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ABSTRACT 

In this paper, we present the absolute stability of the existing 2-point implicit block multistep 
step methods of step number k = 3 and k = 5 and solving special second order ordinary 
differential equations (ODEs). The methods are then trigonometrically fitted so that they are 
suitable for solving highly oscillatory problems arising from the special second order ODEs. 
Their explicit counterparts  are also trigonometrically fitted so that in the implementation 
the methods can act as a predictor-corrector pairs. The numerical results based on the 
integration over a large interval are given to show the performance of the proposed methods. 
From the numerical results we can conclude that the new trigonometrically-fitted methods 
are superior in terms of accuracy and execution time, compared to the existing methods 
in the scientific literature when used for solving problems which are oscillatory in nature. 

Keywords: Block method, multistep method, oscillatory problems, special second order ODEs, trigonometrically 

fitted 

INTRODUCTION

In this research, we are concerned with the numerical methods for solving special second 
order ordinary differential equation (ODE) of the form as follows:

,  ,    [1]

General second order ODE can be 
w r i t t e n  a s  ,  s p e c i a l 
second order ODE does not depend on 
the derivative of the solution. This type of 
ordinary differential equations often appear 
in many scientific areas such as mechanics, 
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astrophysics, quantum chemistry and electronics. Further details can be seen in Fang and 
Wu (2008).

The most common technique to numerically solve the second order problem is by 
reducing it to a system of first order ODEs. However it is more efficient if [1] can be solved 
directly without converting it to a system of first order ODEs. Such methods for directly 
solving the special second order ODEs are direct multistep method, Runge-Kutta-Nystrӧm 
(RKN) method and hybrid method. 

All the methods mentioned above, approximate the solution of the equation at only 
one point at a time step. Hence, to increase the efficiency of the numerical methods for 
solving ODEs, recently there is a lot of research has been done on block methods. Block 
multistep methods calculate the solutions of the ODEs at more than one point at a time, 
for example 2 point block method calculates the solution at two  points concurrently,  
hence less execution time is needed to solve the ODEs. Fatunla (1995) constructed  block 
methods for solving special second order ordinary differential equations. Then, Akinfewa 
et al.  (2015)  proposed a family of continuous third derivative block methods for numerical 
integration of first order system of ODEs. Ramos et al. (2015) developed an optimized 
two-step hybrid block method for solving general second order ODEs. 

Quite often the solution of [1] exhibits a pronounced  oscillatory character. Oscillatory 
problems are usually harder to solve than the non oscillatory problems. To obtain a more 
efficient process for solving oscillatory problems, numerical methods are constructed 
by taking into account the nature of the problem. This results in methods in which the 
coefficients  depend on the frequency of the problem to be solved. Some important classes 
of the numerical methods are exponentially fitted, trigonometrically fitted or phase-fitted 
methods.

Simos (2003) in his work, had proposed exponentially-fitted and trigonometrically-
fitted symmetric linear multistep methods for solving orbital problems. Then, Fang and 
Wu (2008)  in their research, had proposed trigonometrically fitted explicit Numerov-type 
method. Phase fitted Runge-Kutta-Nystrom method had been studied by Papadopoulos  et 
al. (2008), Ahmad et al. (2016), extended the work by developing trigonometrically-fitted 
hybrid method for solving oscillatory delay differential equations.

In the quest for methods that best approximate the solution of [ 1] which are 
oscillatory in nature, i n  this paper, we developed an efficient block multistep methods 
by trigonometrically-fitted  the methods, in which to the best of our knowledge is the first 
work on trigonometrically fitted block multistep methods for solving highly oscillatory 
problems. The coefficients of the method depend on the frequency of the problem to be 
solved, hence the frequency of the problems must be priory known. 

The research is based on the 2-point and 3-point  explicit and implicit block multistep 
methods which have been derived in Mansor et al. (2017). First, the stability aspect of 
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the 2-point and 3-point implicit block multistep methods are investigated. Then, both 
the explicit and implicit block multistep methods of step number k = 3 and k = 5, are 
trigonometrically fitted. The methods are then  implemented as  a predictor-corrector pairs. 
Numerical results of the proposed methods in the form of efficiency curves for solving 
five oscillatory problems are then presented. 

MATERIALS AND METHODS

Absolute Stability

In our previous work, see Mansor et al. (2017), we derived the 2-point and 3-point explicit 
and implicit block multistep methods of step number k = 3 and k = 5 with orders three and 
five respectively for the explicit methods and orders four and six for the implicit methods. 
Here we are going to investigate the stability of the implicit block methods.

