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ABSTRACT

The security of the Goldreich-Goldwasser-Halevi (GGH) cryptosystem
is relying on the Smallest-Basis Problem (SBP) and the Closest-Vector
Problem (CVP) instances. Previously, these instances were just implic-
itly mentioned and discussed without any proper definition. In this pa-
per, we explicitly defined the underlying SBP instance that arose from
the GGH cryptosystem. From that, we showed how the solution to these
problems could be obtained and how the obtained solutions could lead
to the security breach in the GGH cryptosystem. Finally, we proposed
some possible strategies for strengthening the security of the GGH cryp-
tosystem.

Keywords: GGH cryptosystem, Smallest-Basis Problem, Closest-Vector
Problem, Shortest-Vector Problem.
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1. Introduction

Lattice-based cryptography emerges as one of the high potential alterna-
tives in the post-quantum cryptography era. The construction of cryptographic
schemes based on lattice-based problems instead of the number of theoretical-
based problems makes the lattice-based cryptosystems conjectured to be un-
affected by the Shor’s quantum attack, see [Shor| (1999). In Goldreich et al.|
(1997) proposed a trapdoor one-way function, addressed as the GGH trapdoor
one-way function (Mandangan et all |2018)). The security of this function is
inspired by two lattice-based problems, namely the Smallest-Basis Problem
(SBP) and the Closest-Vector Problem (SVP). From the GGH trapdoor one-
way function, |Goldreich et al.| (1997) proposed an encryption scheme known as
the GGH cryptosystem.

The GGH cryptosystem was recognized as the first lattice-based cryptosys-
tem with a competent level of efficiency and practicality. With low-cost math-
ematical operations involving matrices and vectors, the GGH cryptosystem
offers a better efficiency level compared to the famous RSA and ElGamal cryp-
tosystems. In the security aspect, the underlying lattice-problems that arose
from the GGH cryptosystem was conjectured as invulnerable once the cryp-
tosystem is implemented in a lattice dimension of 300 and above (Goldreich,
. Although the GGH cryptosystem is broken due to the Nguyen’s
attack , some attempts for improving the security of the GGH
cryptosystem can be found in literature, for instance, [de Barros and Schechter
(2015)), Micciancio (2001), [Paeng et al.| (2003), [Sipasseuth et al.|(2019), Yoshino
land Kunihirol (2012).

Since the proposal of the GGH cryptosystem, the underlying lattice-based
problems that arose from the GGH cryptosystem were just implicitly men-
tioned and discussed. In (Mandangan et all 2018)), we defined the underlying
CVP instance as the GGH-CVP instance together with the simplified versions
of this instance that are derived by the Nguyen’s attack and
the Lee-Hahn’s attack Lee and Hahn| (2010) on it. As a continuity, we proposed
the definition for another lattice-based problem that arose from the GGH cryp-
tosystem.

In this paper, we explicitly defined the underlying SBP instance of the GGH
cryptosystem. From that, we investigated some features of this instance related
to the solution and the method for solving this instance. Finally, we proposed
some strategies for strengthening the security of the GGH cryptosystem. This
paper is arranged in the following flow.
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We provide some related mathematical background in Section [2] then fol-
lowed by a brief yet necessary introduction to the GGH cryptosystem in Section
Furthermore, we defined the underlying lattice-based problems of the GGH
cryptosystem in Section [d] Further discussion is presented in Section [5] and
conclusion remark is given in Section [6]

2. Mathematical Background

Along this paper, we standardize some mathematical notations. Firstly,
we denote m,n € N. Then, all vectors are considered as column vectors and
denoted using standard vector notation. For instance, b € R™ is a column
vector with m real entries b; € l;, forall i =1,...,m.. A set of vectors b; € R™,

—

denoted as B = {51, 527 R bn} is representable in matrix form as B € R™*"

where the vectors b; be the columns of the matrix B for all i = 1,...,n. If the
set B is linearly independent, then it can be used to span a lattice.

