ANTI-INVASIVE EFFECTS OF 2,6-BIS-(4-HYDROXYL-3METHOXYBENZYLIDINE) CYCLOHEXANONE AND ITS MOLECULAR TARGETS ASSOCIATED WITH INVADOPODIA FORMATION IN MDA-MB-231 HUMAN BREAST CANCER CELLS

SITI NOR AINI BINTI HARUN

FPSK(M) 2018 21
ANTI-INVASIVE EFFECTS OF 2,6-BIS-(4-HYDROXY-3-METHOXYBENZYLIDINE) CYCLOHEXANONE AND ITS MOLECULAR TARGETS ASSOCIATED WITH INVADOPODIA FORMATION IN MDA-MB-231 HUMAN BREAST CANCER CELLS

By

SITI NOR AINI BINTI HARUN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

May 2018
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the Degree of Master of Science

ANTI-INVASIVE EFFECTS OF 2,6-BIS-(4-HYDROXYL-3METHOXYBENZYLIDINE) CYCLOHEXANONE AND ITS MOLECULAR TARGETS ASSOCIATED WITH INVADOPODIA FORMATION IN MDA-MB-231 HUMAN BREAST CANCER CELLS

By

SITI NOR AINI BINTI HARUN

May 2018

Chair : Nur Fariesha binti Md Hashim, PhD
Faculty : Medicine and Health Sciences

Cancer metastasis is a pathological event occurred in cancer patients where it can colonize the distant organs. In order to metastasize, the tumor cells need to migrate and invade the surrounding tissues. Invadopodia are thought to be specialized actin-rich protrusions formed by the highly invasive cells to degrade the dense meshwork of the extracellular matrix (ECM). This is the initial step employed to drive cancer invasion. Cancer metastasis is deadliest and has affected the survival rate of cancer patients. Current cancer treatment has also produced side effects. Chemotherapy has given rise to the invasion and metastasis while radiotherapy has caused the recurrence of cancer. Identification of compound(s) capable to disrupt the metastasis of cancer especially for hindering the invadopodia formation is important so as to provide anti-metastasis targeted therapy. Curcumin has been demonstrated to produce significant effect as an anti-cancer compound. However, due to its poor bioavailability, some analogues have been formulated. A curcuminoid analogue known as 2,6-bis-(4-hydroxyl-3-methoxybenzylidine) cyclohexanone or BHMC has shown good potential in inhibiting inflammation and hyperalgesia. It also possesses anti-tumor effects on 4T1 murine breast cancer cells in vivo. However, there is still lack of empirical evidence on how BHMC works in preventing human breast cancer invasion. In this study, we pursued to investigate the role of BHMC on MDA-MB-231 breast cancer cells its underlying mechanism of action to prevent breast cancer invasion especially on the formation of invadopodia.
Analysis revealed that treatment of BHMC at 12.5 μM and below did not interfere with the proliferation of MDA-MB-231 cells. By using scratch migration assay, transwell migration and invasion assays, we found that BHMC at 12.5 μM reduces the percentage of the migration and invasion of MDA-MB-231 cells. The gelatin degradation assay showed that BHMC reduces the number of cells forming invadopodia. Analysis of the proteins involved in invasion showed that there is significant reduction in the expression of Rho guanine nucleotide exchange factor 7 (β-PIX), matrix metalloproteinase-9 (MMP-9) and membrane type 1-MMP (MT1-MMP) in the present of BHMC treatment at 12.5 μM. It can be postulated that BHMC at 12.5 μM is the optimal concentration to prevent the invasiveness of breast cancer cells.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN ANTI PENYERANGAN 2,6-BIS-(4-HYDROXYL-3METHOXYBENZYLIDINE) CYCLOHEXANONE DAN SASARAN MOLEKUL BERKAITAN PEMBENTUKAN INVADOPODIA TERHADAP SEL KANSER PAYUDARA MDA-MB-231