2-point implicit  Block Methods for k = 3:
The first and second point of the implicit block methods that have been derived in 

Mansor et al.  (2017) for step number k = 3 are given as follows:

, [2]

.  [3]

The implicit 2-point block methods can be presented in the matrix form as:

   

Using the test equation  on the method, gives

.

Taking the determinant equals to zero, we have the stability polynomial 

where .
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Then, by solving the stability polynomial for values of  with , gives the absolute 
stability region of the method as shown in Figure 1, where the horizontal axis is the real 
part of  and the vertical  axis is the imaginary part of .

Figure 1. Stability region of  the 2-point implicit block multistep method for k = 3

The 2-point implicit block multistep method for k = 3, has a small region of absolute 
stability, however it is still stable and can be used to solve the special second order ODEs.

2-point Block Methods for k = 5:

 [4]

 [5]

The implicit 2-point block methods can be presented in the matrix form as: 

                         .

Substituting the test equation  into the method, gives,
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      .

Taking the determinant equals to zero, we have the stability polynomial

.

Solving the stability polynomial for values of  with , we obtained the absolute 
stability region of the method as shown in the Figure 2, where the horizontal axis is the 
real part of  and the vertical  axis is the imaginary part of .

Figure 2. Stability region of the 2-point implicit block multistep method for k = 5
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Hence we can conclude that both the k = 3 and k = 5 step implicit block multistep 
methods do have a substantial regions of absolute stability. In the next section, we will 
derive the trigonometrically ftted block methods.

Derivation of the Trigonomerically-Fitted Methods

Explicit block method for k = 3:
The first and second point of the explicit block methods that have been derived in 

Mansor et al. (2017)  for step number k = 3 are given as follows: 

 [6]

  [7]

In general form, the methods can be written as 

  [8]

  [9]

Equation  is the equation that most researchers used in 
the literature when they are dealing with oscillatory problems and trigonometric-fitting 
methods. For further details see Li et al. (2017). The method integrates exactly the 
differential equation whose solutions can be expressed  as the linear combination of

. Hence , we have

 and .

Let  and taking , this is the same approach as in Fang and Wu (2008), 
thus we have

, , and .

Substituting into [8] and [9], we obtain

,  [10]

.  [11]

Then, letting  and using the same technique, we obtain
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,   [12]

.   [13]

There are six undetermined coefficients, they are  and four 
equations to be solved. Letting  and  as free parameters where the values are obtained 

from the coefficients of the original methods ( , ) and solving equations 

[10] - [13] and rewriting in Taylor series expansion to avoid heavy cancellation in the 
implementation of the methods, we have

     ,

     ,

    ,

,

Implicit block method for k = 3:
The implicit block methods for k = 3, is given as in equations [2] and [3] in the previous 

section. In general form the equations can be written as below:

, [14]

. [15]

Substituting  and  respectively into [14] qand [15],  
resulting in,

, [16]

, [17]

,   [18]
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.  [19]

Solving equations [16 - [19] by letting  and  as the original values 

( ) and rewriting in Taylor series expansion, we have  

,

,

,

.

Explicit block methods for k = 5:
The first and second point of the explicit block methods in Mansor et. al (2017) are 

given  as follows:

 . [20]

   [21]

In general form it  can be written as 

,      [22]

.      [23]

Substitute  and  respectively into [22] and [23], gives

,  [24]

,  [25]

,       [26]

.       [27]

Then, solving equations [24] - [27] by letting  and  as the original 
values, we obtain
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,

,

,

.

Implicit block methods for k = 5:
The general form of the first and second point implicit block methods given in equations 

[4] and [5] in the previous section can be written as

,   [28]

.   [29]

Substituting  and  respectively into [28] and [29],  
resulting in

,  [30]

,  [31]

,     [32]

.        [33]

Solving equations [30] - [33] by letting  and  as the original 
values we obtained values of  and  as follows:

,

,

,
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.

RESULTS AND DISCUSSION

The proposed methods were implemented using predictor-corrector technique with only one 
iteration. The 2-point trigonometrically-fitted block explicit method for k = 3 is taken as the 
predictor equation and the 2-point trigonomerically-fitted block implicit method for k = 3 
as the corrector equation this pair is denoted as two-point trigonometrically-fitted method 
of order 4 (TF2PBM4). The same goes for k = 5, where the 2-point trigonometrically-
fitted block explicit method acts as the predictor and the  2-point trigonometrically-fitted 
block implicit method as the corrector, this pair is denoted as 2-point  trigonometrically-
fitted method of order 6 (TF2PBM6). We solved five tested problems that were obtained 
from the literature. Total time taken and maximum error would be shown in the form of 
efficiency curves.