Definition 2.1: (Hoffstein et al., 2008) For m <n, let B = {51, 52, ceey 5n} be

the set of linearly independent vectors. The lattice L(B) = L C R™ generated
by the basis B is defined as the set of all linear combinations of the basis vectors
b1,ba, ..., b, with integer scalars, i.e.,

L(B) = {a151+a252+--~+an5n:ai eZ,Ni= 1,...,n} (1)

Based on Definition 2.1, the dimension of the lattice L(B) is dim(L(B)) =n
and the rank of the lattice L(B) is rank(L(B)) = m. If m = n, then the lattice
L(B) is referred to as a full-rank lattice. This paper is dealing only with this
kind of lattice.

Theorem 2.1: (Goodaire, [2013)). A square matriz is invertible if and only if
its columns are linearly independent.

Thus, the bases for the full-rank lattices are representable as non-singular ma-
trices. A lattice can be spanned by a more than one basis. Two different bases
are mathematically related by a unimodular matrix. The matrix U € Z"*" is
called a unimodular matrix if det(U) = £1.

Proposition 2.1: (Galbraith, [2012)). Let G, B € R"*" be two non-singular
matrices. The matrices G and B span the same lattice L C R", i.e., L(G) =
L(B) = L, if and only if G = BU where the matriz U € Z™*™ is a unimodular
malric.
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When n > 2, there are infinitely many unimodular matrices. This implies
that the lattice in n > 2 can be spanned by infinitely many bases. Normally,
these bases are classified as a good basis and a bad basis. A good basis is a
lattice basis consisting of reasonably short and slightly non-orthogonal basis
vectors. On the contrary, a lattice basis with long and highly non-orthogonal
basis vectors is classified as a bad basis. The non-orthogonality of a lattice
basis can be measured by computing the dual-orthogonality defect of the basis.

Definition 2.2: (Goldreich et al,[1997). Let G € R™*"™ with columns g1, Gz, - - -, Gn €
R™ be a basis for the lattice L C R™. The dual-orthogonal defect of the basis G
is computed as follow,

Ly 1]

dualop(G) = idet G—1] (2)

where ||Gl|| is the Euclidean norm of the i-th row vector in G~1.

To be classified as a good basis, the dual-orthogonality defect of the basis G
is required to be small, i.e, dualpp(G) is close to 1. If dualpp(G) is large and
far from 1, then the basis G is classified as a bad basis. Consider the following
definition related to successive minima of a lattice.

Definition 2.3: (Nguyen, [1999). Let L C R™ be a full-rank lattice. The i-th
minimum of the lattice L, denoted as \; (L), is the radius of the smallest sphere
centered in the origin containing i linearly independent lattice vectors.

Basically, the first minimum of the lattice £ is A; (£) = ||#%]|, where ¢} €
L is shortest non-zero vector in the lattice £ such that ||o1]| < ||| for all
i = 2,.... Most of the lattice-based problems are related to norm or distance

minimization. The most established lattice-based problems are the Smallest-
Basis Problem (SBP), Closest-Vector Problem (CVP) and the Shortest-Vector
Problem (SVP). Any variant derived from these problems are referred to as
instance.

Definition 2.4: (Goldreich et al., [1997). Let B € R™"*™ be a basis for the full-
rank lattice L C R™. Given the basis B, the Smallest Basis Problem (SBP)is to
find the smallest basis B’ for the same lattice £ where the basis B’ has a small
orthogonal defect.

Definition 2.5: (Hoffstein et al., 2008). Let £L C R™ be a full-rank lattice.
Given a basis of the lattice £ and a target vector t € R, the Closest- Vector
Problem (CVP) is to find a non-zero vector ¥ € L such that the Euclidean norm
|t — || is minimum.
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Definition 2.6: (Galbraithl 2012). Let £L C R™ be a full-rank lattice. Given a
basis for the lattice L, the Shortest- Vector Problem (SVP) is to find a non-zero
vector U € L such that the Euclidean norm ||| is minimal, i.e., ||0]| = A1 (L).