Oleh

SITI NOR AINI BINTI HARUN

Mei 2018

Chair : Nur Fariesha binti Md Hashim, PhD
Faculty : Perubatan dan Sains Kesihatan

perawatan BHMC pada kepekatan 12.5 μM dan ke bawah tidak memberikan
esan terhadap tahap pertambahan sel MDA-MB-231. Walaupun begitu,
eksperimen pergerakan migrasi dan esei migrasi dan invasi transwell, BHMC
pada kepekatan 12.5 μM mengurangkan migrasi dan invasi sel MDA-MB-231.
Esei degradasi gelatin pula menunjukkan BHMC mengurangkan bilangan sel
yang membentuk invadopodia. Analisis kesan BHMC terhadap protein yang
berkaitan penyerangan kanser pula menunjukkan BHMC mengurangkan
ekspresi Rho guanine nucleotide exchange factor 7 (β-PIX), matrix
metalloproteinase-9 (MMP-9) dan membrane type 1-MMP (MT1-MMP) pada
kadar kepekatan 12.5 μM dan menyimpulkan bahawa BHMC pada kepekatan
12.5 μM merupakan kepekatan optimum untuk menghalang penyerangan sel
kanser payudara.
ACKNOWLEDGEMENTS

Deepest gratitude and praise to the Almighty Allah S.W.T. for His permission I am able to work on my research and write this thesis completely. It would not be possible to write this thesis without the help and support of the people around me.

In particular, I would like to express my sincere appreciation to my supervisor, Dr. Nur Fairesha Md Hashim. Her encouragement, patience, guidance and support have enabled me to develop the understanding of the subject and overcome the hardship to complete my research and thesis successfully. The good advice and intellectual inputs of my co-supervisors, Prof. Dr. Daud Ahmad Israf Ali, Dr. Tham Chau Ling and Dr. Manraj Singh Cheema, have been invaluable.

Special thanks also to Mr. Zulkhairi Zainol and Mrs. Nora Asyikin Mohd Salim for their technical assistance in immunofluorescence microscopy and cell culture technique.

I would like to acknowledge the Ministry of Education, Malaysia that provided the necessary financial support under Fundamental Research Grant Scheme (FRGS) and also to University Putra Malaysia (UPM) for the Graduate Research Fellowship (GRF) award.

To my colleagues especially to Hui Min, Farizatul, Hafizan, Wafda, Aida, Audrey, Athirah, Nabilah and Mr. Kelvin Lee whom are very assuring in their encouragement and support. Also for the knowledge shared and the precious value of friendship make me heartily thankful. Exceptional thank you also to my two undergraduate brothers Izwan and Lih Sern whom are very cooperative and supportive to keep me going through the project until the end. Your assistance and support will be kept in my heart endlessly.

A million thank you to my parents, Fatimah Awi and Harun Yusof who have raised me with love and for my family for supporting me. I found my sanctuary from their utmost support.

Lastly, I offer my regards and blessings to all of those who supported me in any respect during the completion of the project. Allah bless all of you.
I certify that a Thesis Examination Committee has met on 14 May 2018 to conduct the final examination of Siti Nor Aini binti Harun on her thesis entitled "Anti-Invasive Effects of 2,6-Bis-(4-Hydroxyl-3methoxybenzylicine) Cyclohexanone and Its Molecular Targets Associated with Invadopodia Formation in MDA-MB-231 Human Breast Cancer Cells" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Suhalli binti Abu Bakar @ Jamaludin, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Yong Yoke Keong, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Radiah Abdul Ghani, PhD
Assistant Professor
International Islamic University Malaysia
Malaysia
(External Examiner)

RUSLI HAJI ABDULLAH, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 30 August 2018
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Nur Fariesha binti Md Hashim, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Daud Ahmad bin Israf Ali, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Tham Chau Ling, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Manraj Singh Cheema, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: __________________

Name and Matric No.: Siti Nor Aini binti Harun (GS42279)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ________________________________
Name of Chairman of Supervisory Committee: Nur Fariesha Md Hashim

