UNIVERSITI PUTRA MALAYSIA

IMMUNOHISTOCHEMICAL ANALYSIS OF HOMEobox PROTEIN EXPRESSION IN UROTHELIAL CARCINOMA OF BLADDER

MOHD KHAIRUL ANUAR BIN MD AKHIR

FPSK(M) 2017 73
IMMUNOHISTOCHEMICAL ANALYSIS OF HOMEobox PROTEIN EXPRESSION IN UROTHELIAL CARCINOMA OF BLADDER

By

MOHD KHAIRUL ANUAR BIN MD AKHIR

Thesis submitted to the School of Graduate Studies Universiti Putra Malaysia, in fulfilment of the requirement for the Degree of Master of Science

December 2016
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the Degree of Master of Science

IMMUNOHISTOCHEMICAL ANALYSIS OF HOMEOBOX PROTEIN EXPRESSION OF IN UROTHELIAL CARCINOMA OF BLADDER

By

MOHD KHAIRUL ANUAR BIN MD AKHIR

December 2016

Chair: Huzlinda Binti Hussin, Mpath
Faculty: Medicine and Health Sciences

Urothelial carcinoma of the bladder is a common malignant neoplasm that has a poor prognosis and high grade. In order to prevent the tumour from recurring or becoming invasive, constant disease surveillance with periodic and long term cystoscopy examination is necessary. However, the monitoring and therapy regimen is expensive and causes a massive burden to patients and the government. Therefore, development of specific biomarkers for urothelial carcinoma for detection of early stage tumours as well as prediction of tumour recurrence becomes top priority. Homeobox genes are a family of genes that are involved in tumourigenesis. They might be potential prognostic markers for urothelial carcinoma of the bladder. The objectives of our study were to describe the expression of homeobox genes (NANOG, ISL1 and LHX5) and identify their cellular localisation in urothelial carcinoma. The correlation expressions between these three proteins were also carried out. Lastly, we correlated the expression of these genes with demographic factors and clinicopathological parameters.

The expression of NANOG, ISL1 and LHX5 in 100 formalin-fixed paraffin-embedded urothelial carcinoma of the bladder tissues that were collected from Hospital Kuala Lumpur were determined by immunohistochemistry. Immunohistochemical staining results showed that the localization of NANOG, ISL1 and LHX5 antibodies were detected in the cytoplasm, nuclei and nuclear membrane of urothelial carcinoma of the urothelial cells. Positive expression of NANOG, ISL1 and LHX5 was detected in 100%, 94% and 98% of specimens respectively. The immunohistochemical expression of NANOG, ISL1 and LHX5 were not significantly associated with pathological stage (p= 0.127, 0.846 and 0.681 respectively) and grade (p=0.580, 0.588 and 0.099 respectively). There was also no significant correlation between NANOG expression with ISL1 and LHX5 expression. The immunohistochemical expression of NANOG, ISL1 and LHX5 were also not significantly associated with demographic factors such as gender (p=0.469, p=0.637 and p=0.910 respectively), race (p=0.718, p=0.858 and p=0.285 respectively) and age (p=0.067, p=0.803 and p=0.203 respectively) as well as with
clinicopathological parameters such as lymph node metastasis (p=0.208, 0.621 and 0.586 respectively) and distant metastasis (p=0.240, p=0.170 and p=0.303 respectively). Interestingly, NANOG expression showed significant correlation with tumour invasion whereby the p-value is p=0.01. However, there was no significant association between tumour invasion and the expression of ISL1 and LHX5 in urothelial carcinoma of the bladder.

In conclusion, NANOG and ISL1 are potential biomarkers for urothelial carcinoma of the bladder. NANOG is also a potential prognostic marker for urothelial carcinoma of the bladder invasion. Their role in urothelial carcinoma might be better understood with more functional studies that elucidate the phenotype-genotype correlations.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