Consider a communications scenario where Bob wants to send a secret mes-
sage to Alice and they agree to use the GGH cryptosystem. The key generation,
encryption and decryption algorithms of the GGH cryptosystem are given in

3. GGH Cryptosystem

the following tables:

Table 1: Key Generation Algorithm done by Alice

Input Security parameter n.
Output | Public key (B, o,n) and private key (G, U).
Steps Generate the private basis G € R™"*".
Generate the unimodular matrix U € Z"*™.
Compute the public basis B € R**" as B = GU 1.
Determine the threshold parameter o € N.
Table 2: Encryption Algorithm done by Bob
Input Alice’s public key (B, o, n) and plaintext m € Z™.
Output | Ciphertext ¢ € R™.
Steps Generate the error vector € € {—o,+0}".
Generate the plaintext vector m € Z".
Encrypt the plaintext as ¢ = Bm + €.
Table 3: Decryption Algorithm done by Alice
Input Bob’s ciphertext ¢ € R™ and private key (G,U).
Output | Bob’s plaintext m € Z™.
Steps Compute ¥ = G~1¢C.

Round each entry x; € & to the nearest integer
|i] € Z such that |z; — |z;]| < § foralli=1,...,n.

Decrypt the ciphertext as m = U | Z|
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Consider following computation in the decryption algorithm,

Ulz] = U|G™'¢],since =G ¢

U|G~ (B + €)], since ¢ = By + €
U|G™'Bm+ G e

(UG 'Bm] +U|G €]

|B~'GG'Bm] + UG '€, since U = B~'G
= M)+ UG €]

= m+U[G €], since m € 2"

To avoid the decryption error, the selection of the threshold parameter o, which
is the entry of the error vector €, must be properly done based on the following
theorem:

Theorem 3.1: (Mandangan et al., [2018). Let G € R™*™ be the private basis
for the lattice L C R™ and p € R denotes the mazximum l1-norm of the rows
of G=Y. As long as the threshold parameter o € R satisfies 0 < ﬁ, then no
decryption error can occur.

By determining the threshold parameter o as required by Theorem 3.1, then
the condition |G~1€] = 0 can be fulfilled (Mandangan et al., 2018). Thus,

UlZ] =m+U[0] =m

which indicates that the decryption is done without error.

4. The Smallest-Basis Problem Instance

In this section, consider Eve as an unauthorized third party between the
communication of Alice and Bob. Suppose that Eve has Alice’s public key
(B,o,n) and Bob’s ciphertext ¢. To break the GGH cryptosystem, Eve aims
to recover Bob’s plaintext 1 using the available information. The security
of the GGH cryptosystem is relying on several lattice-based problems. Thus,
the most obvious way to break the security of the GGH cryptosystem is by
solving the underlying lattice-based problem instances that arose from the GGH
cryptosystem. For that purpose, Eve launches the Babai’s round-off attack and
the embedding attack. Since Eve does not has Alice’s private basis G, then she
could not perform the effective decryption as done by Alice. The only available
information to her is the public basis of B, which is a bad basis. Suppose that,
Eve proceeds to perform the decryption using the public basis B. Before that,
consider the following proposition:
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Proposition 4.1: For o € N, let ¢ = {+o}", € € {—0,+0}" and M € R™*".
If IM&] =0, then |[Mée] = 0.

Proof:
Consider the vector Md as follows,
mi1 My - Migp o o(mii+mig+---+mipn)
~ mMo1 Moz -+ Map o o (mo1+mag~+---+map)
Mo = . . ) : o=
Mp,1 Mnp2 e Mp,n g g (mn,l + My,2 +-- 4+ mn,n)

Suppose that | Md] = 0. This implies that

1
|O’ (mm +m; o+ - +mz,n)| < =

2
for all t =1,...,n. Now, consider the vector Me¢ as follows,
mi1 Mi2 . Mig +o (£o)(mig+migs+--+miy,)
. Mo1 Ma22 -+ M2y | |Xo (£0) (me1 +moo+ - +may)
Me = = .
mp,1 Mp2 - Mp,n +o (iO’) (mn,l + mn,2 + -+ mn,n)

Assume that the k-th row of the matrix M has the maximum [;-norm, i.e.,

n n
D megl > Ima
j=1 j=1
where 1 <k <nforalli=1,...,nand k # i. Consider the absolute value of

the k-th row of the vector Meé as follows,

[(£0) Mgy +mpa+ - +mpn)| = [Fol[me +me2+- +mpn

= |o(mgr+mra+---+mpn)|.