Signature: ________________________________
Name of Member of Supervisory Committee: Professor Daud Ahmad Israf Ali

Signature: ________________________________
Name of Member of Supervisory Committee: Tham Chau Ling

Signature: ________________________________
Name of Member of Supervisory Committee: Manraj Singh Cheema
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
</tr>
</tbody>
</table>

CHAPTER 1

1.1 Background of Study | 1

1.2 Problem Statement | 1

1.3 Objectives | 2

1.4 Hypothesis | 2

CHAPTER 2

2.1 Metastatic Breast Cancer | 3

2.2 Metastatic Cascade | 3

2.3 Migration and Invasion | 5

2.4 Factors That Drive Metastasis | 7

2.4.1 Growth Factors | 7

2.4.2 Tumor Hypoxia | 7

2.5 Invadopodia | 8

2.6 Invadopodia and Their Components | 10

2.6.1 Protein for Actin Regulations | 10

2.6.2 Signaling Proteins | 11

2.6.3 Proteases | 12

2.7 Curcumin | 12

2.8 BHMC | 14

CHAPTER 3

3.1 Materials | 16

3.1.1 General Reagents | 16

3.1.2 Antibodies | 17

3.1.3 General Buffers and Solution | 18

3.1.4 Cell Line | 18

3.1.5 BHMC | 18

3.2 Methodology | 19

3.2.1 Cell Culture and Maintenance | 19

3.2.2 Cryopreservation and Cell Thawing | 19

3.2.3 MTT Assay | 19

3.2.4 Proliferation Assay | 20

3.2.5 Scratch Migration Assay | 20
3.2.6 Transwell Migration and Invasion Assays 21
3.2.7 Invadopodia Assay 21
3.2.8 Cell Lysis and Protein Quantification 22
3.2.9 Non-disease and Drug Control Group 23
3.2.10 Immunoblotting 23
3.2.11 Statistical Analysis 24

4 RESULTS AND DISCUSSION
4.1 Cytotoxicity and Anti-proliferative Effects of BHMC 25 on MDA-MB-231 Cells
 4.1.1 Results 25
 4.1.2 Discussion 29
4.2 Inhibition of BHMC on Migration and Invasion of MDA-MB-231 Cells
 4.2.1 Results 31
 4.2.2 Discussion 35
4.3 BHMC Has an Effect on Number of Cells Forming Invadopodia
 4.3.1 Results 37
 4.3.2 Discussion 40
4.4 Inhibition of β-PIX, MMP-9 and MT1-MMP Protein Expression on MDA-MB-231 Cells upon BHMC Treatment
 4.4.1 Results 42
 4.4.2 Discussion 46

5 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH
5.1 Summary and Conclusion 49
5.2 Recommendations for Future Direction 50

