UNIVERSITI PUTRA MALAYSIA

ANTIMICROBIAL SUSCEPTIBILITY PATTERN AND DISTRIBUTION OF STAPHYLOCOCCAL CASSETTE CHROMOSOME mec AMONG METHICillin-RESISTANT COAGULASE-NEGATIVE STAPHYLOCOCCI

HUDA BINTI SABER ABU BAKR SALEH

FPSK(M) 2018 30
ANTIMICROBIAL SUSCEPTIBILITY PATTERN AND DISTRIBUTION OF STAPHYLOCOCCAL CASSETTE CHROMOSOME mec AMONG METHICILLIN-RESISTANT COAGULASE-NEGATIVE STAPHYLOCOCCI

By

HUDA BINTI SABER ABU BAKR SALEH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

April 2018
All materials contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

I would like to specially dedicate this work to my beloved late father, my mother, husband and the other family members that have been motivating and supporting me from the beginning till the end of this project. I would not be this successful without their supportive souls.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the Degree of Master of Science

ANTIMICROBIAL SUSCEPTIBILITY PATTERN AND DISTRIBUTION OF STAPHYLOCOCCAL CASSETTE CHROMOSOME _mec_ AMONG METHICILLIN-RESISTANT COAGULASE-NEGATIVE STAPHYLOCOCCI

By

HUDA BINTI SABER ABU BAKR SALEH

April 2018

Chair : Rosni binti Ibrahim, MD, MPath
Faculty : Medicine and Health Sciences

Coagulase-negative staphylococci (CoNS) are notorious in causing nosocomial infections. _Staphylococcus epidermidis_ is deemed the most significant species infecting human, apart from _Staphylococcus haemolyticus_ and _Staphylococcus chromogenes_. In Malaysia, there is an increasing trend of antimicrobial resistance among CoNS whereby more than 50% has been reported as methicillin-resistant coagulase-negative staphylococci (MR-CoNS) which these organisms harbour _mecA_ gene which is acquired by a mobile genetic element in staphylococci called staphylococcal cassette chromosome _mec_ (SCC _mec_). This study aims to investigate species distribution among 100 MR-CoNS, to determine antimicrobial susceptibility pattern among the species and to detect their SCC _mec_ types.

Coagulase-negative staphylococci (CoNS) isolated from blood cultures were collected from Microbiology laboratory, Hospital Serdang in year 2016 and proceeded to phenotypic identification by gram-staining, catalase and coagulase test. Species identification was done by using API® Staph kit. Antimicrobial susceptibility testing (AST) was performed by using Kirby-Bauer method with nine antibiotic discs and was interpreted following Clinical and Laboratory Standards Institute (CLSI) 2016. Detection of SCC _mec_ was performed by using multiplex polymerase chain reaction (PCR). _Staphylococcus epidermidis_ (n=56, 56%) was the most common species isolated in this recent study, followed by _S. haemolyticus_ (n=19, 19%), _S. chromogenes_ (n=12, 12%), _Staphylococcus xylosus_ (n=6, 6%), _Staphylococcus hominis_ (n=5, 5%), _Staphylococcus capitis_ (n=1, 1%) and _Staphylococcus cohnii_ (n=1, 1%). All isolates were resistant to cefoxitin (n=100, 100%) and penicillin (n=100, 100%). More than 80% of the isolates were resistant to erythromycin and 70% were resistant to fucidic acid. All isolates were sensitive to vancomycin. A total of 54 (54%) isolates harboured SCC _mec_ type IVa (n=32, 32%) in which was widely distributed in _S. epidermidis_ (n=27, 48.2%). Fifteen (15%) isolates showed combination types which the most
common was type I & IVa (n=9, 9%) and another 31 strains (31%) were non-typeable. Type IVa was observed to have multiple antibiotic resistance with high rates of resistance towards erythromycin (n=32, 100%) followed by fucidic acid (n=25, 78.1%) and clindamycin (n=24, 75%).

In conclusion, *S. epidermidis* was the most common isolated species. Apart from penicillin, high percentages of resistance towards erythromycin and fucidic acid were observed in this recent study. This is probably due to the high usage of these antibiotics in outpatient clinical setting. Type IVa was the most detected SCCmec with multiple antibiotic resistance harbouring.

