>
<tr>
<td>HBM</td>
<td>Health Beliefs Model</td>
</tr>
<tr>
<td>HCV</td>
<td>Hepatitis C Virus</td>
</tr>
<tr>
<td>HRQL</td>
<td>Health-Related Quality of Life</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>KMO</td>
<td>Kaiser-Meyer-Olkin</td>
</tr>
<tr>
<td>MCS</td>
<td>Mental Components Score</td>
</tr>
<tr>
<td>MEMS</td>
<td>Medication Events Monitoring System</td>
</tr>
<tr>
<td>MSP</td>
<td>Multidisciplinary Support Program</td>
</tr>
<tr>
<td>OR</td>
<td>Odds Ratio</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PCS</td>
<td>Physical Components Score</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>PegIFN</td>
<td>Pegylated Interferon</td>
</tr>
<tr>
<td>RBV</td>
<td>Ribavirin</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomized Controlled Trial</td>
</tr>
<tr>
<td>RVR</td>
<td>Rapid Virological Response</td>
</tr>
<tr>
<td>SCT</td>
<td>Social Cognitive Theory</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for the Social Science</td>
</tr>
<tr>
<td>SSQ6</td>
<td>Social Support Questionnaire-6</td>
</tr>
<tr>
<td>SVR</td>
<td>Sustained Virological Response</td>
</tr>
<tr>
<td>TMC</td>
<td>Tripoli Medical Center</td>
</tr>
<tr>
<td>USA</td>
<td>United States America</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

This chapter discusses background information on hepatitis C infection, the problem statement, significance of the study, research question, objectives, and the hypothesis of the study.

1.1 Background

Hepatitis C virus (HCV), discovered in 1989, is non-A and non-B hepatitis infection (Choo et al., 1989, 2002, in press). HCV was first believed to be an infection of minor importance, which affected drug substance abusers and blood product recipient populations in the developed nations. Later, it is recognized that HCV infection is of global importance, that has an effect on all countries (Lavanchy, 2011).

HCV infection is a public health threat that causes liver disease. In 2015, it was estimated 71 million people worldwide had chronic HCV infection (World Health Organization [WHO], 2017). According to Global Hepatitis Report of the WHO (2017), the regions most affected by HCV are the Eastern Mediterranean region with a prevalence of 2.3%, and Europe with the prevalence of 1.5%. In other WHO regions, the prevalence of HCV infection varies from 0.5% to 1.0%. In Africa, HCV chronically infected more than 28 million people (Lavanchy, 2011). The HCV prevalence among general African population varied from 0.1% to 17.5%, varying by countries. The countries with the highest prevalence were Egypt with 17.5%, Cameroon with 13.8%, and Burundi with 11.3% (Karoney & Siika, 2013).

A study of five groups from Libya reported 20.5% prevalence of HCV in patients with renal dialysis, 10.8% among patients with multiple blood transfusion, 2.0% within health care workers, 1.6% of general population, and 1.2% within blood donors (Daw et al., 2002). A national surveillance registry carried out by Daw and El-Bouzedi (2014) over 1% of the total study population (65,761 people) found 1.2% of (95% CI: 1.1-1.3) of the overall prevalence of HCV. Interestingly, there is a pattern of increment slowing once the subjects reached 30 years of age. The HCV prevalence varied from 0.7 to 0.9% for subjects less than 30 years old and 3.6% for 60 years old or above (Daw & El-Bouzedi, 2014).

WHO, in its 2003 report on medication adherence, states adherence to treatments is an essential determinant of treatment achievement. Poor adherence to the treatment limits ideal clinical benefits and subsequently reduces the general efficiency of the health system (Sabaté, 2003). Thus, non-adherence to the medication will charge more money for the treatment and increase the cost of care. According to the WHO, non-adherence to the treatment regimen is estimated to be even higher in growing nations than in
developed countries and causes critical clinical trouble in the management of patients with the long-lasting illness. The WHO clarified adherence like “the extent to which the persons’ behavior (including medication-taking) corresponds with agreed recommendations from a healthcare provider” (Sabaté, 2003).

Medication adherence is described as the extension to which patients take treatment as specified by their medical practitioners, or the number of suggested doses of medicine taken by a patient over a constant time. Many healthcare providers preferred the word “adherence,” since “compliance” indicates that the patient is directly following the physician’s instruction and the treatment plan did not rely on an agreement confirmed between the patient and the medical doctor (Lam & Fresco, 2015). The definition of adherence became regularly unclear and varied appreciably throughout studies, which made cross-study comparison challenging.