ANALISIS IMMUNOHISTOKIMA TERHADAP EXPRESI HOMEBOX PROTEIN DI DALAM KANSER UROTELIA PUNDI KENCING

Oleh

MOHD KHAIRUL ANUAR BIN MD AKHIR

Disember 2016

Pengerusi: Huzlinda Binti Hussin, Mpath
Fakulti: Perubatan dan Sains Kesihatan

Kaedah pewarnaan immunohistokimia digunakan untuk mengkaji ekspresi NANOG, ISL1 dan LHX5 di dalam 100 sampel tisu kanser urotelia pundi kencing yang diambil dari Hospital Kuala Lumpur. Keputusan pewarnaan immunohistokimia adalah seperti berikut: 1) kedudukan selular NANOG, ISL1 dan LHX5 dikesan di sistolasma, nukleus dan membrane nuklear di dalam tisu karsinoma urotelia pundi kencing. 2) Pewarnaan positif dapat dilihat 100% dengan NANOG antibodi, 94% untuk ISL1 antibodi dan 98% untuk LHX5 antibodi. Ekspresi immunohistokimia daripada NANOG, ISL1 dan LHX5 tidak mempunyai hubungan yang signifikan dengan peringkat patologi dan gred kanser. Nilai p masing-masing adalah p= 0.127, 0.846 dan 0.681 untuk setiap gen bagi peringkat patologi dan untuk gred kanser pula nilai p masing-masing adalah p=0.580, 0.588
and 0.099 untuk setiap gen. Kajian menunjukkan tidak terdapat hubungan yang signifikan diantara ekspresi NANOG dengan ISL1 dan ekspresi LHX5 di dalam tisu karsinoma. 4) Ekspresi immunohistokimia bagi NANOG, ISL1 dan LHX5 juga tidak mempunyai hubungan yang signifikan dengan faktor-faktor demografik seperti jantina (masing-masing p=0.469, p=0.637 dan p=0.910) bangsa (masing-masing p = 0.718, p = 0.858 dan p = 0.285) dan umur (masing-masing p=0.067, p=0.803 dan p=0.203) manakala untuk parameter klinikal, seperti metastasis nodal limfa juga tidak menunjukkan hubungan yang signifikan di mana nilai p masing-masing ialah p=0.208, 0.621 and 0.586 dan untuk metastasis yang jauh nilai p masing-masing ialah p=0.240, p=0.170 and p=0.303. Menariknya, ekspresi NANOG menunjukkan hubungan yang signifikan terhadap kadar invasif karsinoma di mana nilai p ialah p=0.01. Walaubagaimanapun, untuk ekspresi protein ISL1 dan LHX5 tidak menunjukkan hubungan yang signifikan terhadap kadar invasif karsinoma urotelia pundi kencing.

Kesimpulannya, NANOG dan ISL1 adalah ramalan penanda biologi yang berpotensi untuk karsinoma urotelia pundi kencing. NANOG juga berperanan sebagai penanda prognostik kepada karsinoma urotelia pundi kencing. Peranan mereka dalam karsinoma urotelia pundi kencing mungkin lebih difahami dengan teknik yang lebih maju seperti kajian molekul.
Acknowledgements

Bismillahirrahmanirrahim,

Alhamdulillah. Thanks to Allah SWT, with His willing and blessing has given me the opportunity to complete my master project entitled Immunohistochemical analysis of the Protein Expression of Homeobox Genes (NANOG, ISL1 and LHX5) expression in urothelial carcinoma of the bladder. Firstly, I would like to express my gratitude to my supervisor, Dr. Huzlinda Binti Hussin for her guidance, supports, suggestion and trusting me to complete this project and thesis dissertation.

Millions of thanks also to my fellow supervisory committees, Dr Abhimanyu Veerakumarasivam, Dr Maizaton Atmadini Binti Abdullah, Dr Fauzah Binti Abdul Ghani and Dr Chan Soon Choy for their help, valuable comments, information, suggestions and guidance in completing this master project and preparing this thesis. I would also acknowledge and thank Dr. Rosna Binti Yunus as well as doctors and staff in the Records Unit and the Pathology Department of Hospital Kuala Lumpur for their assistance during the collection of data and tissue samples. I also would like to thank the lecturers and staff of Faculty of Medicine and Health Sciences, especially the staff in Pathology Department, Histopathology Laboratory and Medical Genetics Laboratory for their cooperation, time and effort to help me successfully complete my research project.