Keywords: Antimicrobial susceptibility pattern, *mec*A, MR-CoNS, SCCmec
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

CORAK KERINTANGAN ANTIMIKROB DAN TABURAN KASET KROMOSOM STAFILOKOKUS mec DI KALANGAN STAFILOKOKUS KOAGULASE-NEGATIF BERINTANGAN TERHADAP METISILIN

Oleh

HUDA BINTI SABER ABU BAKR SALEH

April 2018

Pengerusi : Rosni binti Ibrahim, MD, MPath
Fakulti : Perubatan dan Sains Kesihatan

Stafilokokus koagulase-negatif (CoNS) terkenal dalam menyebabkan jangkitan nosokomial. Di samping Staphylococcus haemolyticus dan Staphylococcus chromogenes, Staphylococcus epidermidis dikatakan sebagai spesies paling signifikan yang menjangkiti manusia, Di Malaysia, terdapat peningkatan kecenderungan kerintangan antimikrob dalam kalangan CoNS dimana lebih daripada 50% telah dilaporkan sebagai CoNS yang mempunyai kerintangan terhadap metisilin (MR-CoNS) yang mengandung gen mecA yang mengekod ‘penicillin-binding protein 2a’ (PBP2a) yang mempunyai pengikatan pertalian yang rendah kepada semua antibiotik β-lactam.

Gen tersebut diperolehi oleh elemen genetik bergerak dalam stafilokokus yang dipanggil kaset kromosom stafilokokus (SCCmec). Tujuan kajian ini adalah untuk menyiapkan taburan spesies dikalangan 100 MR-CoNS, menentukan corak kerintangan antimikrob spesies dan jenis-jenis SCCmec.

Stafilokokus koagulase-negatif (CoNS) yang telah diisolasi daripada kultur-kultur darah dikumpulkan dari makmal Mikrobiologi, Hospital Serdang dalam tahun 2016 dan diteruskan kepada pengenalpastian fenotipik menggunakan pewarnaan ‘gram’, ujian katalase dan koagulase. Pengenalpastian spesies dilakukan dengan menggunakan kit API® Staph. Ujian kerintangan antimikrob (AST) telah dijalankan menggunakan kaedah ‘Kirby-Bauer’ berserta sembilan disk antibiotik dan ditafsirkan mengikut ‘Clinical and Laboratory Standards Institute’ (CLSI) 2016. Pengesanan SCCmec dijalankan dengan menggunakan ‘multiplex polymerase chain reaction (PCR)’.

Staphylococcus epidermidis (n=56, 56%) merupakan spesies yang paling banyak diisolasi dalam kajian baru-baru ini, diikuti oleh S. haemolyticus (n=19, 19%), S. chromogenes (n=12, 12%), Staphylococcus xylosus (n=6, 6%), Staphylococcus hominis (n=5, 5%), Staphylococcus capitis (n=1, 1%) dan Staphylococcus cohnii (n=1, 1%). Semua isolat rintang kepada sefoksitin (n=100, 100%) dan penisilin (n=100, 100%). Lebih daripada 80% isolat rintang kepada eritromisin (n=87, 87%) dan 70% rintang
kepada asid fusidik. Semua isolat sensitif kepada vankomisin. Sebanyak 54 (54%) isolat mengandungi SCCmec jenis IVa (n=32, 32%) dimana ianya merupakan jenis yang paling banyak dituburkan dalam S. epidermidis (n=27, 48.2%). Lima belas (15%) isolat menunjukkan jenis kombinasi dimana jenis yang mendominasi adalah jenis I & IVa (n=9, 9%) dan 31 (31%) ‘strain’ yang lain tidak dapat dijeniskan. Jenis IVa diperhatikan mempunyai kerintangan terhadap pelbagai antibiotik dengan kadar peratusan kerintangan yang tinggi terhadap eritromisin (n=32, 100%), diikuti oleh asid fusidik (n=25, 78.1%) dan klindamisin (n=24, 75%).

Kata kunci: Corak kerintangan antibiotik, meca, MR-CoNS, SCCmec
ACKNOWLEDGEMENTS

First and foremost, all praises to ALLAH S.W.T, my one and only Creator for leading me to this challenging yet fantastic journey of research. Without His guidance, I would not be able to finish this race.