The usual treatment for chronic hepatitis C is the combination of Pegylated Interferon alfa (PegIFN-α) and Ribavirin (RBV) for 24 to 48 weeks (six months to one year) (Chung et al., 2015). Numerous studies have shown that the most identified challenges in adhering to a PegIFN and RBV treatment regimen among HCV patients were the side effects of treatment: fatigue and decline in health-related quality of life, and for effective treatment, HCV patients should remain adherent and motivated through the course of therapy (Mauss et al., 2012; Cinar, Ozdogan, & Alahdab, 2015). Some studies reported that the non-adherence to antiviral treatment and treatment discontinuation are related to a decreased probability of virological response (Reimer et al., 2013; Re III et al., 2009).

People with chronic HCV are usually asymptomatic, lack knowledge of the infection, and are hard to reach populations, such as people who inject drugs, homeless, and marginalized groups as the incarcerated. Often, the lack of awareness and knowledge about HCV in the community result in misinformation, lack of opportunities for prevention and treatment, and stigmatization of an infected person. The lacking opportunities for prevention can cause contamination of other individuals with HCV (Ibrahim & Madian, 2011; National Academies of Sciences, Engineering, & Medicine, 2016). A study displayed the importance of self-efficacy in improving treatment adherence of HCV patients. The study found a significant association (p = 0.013) between self-efficacy and non-adherence to treatment from baseline to 3-months. The risk of non-adherence was lower among patients who had higher levels of self-efficacy at baseline (Bonner, Esserman, Golin, & Evon, 2015).

1.2 Problem Statements

The non-adherence to HCV treatment is a critical public health issue that is related to high morbidity and mortality. Libya is one of the developing countries encountering the problems of non-adherence with many chronic diseases, such as chronic liver disease caused by HCV infection. A survey carried out by Daw and El-Bouzedi (2014), in Libya reported a low prevalence of HCV in the general population (1.2%). The spread of HCV is further complicated by the outflow of migrants from North and sub-Saharan
Africa where high prevalence rates of HCV exist (Daw & El-Bouzedi, 2014). Unfortunately, based on literature research, no published studies have examined the treatment adherence or non-adherence, as well as knowledge and HRQOL among HCV Libyan patients. However, there is an RCT study conducted among 372 chronic HCV Libyan patients to evaluate the role of HCV genotyping on the effectiveness of two treatment regimens (Interferon [INF] and PegIFN-based regimens). That study reported only 229 (61.6%) patients completed the treatment of both regimes (Daw, Elasifer, Dau, & Agnan, 2013). In a neighboring Egypt, a study found that men had higher levels of HCV knowledge, self-efficacy, and social support compared to women. These variables were significantly (p < 0.05) associated with high treatment adherence for men than women (Mohamed, 2017).

The side effects and complexity of treatment regimen were found to be the most common causes of non-adherence. Younossi et al. (2016) and McCombs et al. (2014) studies stated that treatment regimens with PegIFN and RBV had the worst adherence result and a higher number of side effects. These findings support the belief that significant decline in treatment adherence caused not only by treatment-associated side effects, but also the complexity of a regimen (contains more than one drug, requires modifications of behavior, requires self-injections, or last for more than three months). A cohort study found lower frequency of adherence to RBV, PegIFN, and a combination of them over the first 6-months of treatment were 46.3%, 35.4%, and 28.4%, respectively. The most common reasons for non-adherence reported by patients were the side effects of medication (Ravi, Toosi, Karimzadeh, Ahadi-Barzoki, & Khalili, 2013).

Studies have shown that adherence to HCV treatment is one of the most important predictors of effective HCV treatment and good virologic response (Re III et al., 2009; Daw et al., 2013). Re III et al. (2009) examined the relationship of adherence to a combination of HCV treatment (RBV and PegIFN) and virologic response during the first 3-months of treatment. That study found high adherence rate (≥ 80%) to PegIFN and RBV treatment was associated (p< 0.001) with the decreased load of HCV in blood and EVR (Early virological response). In Libya, Daw et al. (2013) stated that 143 HCV patients treated with PegIFN and RBV, the end-of-treatment virological response (EoTR) attained by 69% of patients. The sustained virological response (SVR) was attained by 36% of patients.