Thanks and sincere appreciation to the members of the Histopathology and Medical Genetic Laboratory for their help, knowledge and support during my Master degree journey. Also thanks to all of my friends and everyone either directly or indirectly for their contribution and helping me from the beginning of this Master project until it is fully completed. Last but not least to both of my parents and my family for their encouragement and full support for the completion of this project, from the beginning till the end. May Allah bless all of you.
I certify that a Thesis Examination Committee has met on 1 December 2016 to conduct the final examination of Mohd Khairul Anuar bin Md Akhir on his thesis entitled "Immunohistochemical Analysis of Homeobox Protein Expression in Urothelial Carcinoma of Bladder" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Sabariah binti Md. Noor, PhD
Senior Lecturer
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Chairman)

Norhafizah binti Mohtarrudin, PhD
Associate Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Internal Examiner)

Sabariah binti Abdul Rahman, PhD
Professor
Universiti Teknologi MARA
Malaysia
(External Examiner)

![Signature]

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 26 January 2017
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Huzlinda Binti Hussion, MD, MPath
Medical Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Abhi Veerakumarasivam, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Maizaton Atmadini Binti Abdullah, MD, PhD
Medical Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia.
(Member)

Fauzah Binti Abdul Ghani, MBBS, MPath
Medical Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Chan Soon Choy, PhD
Lecturer
Perdana University Graduate School of Medicine (PUGSOM)
Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: Mohd Khairul Anuar bin Md Akhir (GS36210)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ______________________
Name of chairman of supervisory committee: Huzlinda Binti Hussin

Signature: ______________________
Name of member of supervisory committee: Abhi Veerakumarasivam

Signature: ______________________
Name of member of supervisory committee: Maizaton Atmadini Binti Abdullah

Signature: ______________________
Name of member of supervisory committee: Chan Soon Choy

Signature: ______________________
Name of member of supervisory committee: Fauzah Binti Abdul Ghani
TABLE OF CONTENTS

ABSTRACT i
ABSTRAK iii
ACKNOWLEDGEMENTS v
APPROVAL vi
DECLARATION vii
LIST OF TABLES xiv
LIST OF FIGURES xv
LIST OF ABBREVIATIONS xvii

CHAPTER
1 INTRODUCTION 1
1.1 General Introduction 1
1.2 Problem statement 3
1.3 Objectives 3
1.4 Research Hypothesis 4
1.5 Conceptual framework 5

2 LITERATURE REVIEW 6
2.1 Anatomy of urinary Bladder 6
2.1.1 Gross morphology 6
2.1.2 Histology 7
2.2 Background of Bladder Cancer 7
2.2.1 WHO histological classification 7
2.2.2 Epidemiology and aetiology 8
2.2.3 Pathogenesis 8
2.2.4 Clinical Features of Urothelial Carcinoma 10
2.2.5 Staging and grading 10
2.2.5.1 TNM staging 11
2.2.5.2 Grading System 13
2.2.6 Macroscopic and microscopic features of urothelial tumours 14
2.2.6.1 Gross (macroscopic) Features of Urothelial Carcinoma 14
2.2.6.2 Microscopic Features of Urothelial Carcinoma 15
2.2.7 Treatment of bladder cancer 17
2.2.8 Prognostic and Predictive factors 18
2.3 Biomarker in Bladder Cancer 18
2.4 Homeobox genes 19
2.4.1 Homeobox genes and cancer 20
2.5 Transcriptional regulatory stem cells network embryonic stem cells 21
2.6 Cancer stem cell 23
2.7 Targeted Therapy in Urothelial Carcinoma 23
3 MATERIALS AND METHODS

3.1 Study Sample
3.1.1 Sample size calculation
3.1.2 Inclusion Criteria
3.1.3 Exclusion Criteria
3.1.4 Data collection

3.2 Sample Retrieval
3.2.1 Demographic and Clinicopathological Parameters Collection
3.2.2 Sectioning and preparation of slide

3.3 Hematoxylin and Eosin (H&E) staining

3.4 Immunohistochemical staining
3.4.1 Control tissue
3.4.2 Hydration and Antigen Retrieval
3.4.3 Antibody incubation
3.4.4 Antigen Detection
3.4.5 Counterstain and dehydration
3.4.6 Scoring for immunohistochemical analysis

3.5 Operational definition of terms
3.6 Statistical analysis
3.7 Definition of variables and terms
3.7.1 Dependent variable
3.7.2 Independent variables