I humbly wish to express my special gratitude and endless appreciation to my supportive supervisor, DR. ROSNI IBRAHIM for piquing my interest in working with clinical isolates, and for helping me in the beginning stages of this project until its completion. Regardless her busyness, she still managed to guide me patiently and being so understanding on my hard times and problems. Not to forget my co-supervisors, DR. AZMIZA SYAWANI JASNI and DR. TENGKU ZETTY MAZTURA TENGKU JAMALUDDIN for their priceless guidance, critics, comments and motivation throughout the course of this thesis. I would also like to thank other lecturers for their encouragement, advices, and supports along the process.

I would also like to wholeheartedly acknowledge Professor Dr. Keiichi Hiramatsu and Associate Professor Dr. Yuki Uehara from Juntendo University (Tokyo), Professor Dr. Robert Daum from University of Chicago (Illinois), Professor Dr. Anders Rhod Larsen from Statens Serum Institut (Copenhagen), Professor Dr. Herminia de Lancastre from The Rockefeller Univeristy (New York) and Associate Professor Dr. Neoh Hui Min from UKM Medical Molecular Biology Institute (Kuala Lumpur) for giving permission and assistance in providing SCCmec types controls. Special thanks to Dr. Tengku Zetty Maztura Tengku Jamaluddin for helping me to obtain the controls. I would never finish my research without their assistance.

Nevertheless, huge thanks to the head of Microbiology Unit, Pathology Department of Hospital Serdang, Dr. Lailatul Akmar Mat Nor as well as other staff for their cooperation and guidance throughout a year of sample collection. I would really like to appreciate National Institutes of Health (NIH) and Medical Research and Ethics Committee (MREC) UPM for providing ethical approvals to conduct my research as well as IPS Grant numbered 9507200 for funding this project.

A bunch of thanks to my JMPP mates who have helped me a lot in understanding my project, showing me how to handle equipment in the laboratory, and willing to teach me correct methods while doing the experiments. Not forgetting, my beloved husband, fabulous mother and families for supporting and helping me in widen my knowledge on science. Last but not least, I would like to thank those from other faculties for their advices, supports, guidance and knowledge-sharing as well as who have been involved in this project directly or indirectly.
I certify that a Thesis Examination Committee has met on 17 April 2018 to conduct the final examination of Huda binti Saber Abu Bakr Saleh on her thesis entitled "Antimicrobial Susceptibility Pattern and Distribution of Staphylococcal Cassette Chromosome mec among Methicillin-Resistant Coagulase-Negative Staphylococci" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Ngah Zasmy a/l Unyah, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Niazlin binti Mohd Taib, MPath, MB Bch BAO
Senior Medical Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Neoh Hui-Min, PhD
Associate Professor
Pusat Perubatan Universiti Kebangsaan Malaysia
Malaysia
(External Examiner)

RUSLI HAJI ABDULLAH, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 30 July 2018
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Rosni binti Ibrahim, MD, MPath
Medical Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Azmiza Syawani binti Jasni, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Tengku Zetty Maztura binti Tengku Jamaluddin, MBChB, PhD
Medical Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: Huda binti Saber Abu Bakr Saleh, GS45065
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ___
Name of Chairman of Supervisory Committee: Dr. Rosni binti Ibrahim

Signature: ___
Name of Member of Supervisory Committee: Dr. Azmiza Syawani binti Jasni

Signature: ___
Name of Member of Supervisory Committee: Dr. Tengku Zetty Maztura binti Tengku Jamaluddin
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Study Background
1.2 Problem Statement
1.3 Objectives
1.3.1 General Objective
1.3.2 Specific Objectives

2 LITERATURE REVIEW

2.1 Background of Coagulase-negative Staphylococci (CoNS)
2.2 Pathogenesis and Virulence
2.2.1 mecA Gene
2.2.2 Staphylococcal Cassette Chromosome mec (SCCmec) Elements
2.3 Epidemiology and Predisposing Factors
2.4 Mode of Transmission
2.5 Clinical Infections
2.6 Mechanisms of Resistance
2.6.1 Methicillin Resistance
2.6.2 Multiple Antibiotic Resistance

3 MATERIALS AND METHODS

3.1 Study Design and Sampling Method
3.2 Inclusion and Exclusion Criteria
3.3 Sample Size
3.4 Isolates Collection and Phenotypic Approaches
3.4.1 Gram-staining
3.4.2 Catalase Test
3.4.3 Coagulase Test
3.4.4 Species Identification
3.5 Bacterial Preservation
3.6 Antimicrobial Susceptibility Testing (AST)
3.7 Genomic DNA Extraction and Gel Electrophoresis
3.8 Gene Detection via Polymerase Chain Reaction (PCR)
3.8.1 Detection of mecA Gene
3.8.2 Staphylococcal Cassette Chromosome mec (SCCmec) Typing
3.9 Sequencing