REFERENCES 52
APPENDICES 62
BIODATA OF STUDENT 63
LIST OF PUBLICATIONS 64
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 General Reagents</td>
<td>16</td>
</tr>
<tr>
<td>3.2 Primary Antibodies</td>
<td>17</td>
</tr>
<tr>
<td>3.3 Secondary Antibodies</td>
<td>17</td>
</tr>
<tr>
<td>3.4 General Buffers and Solutions</td>
<td>18</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The Main Steps in Cancer Metastasis</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Invadopodia Formation Formed by Invasive Cancer Cells that Extend Into Matrix Substratum in 2D Gelatin Degradation Assay</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Chemical Structure of BHMC and Curcumin</td>
<td>14</td>
</tr>
<tr>
<td>4.1</td>
<td>Cell Viability Assay</td>
<td>26</td>
</tr>
<tr>
<td>4.2</td>
<td>Representative Images of PCNA Antibody Staining on MDA-MB-231 Cells</td>
<td>27</td>
</tr>
<tr>
<td>4.3</td>
<td>Graph Plotted to Represent Presence of PCNA in 150 MDA-MB-231 Cells</td>
<td>28</td>
</tr>
<tr>
<td>4.4</td>
<td>Effects of BHMC on Migration of MDA-MB-231 Cells in Scratch Migration Assay</td>
<td>32</td>
</tr>
<tr>
<td>4.5</td>
<td>Effects of BHMC on MDA-MB-231 Cell Migration in Transwell Migration Assay</td>
<td>33</td>
</tr>
<tr>
<td>4.6</td>
<td>Effects of BHMC on MDA-MB-231 Cell Invasion Assay</td>
<td>34</td>
</tr>
<tr>
<td>4.7</td>
<td>Representative Images of Invadopodia Formation in MDA-MB-231 Cells</td>
<td>38</td>
</tr>
<tr>
<td>4.8</td>
<td>Effects of BHMC on Gelatin Degradation Assay</td>
<td>39</td>
</tr>
<tr>
<td>4.9</td>
<td>Effects of BHMC on β-PIX Expression Level</td>
<td>43</td>
</tr>
<tr>
<td>4.10</td>
<td>Effects of BHMC on MMP-9 Expression Level</td>
<td>44</td>
</tr>
<tr>
<td>4.11</td>
<td>Effects of BHMC on MT1-MMP Expression Level</td>
<td>45</td>
</tr>
<tr>
<td>5.1</td>
<td>Candidate Molecules Affected by BHMC Treatment</td>
<td>51</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