Since
1
|0’ (mi,l +mio+ -+ mz,n)| < B

foralli=1,...,n, then

1
o (M +mp2 + - M)l < 5

as well. Since o (mg1 + mi2+ -+ -+ mgy,) is the largest entry in the vector

Meé, then the absolute value of each entry of the vector Me is less than % as

well. Consequently, | Mé] = 0 and this ends the proof.
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Now, consider the following attack by Eve on the GGH cryptosystem:

Lemma 4.1: Let B € R"™*"™ be a basis for the lattice L(B) = L C R", 0 € N
be a threshold parameter, € € {—o,+0}" be an error vector and & = {+o}".
Suppose that i € R™ such that j = B~1¢. If | B~'&] =0, then |i] = m € Z".

Proof:
Note that,

g1 = [B7'¢]

= |B™ (B +@)]
= |B 'Bm+ B¢
= |m]+[B7e]

= m+ B ']

since 1 € Z"™. Suppose that, | B~'#] = 0. According to Proposition 4.1, we
have | B~'¢] = 0 as well. Therefore,

(71 = i+ (0] =
which indicates that decryption by Eve succeeds.This ends the proof.

Instead of performing decryption using the bad basis B, alternatively, Eve
could use the reduced-form of the basis B. By reducing the basis B using a
lattice-reduction algorithm, the orthogonality of the bad basis B can be im-
proved. Suppose that, Eve uses the LLL-algorithm as the lattice-reduction
tool. Then, denote the LLL-reduced form of the basis B as Bjpp; where
dualop(BLLL) < dualop(B).

Now, consider the following lemma:

Lemma 4.2: Let B € R"*" be a basis for the lattice L(B) = L CR™, B €
R™*™ be the LLL-reduced form of the basis B such that By, = BT where T €
7" js a unimodular matriz, o € N be the threshold parameter, € € {—o, +o}"
be the error vector, ¢ = {+o}" and & € R™ be the ciphertext vector such that

¢ = Bm + & where m € 7" is the plaintext vector. Suppose that Z € R™ such
that 7= By} ¢ If | By} 3] =0, then T|Z] = .

Proof:
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Note that,

T|Z] = T|Bp;,°

T|Bpp, (Biit +@)]

T\ By, B+ Bpp €]

= |TB. . Bii] +T|ByL ]

= |[B7'BrriBy Biit] + T| B €]
= M+ T|BpL.e]

= m+T|B;} e

since T = B~'By 1 and m € Z™. Suppose that, LBEELE] =0. According to
Proposition 4.1, we have LBL_iLé] = 0 as well. Therefore,

T|Z] = [+ 0] =m
which indicates that decryption by Eve succeeds.This ends the proof.

From Lemma 4.2, it can be observed that the attempt by Eve to perform
decryption using the reduced basis By, succeeds once the reduced basis By,
satisfies the condition |B}},&] = 0. This condition can be met if the reduced
basis Brrr has much shorter and more orthogonal basis vectors compared to
the original basis of B.

In other words, the reduced basis By, ;, must have a small dual-orthogonality
defect. Finding such a lattice basis is an SBP instance. Thus, we propose the
following definition for the underlying SBP instance that arose from the GGH
cryptosystem, addressed as the GGH-SBP instance.

Definition 4.1: Let B € R"*" be the basis for the lattice L(B) = L C R",
o € N be the threshold parameter and ¢ = {+0}". Suppose that the reduced
form of the basis B is denoted as Byequced Such that Byeguceq = BT where T €
7™ qs a unimodular matriz. The GGH-SBP instance is to find the reduced
basis Breduced such that dualop(Breduced) < dualop(B) and LB;elducedﬂ =0.

In Definition 4.1, we generalize the lattice-reduction algorithm to be used for
reducing the public basis of B. Eve may use any latice-reduction algorithm
such as the LLL-algorithm or any of its variants. By solving the GGH-SBP
instance, then Eve could perform effective decryption as done by Alice to obtain
the plaintext m € Z" exactly as sent by Bob to Alice.
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5. Discussion

As stated in Lemma 4.1, the computed public basis B needs to satisfy
the condition |B~'#] # 0 to avoid unauthorized decryption by Eve using the
public basis B succeeds. In the GGH key generation algorithm, Alice need
to check this condition other than ensuring that the public basis B is a bad
basis. Although Alice does not know the exact entries of the error vector
€ € {—o,+0}" generated by Bob, but Alice could check the condition since it
only involves the vector ¢ rather than the error vector é.