4 RESULTS AND DISCUSSION
4.1 Species Distribution among Methicillin-Resistant Coagulase-Negative Staphylococci (MR-CoNS) Isolates
4.2 Antimicrobial Susceptibility Pattern in Methicillin-Resistant Coagulase-Negative Staphylococci (MR-CoNS)
4.3 Detection of Staphylococcal Cassette Chromosome mec (SCCmec) Types
4.4 Sequencing Analysis
4.5 Antimicrobial Susceptibility Pattern among Staphylococcal Cassette Chromosome mec (SCCmec) Types

5 CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH
5.1 Conclusion
5.2 Recommendation for Future Research

REFERENCES
APPENDICES
BIODATA OF STUDENT
PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Antimicrobial agents and their respective zone diameter interpretive criteria for coagulase-negative staphylococci (CoNS)</td>
</tr>
<tr>
<td>3.2</td>
<td>Details of primers used for staphylococcal cassette chromosome mec (SCCmec) types detection</td>
</tr>
<tr>
<td>4.1</td>
<td>Species distribution among 100 methicillin-resistant coagulase-negative staphylococci (MR-CoNS) isolated from blood cultures</td>
</tr>
<tr>
<td>4.2</td>
<td>Staphylococcal cassette chromosome mec (SCCmec) types distribution among MR-CoNS species</td>
</tr>
<tr>
<td>4.3</td>
<td>Distribution of SCCmec types in MR-CoNS according to resistance pattern to antibiotics</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>A schema of species distribution among staphylococci (Adapted from Becker et al., 2014)</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Pathogenesis of staphylococcal infections (Adapted from Foster, 1996)</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Essential structure of staphylococcal cassette chromosome mec (SCCmec) elements (Adapted from IWG-SCC, 2009)</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>mecA and cassette chromosome recombinase (ccr) locations of established sequences of SCCmec type I–VIII (Adapted from IWG-SCC, 2009)</td>
<td>9</td>
</tr>
<tr>
<td>2.5</td>
<td>Indwelling medical devices-associated coagulase-negative staphylococci (CoNS) infections (Adapted from Foster, 1996)</td>
<td>11</td>
</tr>
<tr>
<td>2.6</td>
<td>Mechanisms of antibiotic resistance (Adapted from Jones, 2014)</td>
<td>14</td>
</tr>
<tr>
<td>3.1</td>
<td>Non-pigmented, opaque, smooth and glistening pure colonies of coagulase-negative staphylococci (CoNS) after grown overnight on Blood Agar (BA)</td>
<td>18</td>
</tr>
<tr>
<td>3.2</td>
<td>Purple cocci in singles, pairs, and clusters observed microscopically under 100x magnification</td>
<td>19</td>
</tr>
<tr>
<td>3.3</td>
<td>Catalase-positive (bubbles formation) indicates staphylococci</td>
<td>19</td>
</tr>
<tr>
<td>3.4</td>
<td>Non-agglutinated plasma indicates CoNS</td>
<td>20</td>
</tr>
<tr>
<td>3.5</td>
<td>Non-coagulated plasma indicates CoNS</td>
<td>21</td>
</tr>
<tr>
<td>3.6</td>
<td>Result interpretation of API Staph Kit</td>
<td>22</td>
</tr>
<tr>
<td>3.7</td>
<td>Nine antibiotic discs used. A clear zone of ≤ 21mm diameter surrounding cefoxitin (30µg) disc indicates resistance to methicillin</td>
<td>23</td>
</tr>
<tr>
<td>3.8</td>
<td>Extracted genomic DNA bands observed on 1.0% agarose gel Electrophoresis</td>
<td>25</td>
</tr>
<tr>
<td>4.1</td>
<td>Antimicrobial susceptibility pattern of methicillin-resistant coagulase-negative staphylococci (MR-CoNS) isolates</td>