2D Two-dimensional
3D Three-dimensional
β-arr β-arrestin
ADAM A disintegrin and metalloproteinase
ANGPTL Angiopoietin-like
ANOVA Analysis of variance
AP 1 Activator protein 1
Arf 6 ADP-ribosylation factor 6
Arp Actin-related protein
ATP Adenosine triphosphate
b-FGF Basic fibroblast growth factor
BCA Bicinchoninic acid
BHMC 2,6-bis-(4-hydroxyl-3methoxybenzylidine)cyclohexanone
BRCA1 Breast cancer gene 1
BRCA2 Breast cancer gene 2
BSA Bovine serum albumin
BSC Bio safety cabinet
CD63 CD63 antigen
CD9 CD9 antigen
Cdc42 Cell division cycle 42
CIP Cdc42-interacting protein
CLP Caecal-ligation puncture
COPD Chronic Obstructive Pulmonary Disease
CRM Chromosome region maintenance
CSF Colony stimulating factor
DMEM Dulbecco’s modified eagle’s medium
DMOG Dimethyloxaloylglycine
DMSO Dimethylsulfoxide
DNA Deoxyribonucleic acid
DNA Deoxyribonucleic acid
ECL Enhanced chemiluminescent
ECM Extracellular matrix
EDTA Ethylenediaminetetraacetic acid
EGF Epidermal growth factor
EGFR Epidermal growth factor receptor
EMT Epithelial mesenchymal transition
EOC Epithelial ovarian cancer
ER/PR Estrogen/progesterone receptor
ERRB2 Epidermal growth factor receptor 2
ET Endothelin
EV Extracellular vesicles
FA Focal adhesion
FAK Focal adhesion kinase
F-BAR Fer/CIP4 homology-Bin/Amphiphysin/Rvs
FBS Fetal bovine serum
GAPDH Glyceraldehyde 3-phosphate dehydrogenase
GDP Guanosine diphosphate
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLUT</td>
<td>Glucose transporter</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosine triphosphate</td>
</tr>
<tr>
<td>HB</td>
<td>Heparin binding</td>
</tr>
<tr>
<td>HER2</td>
<td>Human epidermal growth factor receptor 2</td>
</tr>
<tr>
<td>HGF</td>
<td>Hepatocyte growth factor</td>
</tr>
<tr>
<td>HIF</td>
<td>Hypoxia inducible factor</td>
</tr>
<tr>
<td>HNSCC</td>
<td>Head and neck squamous cell carcinoma</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>HR</td>
<td>Homology region</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish peroxidase</td>
</tr>
<tr>
<td>IGF</td>
<td>Insulin-like growth factor</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>MAPK</td>
<td>p-38 and mitogen-activated protein kinase</td>
</tr>
<tr>
<td>MCP</td>
<td>Monocyte chemotactic protein</td>
</tr>
<tr>
<td>MLCK</td>
<td>Myosin like-chain kinase</td>
</tr>
<tr>
<td>MMP</td>
<td>Matrix metalloproteinase</td>
</tr>
<tr>
<td>MT1-MMP</td>
<td>Membrane type-1 matrix metalloproteinase</td>
</tr>
<tr>
<td>mTOR</td>
<td>Mammalian target of rapamycin</td>
</tr>
<tr>
<td>MTT</td>
<td>3-(4,5-Dimethylthiazol-2-yl)-2,5 diaphenyltetrazolium bromide</td>
</tr>
<tr>
<td>NF-κB</td>
<td>Nuclear factor κB</td>
</tr>
<tr>
<td>NHE</td>
<td>Sodium/hydrogen exchanger</td>
</tr>
<tr>
<td>NIC</td>
<td>Notch 1 fragment</td>
</tr>
<tr>
<td>N-WASP</td>
<td>Neural-Wiskott Aldrich Syndrome</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffer saline</td>
</tr>
<tr>
<td>PCNA</td>
<td>Proliferating cell nuclear antigen</td>
</tr>
<tr>
<td>PDGF</td>
<td>Platelet-derived growth factor</td>
</tr>
<tr>
<td>PDZ-RhoGEF</td>
<td>Postsynaptic density protein 95/disc-large/zonula</td>
</tr>
<tr>
<td>PI3K</td>
<td>Phosphoinositide 3-kinase</td>
</tr>
<tr>
<td>PIX</td>
<td>PAK-interacting exchange factor</td>
</tr>
<tr>
<td>PKC</td>
<td>Protein kinase C</td>
</tr>
<tr>
<td>PTEN</td>
<td>Phosphatase and tensin</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidene difluoride</td>
</tr>
<tr>
<td>RIPA</td>
<td>Radioimmunoprecipitation assay</td>
</tr>
<tr>
<td>ROCK</td>
<td>Rho-associated coiled-forming kinase</td>
</tr>
<tr>
<td>RSV</td>
<td>Rous sarcoma virus</td>
</tr>
<tr>
<td>SDF</td>
<td>Stromal cell derived factor</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>SDS-polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of mean</td>
</tr>
<tr>
<td>SH</td>
<td>Sulphydryl</td>
</tr>
<tr>
<td>TGF-α</td>
<td>Transforming growth factor α</td>
</tr>
<tr>
<td>TGF-β</td>
<td>Transforming growth factor β</td>
</tr>
<tr>
<td>TIMP</td>
<td>Tissue inhibitor of metalloproteinase</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like receptor</td>
</tr>
<tr>
<td>TNBC</td>
<td>Triple negative breast cancer</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor necrosis factor</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor necrosis factor</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>TOM1L</td>
<td>Target of MYB1-like protein</td>
</tr>
<tr>
<td>uPAR</td>
<td>Urokinase plasminogen activator receptor</td>
</tr>
<tr>
<td>US FDA</td>
<td>United State Food and Drug Administration</td>
</tr>
<tr>
<td>VCA</td>
<td>Verprolin-cofilin-acidic</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular endothelial growth factor</td>
</tr>
<tr>
<td>VHL</td>
<td>von Hippel-Lindau</td>
</tr>
<tr>
<td>WAVE</td>
<td>WASP family verprolin-homologous protein</td>
</tr>
<tr>
<td>WIP</td>
<td>WASP-interacting protein</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Study