4 RESULTS
4.1 Demographic and clinicopathological characteristics of the urothelial carcinoma of the bladder cases in Hospital Kuala Lumpur from January 2004 until March 2013
4.2 Sample distribution
4.3 Sample morphology analysis
4.4 Immunohistochemical expression and localization of NANOG, ISL1 and LHX5
4.5 Immunohistochemical expression of NANOG, ISL1 and LHX5 across different stages and grades of urothelial carcinoma of the bladder
4.5.1 Immunohistochemical expression of NANOG across different stages and grades of urothelial carcinoma of the bladder
4.5.2 Immunohistochemical expression of ISL1 across different stages and grades of urothelial carcinoma of the bladder

4.5.3 Immunohistochemical expression of LHX5 across different stages and grades of urothelial carcinoma of the bladder

4.6 The association between immunohistochemical expression of NANOG, ISL1 and LHX5 in urothelial carcinoma of the bladder

4.7 The association of NANOG, ISL1 and LHX5 immunohistochemical expression with demographic and clinicopathological parameters of urothelial carcinoma of the bladder

4.7.1 The association of NANOG immunohistochemical expression with demographic and clinicopathological parameters of urothelial carcinoma of the bladder

4.7.2 The association between ISL1 and LHX5 immunohistochemical expression with demographic and clinicopathological parameters of urothelial carcinoma of the bladder

5 DISCUSSION

5.1 Immunohistochemical expression and localization of NANOG, ISL1 and LHX5 expression in urothelial carcinoma of the bladder

5.2 Immunohistochemical expression of NANOG, ISL1 and LHX5 across different urothelial stage and grades of urothelial carcinoma of the bladder

5.3 The association between immunohistochemical expression of NANOG, ISL1 and LHX5 in urothelial carcinoma of the bladder

5.4 The association between the immunohistochemical expression of NANOG, ISL1, LHX5 with patient demographic and clinicopathological parameters in urothelial carcinoma of the bladder
6 CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH

6.1 Conclusion 67
6.2 Research limitations and future recommendation 67

REFERENCES 68
APPENDICES 76
BIODATA OF STUDENT 78
PUBLICATION 79
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>2004 TNM classification of urothelial carcinoma of the bladder</td>
</tr>
<tr>
<td>2.2</td>
<td>World Health Organization grading system for bladder cancer in 1973</td>
</tr>
<tr>
<td>2.3</td>
<td>World Health Organisation/International Society of Urological Pathologist (WHO/ISUP) grading system for bladder cancer in 2004</td>
</tr>
<tr>
<td>2.4</td>
<td>Number of human genes, pseudogenes and gene families in each homeobox genes class</td>
</tr>
<tr>
<td>3.1</td>
<td>Primary antibodies for immunohistochemical staining</td>
</tr>
<tr>
<td>3.2</td>
<td>A semi-quantitative scoring system for immunostaining of antibodies</td>
</tr>
<tr>
<td>3.3</td>
<td>The operational definitions of all dependent study variables</td>
</tr>
<tr>
<td>3.4</td>
<td>The operational definitions of all independent study variables</td>
</tr>
<tr>
<td>4.1</td>
<td>Demographic and clinicopathological parameters of urothelial carcinoma of bladder cases in Hospital Kuala Lumpur from January 2004 to March 2013</td>
</tr>
<tr>
<td>4.2</td>
<td>Demographic and clinicopathological parameters of selected samples</td>
</tr>
<tr>
<td>4.3</td>
<td>The association of immunohistochemical expression of NANOG, ISL1 and LHX5</td>
</tr>
<tr>
<td>4.4</td>
<td>The association between NANOG immunohistochemical expression with the demographic and clinicopathological parameters</td>
</tr>
<tr>
<td>4.5</td>
<td>The association between ISL1 immunohistochemical expression with demographic and clinicopathological parameters</td>
</tr>
<tr>
<td>4.6</td>
<td>The association between LHX5 immunohistochemical expression with demographic and clinicopathological parameters.</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Anatomy of the human urinary bladder for males and females</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Molecular pathway of oncogenesis for superficial and muscle invasive urothelial carcinoma.</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Different tumour stages in urothelial carcinoma of the bladder</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Macroscopic features of urothelial carcinoma</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Microscopic features for infiltrative and non-invasive urothelial carcinoma</td>
<td>16</td>
</tr>
<tr>
<td>2.6</td>
<td>Transcriptional Regulatory Network in an Embryonic Stem Cell</td>
<td>22</td>
</tr>
<tr>
<td>4.1</td>
<td>Photomicrographs from normal bladder tissue and random tissue samples stained with hematoxyline and eosin (H&E)</td>
<td>40</td>
</tr>
<tr>
<td>4.2</td>
<td>Distribution of NANOG, ISL1 and LHX5 expression in urothelial carcinoma of the bladder</td>
<td>41</td>
</tr>
<tr>
<td>4.3</td>
<td>Immunohistochemical staining localization of NANOG in urothelial carcinoma of the bladder</td>
<td>42</td>
</tr>
<tr>
<td>4.4</td>
<td>Immunohistochemical staining localization of ISL1 in urothelial carcinoma of the bladder</td>
<td>42</td>
</tr>
<tr>
<td>4.5</td>
<td>Immunohistochemical staining localization of LHX5 in urothelial carcinoma of the bladder</td>
<td>43</td>
</tr>
<tr>
<td>4.6</td>
<td>The immunohistochemical staining localization of NANOG, ISL1 and LHX5 in urothelial carcinoma samples</td>
<td>45</td>
</tr>
<tr>
<td>4.7</td>
<td>Percentage of tumours expressing NANOG across different stages of urothelial carcinoma of the bladder</td>
<td>46</td>
</tr>
<tr>
<td>4.8</td>
<td>Percentage of tumours expressing NANOG across different grades of urothelial carcinoma of the bladder</td>
<td>47</td>
</tr>
<tr>
<td>4.9</td>
<td>Percentage of tumours expressing ISL1 across different stages of urothelial carcinoma of the bladder</td>
<td>48</td>
</tr>
<tr>
<td>4.10</td>
<td>Percentage of tumours expressing ISL1 across different grades of urothelial carcinoma of the bladder</td>
<td>49</td>
</tr>
</tbody>
</table>
4.11 Percentage of tumours expressing LHX5 across different stages of urothelial carcinoma of the bladder