<td>33</td>
</tr>
<tr>
<td>4.2</td>
<td>Detection of mecA gene via polymerase chain reaction (PCR)</td>
<td>34</td>
</tr>
</tbody>
</table>
4.3 Multiplex PCR products of staphylococcal cassette chromosome *mec* (SCC*mec*) types in control strains 36
4.4 Detection of SCC*mec* types among S1-S23 of *S.epidermidis* Strains 38
4.5 Detection of SCC*mec* types among S24-S46 of *S. epidermidis* Strain 39
4.6 Detection of SCC*mec* types among S47-S56 of *S. epidermidis* Strains 39
4.7 Homology analysis of *mecA*-representative strain 40
4.8 Homology analysis of SCC*mec* type I-representative strain 41
4.9 Homology analysis of SCC*mec* type II-representative strain 41
4.10 Homology analysis of SCC*mec* type III-representative strain 42
4.11 Homology analysis of SCC*mec* type IVa-representative strain 42
4.12 Homology analysis of SCC*mec* type IVb-representative strain 43
4.13 Homology analysis of SCC*mec* type IVh-representative strain 44
4.14 Homology analysis of SCC*mec* type V-representative strain 44
4.15 Homology analysis of SCC*mec* type VIII-representative strain 45
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADH</td>
<td>Arginine DiHydrolase</td>
</tr>
<tr>
<td>AST</td>
<td>Antimicrobial Susceptibility Testing</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>BA</td>
<td>Blood agar</td>
</tr>
<tr>
<td>bp</td>
<td>Basepair</td>
</tr>
<tr>
<td>Buffer BV</td>
<td>DNA Binding Buffer</td>
</tr>
<tr>
<td>Buffer DV</td>
<td>Phase-partition Buffer</td>
</tr>
<tr>
<td>Buffer G-A</td>
<td>Lysis Buffer</td>
</tr>
<tr>
<td>Buffer G-B</td>
<td>Protein-removal Buffer</td>
</tr>
<tr>
<td>Buffer W1</td>
<td>Wash Buffer</td>
</tr>
<tr>
<td>Buffer W2</td>
<td>Desalting Buffer</td>
</tr>
<tr>
<td>CAUTIs</td>
<td>Catheter Associated Urinary Tract Infections</td>
</tr>
<tr>
<td>ccr</td>
<td>Cassette Chromosome Recombinase</td>
</tr>
<tr>
<td>CDC</td>
<td>Centre for Disease Control and Prevention</td>
</tr>
<tr>
<td>CLI</td>
<td>Clindamycin</td>
</tr>
<tr>
<td>CLSI</td>
<td>Clinical Laboratory Standards Institute</td>
</tr>
<tr>
<td>CoNS</td>
<td>Coagulase-negative staphylococci</td>
</tr>
<tr>
<td>CRBSIs</td>
<td>Catheter-related Bloodstream Infections</td>
</tr>
<tr>
<td>CSF</td>
<td>Cerebrospinal Fluid</td>
</tr>
<tr>
<td>CVC</td>
<td>Central Nervous Catheter</td>
</tr>
<tr>
<td>dH2O</td>
<td>Distilled water</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxyribonucleotide triphosphate</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>ERM</td>
<td>Erythromycin</td>
</tr>
<tr>
<td>FA</td>
<td>Fucidic acid</td>
</tr>
<tr>
<td>O₂</td>
<td>Free Oxygen</td>
</tr>
<tr>
<td>FBRIs</td>
<td>Foreign Body-related Infections</td>
</tr>
<tr>
<td>FOX</td>
<td>Cefoxitin</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>GM</td>
<td>Gentamicin</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>HCW</td>
<td>Health Care Workers</td>
</tr>
<tr>
<td>H₂O</td>
<td>Water</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>HVS</td>
<td>High Vaginal Swab</td>
</tr>
<tr>
<td>ica</td>
<td>Intercellular Adhesion</td>
</tr>
<tr>
<td>ICUs</td>
<td>Intensive Care Units</td>
</tr>
<tr>
<td>IWG-SCC</td>
<td>International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobase</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>MDR</td>