On the other hand, another condition that needs to be fulfilled by the pub-
lic basis B is as stated in Lemma 4.2. The computed public basis B must,
bad enough with large dual-orthogonality defect and the chosen lattice di-
mension n also must large enough. This is important for ensuring that any
lattice-reduction algorithm could not efficiently reduce the public basis of B in
reasonable amount of time. If Eve could efficiently reduce the public basis B
and the condition LBT_;MCE 201 = 0 holds, then Eve could use the reduced basis
Bieduced as good as Alice’s private basis G to perform effective decryption and
eventually break the GGH cryptosystem. These strategies can be considered
for strengthening the GGH cryptosystem and its variants.

6. Conclusion

In this paper, we explicitly defined the underling GGH-SBP instance of the
GGH cryptosystem. By properly and explicitly defining the underlying lattice
problem instances that arose from the GGH cryptosystem, more investigation
on the features and behaviors of these instances could be done thoroughly.
From that, we could discovered more strategies for strengthening the security
of the GGH cryptosystem by preventing any potential attacks related to these
instances.

Acknowledgements

The present research is partially supported by the Putra Grant with project
number GP 2017/9552200. The corresponding author also want to acknowl-
edge the Malaysian Ministry of Education and Universiti Malaysia Sabah for
financial support.

10 Malaysian Journal of Mathematical Sciences



On the Smallest-Basis Problem of the GGH Cryptosystem

References

de Barros, C. F. and Schechter, L. M. (2015). Ggh may not be dead after
all. Proceeding Series of the Brazilian Society of Computational and Applied
Mathematics, 3(1).

Galbraith, S. D. (2012). Mathematics of public key cryptography. Cambridge
University Press.

Goldreich, O., Goldwasser, S., and Halevi, S. (1997). Public-key cryptosys-
tems from lattice reduction problems. In Annual International Cryptology
Conference, pages 112-131. Springer.

Goodaire, E. G. (2013). Linear algebra: pure & applied. World Scientific
Publishing Company.

Hoffstein, J., Pipher, J., Silverman, J. H., and Silverman, J. H. (2008). An
introduction to mathematical cryptography, volume 1. Springer.

Lee, M. S. and Hahn, S. G. (2010). Cryptanalysis of the ggh cryptosystem.
Mathematics in Computer Science, 3(2):201-208.

Mandangan, A., Kamarulhaili, H., and Asbullah, M. A. (2018). On the un-
derlying hard lattice problems of ggh encryption scheme. In Cryptology and
Information Security Conference 2018, page 42.

Micciancio, D. (2001). Improving lattice based cryptosystems using the hermite
normal form. In International Cryptography and Lattices Conference, pages
126-145. Springer.

Nguyen, P. (1999). Cryptanalysis of the goldreich-goldwasser-halevi cryptosys-
tem from crypto’97. In Annual International Cryptology Conference, pages
288-304. Springer.

Paeng, S.-H., Jung, B. E., and Ha, K.-C. (2003). A lattice based public key
cryptosystem using polynomial representations. In International Workshop
on Public Key Cryptography, pages 292-308. Springer.

Shor, P. W. (1999). Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM review, 41(2):303-332.

Sipasseuth, A., Plantard, T., and Susilo, W. (2019). Enhancing goldreich,
goldwasser and halevi’s scheme with intersecting lattices. Journal of Math-
ematical Cryptology, 13(3-4):169-196.

Yoshino, M. and Kunihiro, N. (2012). Improving ggh cryptosystem for large
error vector. In 2012 International Symposium on Information Theory and
its Applications, pages 416-420. IEEE.

Malaysian Journal of Mathematical Sciences 11



	Introduction
	Mathematical Background
	GGH Cryptosystem
	The Smallest-Basis Problem Instance
	Discussion
	Conclusion