Some studies in neighbouring countries confirm the importance of educational intervention for improving treatment adherence, knowledge, self-efficacy, and HRQOL (Malky, Gahsh & Atia, 2016; Ibrahim & Madian, 2011; Curcio et al., 2010; Larrey et al., 2011; Cacoub et al., 2008). In Egypt, RCT assessed the effectiveness of educational intervention by a nurse and showed significant improvement of HCV knowledge post-intervention than before the intervention with an effect size (Cohen’s d = 0.670). The self-efficacy was improved significantly post-intervention than before the intervention with an effect size (Cohen’s d = 0.836) (Malky et al., 2016). Similarly, RCT conducted among HCV Egyptian patients reported that post-educational intervention, the intervention group had significantly better scores of HRQOL than the control group (Cohen's d = 0.876) (Ibrahim & Madian, 2011).
In France, Larrey et al. (2011) used education intervention by standardized consultation with a nurse found that adherence to HCV treatment for total patients (all genotypes) was nearly significant and better in the intervention group than in the control group. For genotype 1 and 4, the OR of total treatment adherence was 2-times significantly higher in the intervention group than in the control group, at 6-months and one-year follow-up. The OR of SVR was significantly higher in the intervention than in the control group (2.5 of 95% CI, 13-4.6) (Larrey et al., 2011).

Another study in France used education intervention by a third party: health care physician other than therapist physician, and patients received educational material documents. At 6-months, the total treatment adherence was significantly higher in the intervention group than in the control group; the AOR was 1.58 (95% CI: 1.02, 2.46; p = 0.040). The SVR was significantly higher in the intervention group than in the control group (Cacoub et al., 2008). A study used psychoeducation intervention among HCV drug addicts’ patients. The psychoeducation intervention consisted of many sessions, and the patients received printed material of the intervention during sessions. The intervention group had significantly higher treatment completion (treatment adherence), the OR was 2.82 higher in intervention with (95% CI: 1.34, 5.95, p = 0.005). The SVR was better among patients with high treatment adherence; the AOR was 35.85 (95% CI: 8.76, 146.67, p<0.001) (Reimer et al., 2013).

In Italy, a RCT study used a multidisciplinary support program (MSP) and reported that treatment adherence was significantly higher by four times in the intervention group (MSP group) than in the control group (OR was 4.385 of 95% CI: 1.156, 16.637, p = 0.034) (Curcio et al., 2010). Carrión et al. (2013) study used MSP to increase patient adherence and the efficacy of PegIFN and RBV among Spanish patients. The study reported the adherence to HCV treatment was significantly higher by five times for the intervention group than the control group (OR was 4.807 of 95% CI: 2.033, 11.367). The same study found the frequency of EoTR and SVR were significantly higher by two times for the intervention group than in the control group, the ORs were 139 of 95% CI: 1.079, 4.239 and 2.072 of 95% CI: 1.224, 3.507, respectively. Therefore, few intervention studies examined the efficiency of educational interventions to enhance treatment adherence among HCV patients. The studies of (Reimer et al., 2013; Curcio et al., 2010; Carrión et al., 2013) showed significantly higher treatment adherence for the intervention group than the control group.

Further, several studies stated interventions based on theory were found to be more effective than non-theory based interventions (Sun et al., 2012; Meyer et al., 2015). Social Cognitive Theory (SCT) is one of the recommended theories to be used to change behavior and to improve patients’ “self-efficacy” (Wood & Bandura, 1989). In addition, Bandura (2004) stated that other models of theories such as Health Belief Model (HBM) only deals with predicting health behavior while SCT offers both predicting the health behaviour and tell us how to change the behaviour. That is why this theory was chosen to be used as the guiding theoretical framework for this research study. Another theory based study used multimedia educational intervention combining both SCT and HBM. That study through increasing HCV knowledge and self-efficacy showed that the intervention was effective in reducing HCV associated risk behaviors
among drug addicts (Mayor, Fernández, Colón, Thomas, & Hunter-Mellado, 2010). Groessl et al. (2011) used self-management education program, which is primarily grounded in SCT, and it means engaging the patients in the day-to-day management of their illness by focusing on facilitating change, teach problem-solving skill instead of primarily disseminating information. That said, the self-management intervention program was efficient in increasing HRQL, knowledge of HCV, and self-efficacy for HCV patients.

While theory based interventions tend to have a higher success rate, some may argue that may not always be the case. When examining another study conducted by Ramsey et al. (2011) among drug addicts infected with HCV and subjected to antiviral treatment, it was found that after eight sessions of cognitive-behavioral intervention guided by SCT, the intervention did not result in higher antiviral treatment adherence or lower HCV RNA levels, or less depression-related antiviral treatment. That said, these results can be attributed to the small size of the study sample (29 patients only).