<td>Multidrug resistance</td>
</tr>
<tr>
<td>mecA</td>
<td>Methicillin resistance</td>
</tr>
<tr>
<td>mg</td>
<td>Miligram</td>
</tr>
<tr>
<td>mg/ml</td>
<td>Milligram per millilitre</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimum Inhibitory Concentration</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>mL</td>
<td>Mililitre</td>
</tr>
<tr>
<td>MLST</td>
<td>Multi Locus Sequence Typing</td>
</tr>
<tr>
<td>mM</td>
<td>Milimolar</td>
</tr>
<tr>
<td>MR-CoNS</td>
<td>Methicillin-resistant coagulase-negative staphylococci</td>
</tr>
<tr>
<td>MREC</td>
<td>Medical Research and Ethics Committee</td>
</tr>
<tr>
<td>MRSA</td>
<td>Methicillin-resistant Staphylococcus aureus</td>
</tr>
<tr>
<td>MRSE</td>
<td>Methicillin-resistant Staphylococcus epidermidis</td>
</tr>
<tr>
<td>MRSH</td>
<td>Methicillin-resistant Staphylococcus haemolyticus</td>
</tr>
<tr>
<td>msrA</td>
<td>Methionine Sulfoxide Reductase A</td>
</tr>
<tr>
<td>NaCL</td>
<td>Sodium chloride</td>
</tr>
<tr>
<td>NC</td>
<td>Negative control</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center of Biotechnology Information</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogram</td>
</tr>
<tr>
<td>NHSN</td>
<td>National Healthcare Safety Network</td>
</tr>
<tr>
<td>NICUs</td>
<td>Neonatal Intensive Care Units</td>
</tr>
<tr>
<td>NIH</td>
<td>National Institutes of Health</td>
</tr>
<tr>
<td>NIT</td>
<td>Nitrate</td>
</tr>
<tr>
<td>ORFs</td>
<td>Open reading frames</td>
</tr>
<tr>
<td>PAL</td>
<td>Alkaline Phosphatase</td>
</tr>
<tr>
<td>PBP</td>
<td>Penicillin binding Protein</td>
</tr>
<tr>
<td>PBP2a</td>
<td>Penicillin-binding Protein 2a</td>
</tr>
<tr>
<td>PC</td>
<td>Positive control</td>
</tr>
<tr>
<td>PCN</td>
<td>Penicillin</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PFGE</td>
<td>Pulse Field Gel Electrophoresis</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>pH</td>
<td>Potential of hydrogen</td>
</tr>
<tr>
<td>PIA</td>
<td>Polysaccharide Intercellular Adhesion</td>
</tr>
<tr>
<td>PJIs</td>
<td>Prosthetic Joint-associated Infections</td>
</tr>
<tr>
<td>PYR</td>
<td>Pyrrolidonyl Arylamidase</td>
</tr>
<tr>
<td>RA</td>
<td>Rifampin</td>
</tr>
<tr>
<td>rcf</td>
<td>Relative centrifugal force</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>rRNA</td>
<td>Ribosomal ribonucleic acid</td>
</tr>
<tr>
<td>SCCmec</td>
<td>Staphylococcal cassette chromosome mec</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for the Social Sciences</td>
</tr>
<tr>
<td>SXT</td>
<td>Trimethoprim/sulfamethoxazole</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris-Borate-EDTA</td>
</tr>
<tr>
<td>TSB</td>
<td>Trypticase soy broth</td>
</tr>
<tr>
<td>URE</td>
<td>Urease</td>
</tr>
<tr>
<td>UTIs</td>
<td>Urinary Tract Infections</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>V</td>
<td>Volts</td>
</tr>
<tr>
<td>VAN</td>
<td>Vancomycin</td>
</tr>
<tr>
<td>VP</td>
<td>Voges Proskauer</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>µg/mL</td>
<td>Microgram per millilitre</td>
</tr>
<tr>
<td>µL</td>
<td>Microlitre</td>
</tr>
<tr>
<td>µm</td>
<td>Micrometer</td>
</tr>
<tr>
<td>%</td>
<td>Percent</td>
</tr>
<tr>
<td>ºC</td>
<td>Degree Celcius</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Study Background