4.12 Percentage of tumours expressing LHX5 across different grades of urothelial carcinoma of the bladder

4.13 Immunohistochemical staining of NANOG in normal testicular tissue

4.14 Immunohistochemical staining of NANOG in urothelial carcinoma.

4.15 Immunohistochemical staining of ISL1 in normal testicular tissue

4.16 Immunohistochemical staining of ISL1 in urothelial carcinoma.

4.17 Immunohistochemical staining of LHX5 in normal testicular tissue

4.18 Immunohistochemical staining of LHX5 in urothelial carcinoma.

4.19 Immunohistochemical staining of NANOG, ISL1 and LHX5 in various stages and grades of urothelial carcinoma.
LIST OF ABBREVIATIONS

ATBF1 AT-binding transcription factor 1
BCG Bacillus Calmette-Geurin
BRCA1 Breast Cancer 1
CIS Carcinoma In Situ
DAB 3,3’-Diaminobenzidine
DLBCL Diffuse Large B Cell Lymphoma
DPX Di-N-Butyl Phthalate in Xylene
DSM Disease-specific Mortality
EMT Epithelial-Mesenchymal Transition
EGFR Epidermal Growth Factor Receptor
ESCs Embryonic Stem Cells
FFPE Formalin-Fixed Paraffin-embedded
FGFR3 Fibroblast Growth Factor Receptor 3
G1 Grade 1
G2 Grade 2
G3 Grade 3
H&E Haematoxylin and eosin
HAND-1 Heart and Neuronal Crest Derivatives Expressed-1
HOXB1 Homeobox-B1
HOXA9 Homeobox A9
HER2 Human Epidermal Growth Factor Receptor 2
IHC Immunohistochemistry
ISL1 ISL LIM Homeobox-1
ISUP International Society of Urological Pathologist
LHX5 LIM Homeobox-5
MEIS1 Meis Homeobox 1
MYF-5 Myogenic Factor 5
min minute
MIBC Muscle Invasive Bladder Cancer
NANOG Homeobox protein NANOG
NMIBC Non-Muscle Invasive Bladder Cancer
OCT3/4 Octamer-binding Transcription Factor 4
OTX1 Orthodenticle Homeobox-1
PAX6 Paired Box-6
PPV Positive Predictive Value
PUNLMP Papillary Urothelial Neoplasms of Low Malignant Potential
P53 Tumour Protein p53
SOX2 (Sex Determining Region Y)-Box 2
TBST-20 TBS plus tween 20 solutions
TCC Transitional Cell Carcinoma
TKI Tyrosine Kinase Inhibitor
TURBT Transurethral Resection of Bladder Tumour
TABSHO Total Abdominal Hysterectomy Bilateral Salpingo-Oophorectomy
VEGRFRs Vascular Endothelial Growth Factor Receptors
WHO World Health Organization
ZFHX3 Zinc Finger Homeobox-3
% percent
°C degree celcius
µl microliter
CHAPTER 1