1.3 Significance of the Study

Current trends indicate that most of HCV patients deferred from treatment because of the adverse effects of medications. Observational and experimental studies suggested that educational intervention and multidisciplinary support treatment programs can increase treatment adherence to antiviral treatment. This study is one of the first clinical trial studies to examine education intervention based on the theory of SCT to enhance treatment adherence for HCV patients.

As there is currently no vaccine for HCV and it taking up to almost 20 years for a patient to develop severe complications, prohibiting exposure to HCV or changing people’s behavior may help decrease the burden of disease in Libya. Health education intervention is necessary for patients with hepatitis C to strengthen their self-efficacy, thus helping them in self-manage their illness, shorten the treatment side effects, and improving quality of life.

Educating patients about their treatment, treatment adverse effects, and adherence is a well-established standard of care in many countries. The educational intervention used in this research was effective in sustaining treatment adherence, HRQL, and increasing knowledge of HCV. Therefore, the intervention will be useful in Libya in preparing a patient for HCV treatment by any professionals including medical providers or mental health and social workers.

1.4 Research Questions

The research question for this study is what is the effectiveness of health education intervention on hepatitis C treatment adherence, virological response, knowledge of
HCV, self-efficacy, and HRQL among Libyan patient in Tripoli Medical Center (TMC)?

1.5 Research Objectives

1.5.1 General Objective

The general objective of this study is to develop, implement, and evaluate the effectiveness of education intervention on hepatitis C treatment adherence, virological response, knowledge of HCV, self-efficacy, and HRQL among Libyan patients in the TMC.

1.5.2 Specific Objectives

1.5.2.1 To develop, implement, and evaluate the effectiveness of education intervention on hepatitis C treatment adherence, virological response, knowledge of HCV, self-efficacy, and HRQL among Libyan patients in the TMC.

1.5.2.2 To determine and compare the proportion of HCV treatment adherence between and within the intervention group and the control group at baseline, 3-months, and 6-months, and even after adjusting socio-demographic factors, social support, and medical history factors.

1.5.2.3 To determine and compare the proportion of undetectable HC RNA (virological response) between and within the intervention group and the control group at 3-months and 6-months, and even after adjusting socio-demographic factors, social support, and medical history factors.

1.5.2.4 To determine and compare the HCV knowledge score between and within the intervention group and the control group at baseline, 3-month, and 6-month, and even after adjusting socio-demographic factors, social support, and medical history factors.

1.5.2.5 To determine and compare the self-efficacy score between and within the intervention group and the control group at baseline, 3-month, and 6-month, and even after adjusting socio-demographic factors, social support, and medical history factors.

1.5.2.6 To determine and compare the physical component score (PCS) and mental component score (MCS) of HRQL between and within the intervention group and the control group at baseline, 3-months, 6-months, and even after adjusting socio-demographic factors, social support, and medical history factors.
1.6 Hypothesis of the Study

1.6.1 There is a significant difference in the proportion of HCV treatment adherence between and within the intervention group and the control group from baseline to 3-month and 6-months, and even after adjusting other independent variables.

1.6.2 There is a significant difference in the proportion of undetectable HCV RNA (virological response) between and within the intervention group and the control group from 3-months to 6 months, and even after adjusting other independent variables.

1.6.3 There is a significant difference in the HCV knowledge score between and within the intervention group and the control group from baseline to 3-month and 6-months, and even after adjusting other independent variables.

1.6.4 There is a significant difference in the self-efficacy score between and within the intervention group and the control group from baseline to 3-month and 6-months, and even after adjusting other independent variables.

1.6.5 There is a significant difference in the PCS and MCS of HRQL between and within the intervention group and the control group from baseline to 3-month and 6-months, and even after adjusting other independent variables.
REFERENCES

113

Gupta, K., Romney, D., Briggs, M., & Benker, K. (2007). Effects of a brief educational program on knowledge and willingness to accept treatment among patients

McCombs, J., Matsuda, T., Tonnu-Mihara, I., Saab, S., Hines, P., L’Italien, G., ... Yuan, Y. (2014). The risk of long-term morbidity and mortality in patients with chronic hepatitis C: Results from an analysis of data from a Department of Veterans Affairs Clinical Registry. *JAMA Internal Medicine, 174*(2), 204-212.