Staphylococci which are members of Micrococccae family, are gram-positive bacteria with single or grape-like cluster arrangements, possessing catalase-positive characteristics. Besides being normally isolated from mucous membranes and skin of humans and animals, staphylococci can also be found in environment, water and food (Widerström, 2010). Categorized into coagulase-positive staphylococci (CoPS) and coagulase-negative staphylococci (CoNS) groups, Staphylococcus aureus is the significant CoPS species while Staphylococcus epidermidis is the most significant CoNS (Kloos & Bannerman, 1994; Widerström, 2010). Since CoNS are major in colonizing skin and mucous membranes of mammals, they frequently contaminate blood cultures and cause uncertainty in determining their significance (Al-Mazroea, 2009; Elzi et al., 2012).

Presently, CoNS has been existing as one of the major nosocomial pathogens (Becker et al., 2014). They have the capability to cause infections include foreign body-related infections (FBRIs), preterm newborns infections and endocarditis (Becker et al., 2014). This is because CoNS possess a virulence factor called biofilm that assist them to adhere to medical devices in hospitals (Fredheim et al., 2009). Accumulation of biofilm is caused by ica genes which involve in the biosynthesis of polysaccharide intercellular adhesion (PIA) molecules (Namvar et. al., 2013). Biofilm-producing CoNS have been observed to become resistant to multiple antibiotics classes such as lincosamides and macrolides (Otto, 2008; Fredheim et al., 2009). Serious nosocomial infections can occur if the hospital environment is colonized by multidrug-resistance biofilm-forming CoNS (Wojtyczka et al., 2014). Major concern among clinicians is towards the increasing numbers of methicillin and multidrug-resistant strains (Becker et al., 2014). Widely spread in hospitals, most commonly isolated methicillin-resistant coagulase-negative staphylococci (MR-CoNS) species include S. epidermidis, Staphylococcus haemolyticus, Staphylococcus saprophyticus and several more (Mehdinejad et al., 2008). These organisms harbour mecA gene that encodes penicillin-binding protein 2a (PBP2a) which contributes to low binding to all β-lactam antibiotics (Hartman & Tomasz, 1984; Becker et al., 2014). The gene is acquired by staphylococcal cassette chromosome mec (SCCmec) (Wielders et al., 2002). This mobile genetic element possesses two important components which are mec gene and cassette chromosome recombinase (ccr) gene complexes; mec gene complex consisting of mecA with classes of A, B, C1, C2, D and E, the regulatory genes and associated insertion sequences express methicillin resistance function whereas ccr and a few surrounding genes assist SCCmec integrate into and out from the chromosome (IWG-SCC, 2009; Zong et al., 2011). In addition, there are also J regions (for SCCmec subtypes determination) and several non-essential components which may carry additional antimicrobial resistance determinants (IWG-SCC, 2009). Specific combinations of mec gene and ccr gene complexes produce different types of SCCmec which include types I-XI (Zong et al.,
Type III, IV and V were prevalently found in MR-CoNS and an isolate may possess more than one type (Zong et al., 2011). According to Barbier et al. (2010), SCCmec displays more polymorphous structure in MR-CoNS in terms of ccr-mec combinations compared to methicillin-resistant \textit{Staphylococcus aureus} (MRSA).

In Malaysia, data related to these organisms is limited. Thus, this study aims to determine the distribution of MR-CoNS species isolated from clinical blood cultures and their SCCmec types as well as to observe the antimicrobial susceptibility pattern and its relatedness with the identified SCCmec types. The outcomes from this research particularly the SCCmec genes findings, can be a set of preliminary data that can be used for further research.

1.2 Problem Statement

In Malaysia, there is an increasing trend of antimicrobial resistance among CoNS whereby 50% have been reported as MR-CoNS (Sani et al., 2011). Causing more severe infections until today besides being resistant to various antibiotics, it is understood that CoNS and especially MR-CoNS have appeared to be important nosocomial pathogens. Considering that the data related to these organisms are limited in Malaysia, particularly on SCCmec among MR-CoNS in hospitals, more studies should be conducted as the findings could contribute in providing local data as well as assisting clinicians in managing MR-CoNS infections.

1.3 Objectives

1.3.1 General Objective

This study attempted to determine antimicrobial susceptibility pattern and SCCmec type distribution among MR-CoNS species isolated from blood cultures in Hospital Serdang.

1.3.2 Specific Objectives

1. To determine the distribution of MR-CoNS species from blood culture isolates
2. To determine the antimicrobial susceptibility pattern among the isolated MR-CoNS species
3. To detect the SCCmec types among the isolated MR-CoNS species
4. To study the antimicrobial susceptibility pattern among the SCCmec types
REFERENCES

Beekmann, S. E., Diekema, D. J., & Doern, G. V. (2005). Determining the clinical significance of coagulase-negative staphylococci isolated from blood cultures. *Infection Control & Hospital Epidemiology*, 26(6), 559-566.

Mitsan, O., & Oladeinde, B. (2016). Staphylococcal cassette chromosome mec (sccmec) typing of methicillin-resistant staphylococci obtained from clinical samples in south-south, Nigeria.