Breast cancer is a form of disorder in which the cancer cells can grow either at the lobular, medullary, ductal or sebaceous of the breast tissue. The causes of breast cancer include the mutations of the genes such as epidermal growth factor receptor 2 (ERBB2) (also known as human epidermal growth factor receptor 2 (HER2)), breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) (Lukong, 2017). There are six hallmarks of cancer that have been proposed which encompass of the ability of the cancer cells to sustain the proliferative signaling, resist cell death, induce angiogenesis, evade the growth suppressors, enable the replicative immortality and activate invasive metastasis (Hanahan & Weinberg, 2011). Most of the patients whom endure breast cancer are likely to face mortality once the cancer cells have metastasized to other parts of body. Triple negative breast cancer patients, whom are clinically having less or absent of HER2 receptor (-HER2) and estrogen/progesterone receptor (-ER/PR) are the highly invasive cancer incidence among the patients (Bianchini et al., 2016). These types of patients are having increased likelihood of distant recurrence and believed to be more aggressive compared to other types of breast cancer (Bianchini et al., 2016).

1.2 Problem Statement

Metastatic breast cancer is the major problem in the population as it can affect the survival of breast cancer patients (Lukong, 2017). The ability of the tumor cells to disseminate to other parts of the body such as lungs, brain and bones and only can be diagnosed at an advanced stage has been troublesome as the tumor cells cannot be eradicated totally from the body thus causing the recurrence of cancer (Scully et al., 2012). Once the invasive cancer cells have metastasized, the treatment to reduce the growth of cancer would be challenging as many cancer genes have been up-regulated and also reduce the sensitivity of cancer cells to the treatment (Massagué et al., 2017). There are several treatments used to treat breast cancer including the application of surgery, radio- and chemotherapy. radio- and chemotherapy (Lukong, 2017). However, besides killing the tumor cells, especially radio- and chemotherapy, both radio- and chemotherapy have caused side effects to the patients such as thrombocytopenia, diarrhea, infertility and others (Lukong, 2017).

Curcumin, a diferuloylmethane is a potential compound to target and modulate many proteins linked to cancer (Hasima & Aggarwal, 2012). Curcumin has been reported to have entered the clinical trials but the poor bioavailability
problem that curcumin had has been questioned (Anand et al., 2007). Having promising abilities to target multiple proteins related to cancer has urged the researchers to modify the structure of curcumin but still preserving the methyl and hydroxyl group which are responsible for the anti-proliferation and anti-oxidant properties of curcumin (Nagahama et al., 2016). One of the analogues of curcumin which is 2,6-bis-(4-hydroxyl-3methoxybenzylidine) cyclohexanone or BHMC has been studied in inflammation and hyperalgesic pain (Ming-Tatt et al., 2013; Tham et al., 2010). Recently, BHMC has shown to possess anti-tumor activity in 4T1 murine breast cancer (Razak et al., 2017). However, BHMC is yet to be studied in human breast cancer. It will be interesting to investigate the effects of BHMC on the migration and invasion of MDA-MB-231 human breast cancer cells and specifically in the formation of invadopodia and their targeted proteins.

1.3 Objectives

This research was conducted to investigate the anti-invasive effects of BHMC and its molecular target(s) on MDA-MB-231 human breast cancer cells.

The specific objectives of the study include the following:
1. To determine the effect of BHMC on the proliferation of MDA-MB-231 human breast cancer cells
2. To determine the effect of BHMC on the migration and invasion of MDA-MB-231 human breast cancer cells
3. To determine the effect of BHMC on the formation of invadopodia in MDA-MB-231 human breast cancer cells
4. To identify the effect of BHMC on expressions of the proteins involved in invasion and invadopodia such as MMP-9, MT1-MMP and β-PIX

1.4 Hypothesis

It is hypothesized that BHMC at non-cytotoxic concentrations will reduce the migration and invasion of MDA-MB-231 human breast cancer cells. In addition, it is expected that BHMC would reduce the number of cells forming invadopodia via down-regulation of MMP-9, MT1-MMP and β-PIX expressions.
REFERENCES

Chinese Medicine, 44(7): 1491–1506.