Problem 1 [Rabiei et al., 2012]

and the fitted frequency, 𝜔=1. Exact solution is y(x)  = s in  (x) .
Problem 2 [Jikantoro et al., 2015a]

and the fitted frequency, 𝜔=10. Exact solution is .
Problem 3 [Senu et al., 2015]

and the fitted frequency, 𝜔=10. Exact solution is .
Problem 4 [Simos, 2003]

where  and the estimated frequency, 𝜔=1. Exact solutions are: 

,

.
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Problem 5 [Jikantoro et al., 2015b]

,

and the fitted frequency, 𝜔=1. Exact solutions are  
and .

The notations used are as follows:

𝜔 Frequency of the problem
h Step size 
TIME(s) Time taken to compute the method in second

MAXERR Maximum error
TF2PBM4 The fourth order trigonometrically 

fitted 2-point block multistep method derived in this paper
TF2PBM6 The sixth order trigonometrically 

fitted 2-point block multistep method derived in this paper
ETSHMs The fourth order explicit two-step hybrid method by Franco (2006).
IRKNM The fourth order improved Runge-Kutta-Nystrom method with three 

stages by Rabiei et al. (2012).
PFRKN The fourth order phase 

fitted Runge-Kutta-Nystrom method by Papadopoulos et al. (2008).
MSHMs The four-step multistep hybrid method by Li and Wang  (2016).
ETSHM6 The sixth order explicit two-step hybrid method by Franco (2006).
PFHM6 The sixth order phase 

fitted hybrid method by Senu et al. (2015).
NTM6 The sixth order explicit Numerov-type method by Tsitouras (2003).

The above methods are chosen as comparison because those are the methods usually 
used by most reserchers who are working on numerically solving oscillatory problems. 
The maximum error is defined by 

where  is the exact solution and  is the approximate solution.
Methods of the same orders or steps were compared for the integration intervals of 

[1, 1000]. for methods of order four the efficiency curves for problems 1-5 are given in 
Figures 3 -7 and for methods of order six, the efficiency curves are given in Figures 8-12.

Five tested problems have been solved using the trigonometrically fitted block methods  
TF2PBM4 and TF2PBM6 of order four and five respectively. The maximum error of the 
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Figure 3. Efficiency curves of TF2PBM4 for Problem 1 with and 

Figure 4. Efficiency curves of TF2PBM4 for Problem 2 with and 
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Figure 5. Efficiency curves of TF2PBM4 for Problem 3 with and 

Figure 6. Efficiency curves of TF2PBM4 for Problem 4 with and
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Figure 7. Efficiency curves  of TF2PBM4 for Problem 5 with and 

Figure 8. Efficiency curves of TF2PBM6 for Problem 1 with and 
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Figure 8. Efficiency curves of TF2PBM6 for Problem 1 with and 

Figure 9. Efficiency curves TF2PBM6 for Problem 2 with and 

Figure 10. Efficiency curves TF2PBM6 for Problem 3 with and 
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Figure 11. Efficiency curves TF2PBM6 for Problem 4 with and 

Figure 12. Efficiency curves  TF2PBM6 for Problem 5 with and 
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Figure 11. Efficiency curves TF2PBM6 for Problem 4 with and 

Figure 12. Efficiency curves  TF2PBM6 for Problem 5 with and 

new methods are plotted against execution time and they are compared with the existing 
methods based on the order of the methods. Based on the efficiency curves presented, for 
the fourth order methods, even though the execution time taken by MSHMs is shorter than 
TF2PBM4, TF2PBM4 gives more accurate results compared tot MSHMs. It is observed 
also that the execution time taken by TF2PBM6 is the shortest compared to the other 
methods. TF2PBM4 and TF2PBM6 have the smallest maximum error indicating that the 
new methods are more accurate compared to the existing methods. However, it can be 
observed that for certain problems, when the value of h is too small, the maximum error 
became larger as shown in Figure 9. This is because the value of H = 𝜔h will approach 
zero when the value of h is too small and hence the coefficients of the trigonometrically 
fitted methods will approach the original methods. 

CONCLUSION

In this paper, the 2-point block multistep methods that have been derived in Mansor et 
al. (2017) is shown to be absolutely stable. The methods  are trigonometrically-fitted  
so that they are suitable for solving oscillatory problems.  Codes based on the methods 
are developed using C Programming Language and are used to solve all the problems.
The numerical results are compared with the existing methods in the scientific literature 
to present the performance of the proposed methods in the form efficiency curves. In 
conclusions, the new methods are superior than the existing methods in terms of accuracy 
and execution time. Hence trigonometric-fitting approach, enhanced the performance of 
the methods when used for solving oscillatory problems.
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