INTRODUCTION

1.1 General Introduction

Cancer is the main cause of death in economically developed countries. In 2008, about 12.7 million cancer cases and 7.6 million cancer deaths were reported worldwide (Jemal et al., 2008). Based on the Malaysia Cancer Statistic 2006, a total of 21733 of people in peninsular Malaysia were diagnosed with cancer and registered with the National Cancer Registry. The total number of patients comprised of 9974 males and 11799 females. Among the cancer cases reported, bladder cancer was the tenth leading cause of death worldwide. However, the incidence of this cancer varies worldwide and it was highly reported in North America and Europe. In Peninsular Malaysia bladder cancer is the sixth most common cancer in males but is less common in females (Omar et al., 2006). Bladder cancer is the second most frequent cancer that occurs in the urogenital system after prostate cancer. Early diagnosis and persistent surveillance can reduce the risk of death among patients because of its high recurrent rate and risk of metastasis if there is a delay in the diagnosis and treatment.

There are various histological types of bladder cancer in humans. Examples of histopathological subtypes are transitional cell carcinoma (TCC), squamous cell carcinoma and adenocarcinoma. The most common type of bladder cancer diagnosed is TCC which accounts for more than 90% of all bladder cancer cases (Braud et al., 2002). Transitional cell carcinoma is currently known as urothelial carcinoma. Urothelial carcinoma of the bladder starts in the cells that line the bladder spreads to bladder wall and will later involve to the neighbouring organs or other body parts if it is not treated at an early stage. Smoking, chemical exposure, age, sex and chronic bladder inflammation are risk factors that contribute to the development of bladder cancer. However, the pathogenesis of bladder cancer is still largely unknown. Urothelial carcinoma is treated based on the tumour stage and grade. Besides the treatment protocols, the incidence of therapeutic resistance and failure is often reported.

The exact genetic events that lead to urothelial transformation involve the activation or gain of oncogenes, inactivation or loss of tumour suppressor genes and alterations in apoptotic gene modulators (Sandberg et al., 1994). A study showed that there are a lot of genetic abnormalities but the specific genes involved are still unidentified. This is because there are a lot of genetic mutations that have been detected in urothelial carcinoma (Cantile et al., 2003). One of the gene families which was found to be involved in the development of urothelial carcinoma is homeobox gene. Homeobox gene is a family of regulatory genes containing a common 183-nucleotide sequence (homeobox) and coding for specific nuclear proteins (homeoproteins) which act as transcription factors (Cillo et al., 1999). Homeobox genes are involved in the development of adult organ tissue and are also important in the development of the central nervous system, axial skeleton, limb and...
urogenital tract (Goodman et al., 2001). The oncogenic potential of homeobox genes has clearly been implicated in leukaemia (Calvo et al., 2000). Homeobox genes are involved in cell proliferation, differentiation, apoptosis and metastasis by regulating other genes. For example, HOXA9 was found to suppress BRCA1 which is involved in the development of breast cancer (Gilbert et al., 2010). As a result, the deregulation of homeobox genes was shown to be associated with cancer development and malignant progression such as invasion and metastasis (Takahashi et al., 2003).

NANOG is one of the homeobox genes that act as a transcription factor and is involved in maintaining pluripotency and self-renewal of embryonic stem cells. Recent studies have reported that NANOG is also involved in self-renewal and the tumourigenicity of cancer stem cells in a variety of human cancers (Boyer et al., 2005; Wang et al., 2006; Hu et al., 2010 and Wen et al., 2010). The upregulation of NANOG was found to be associated with tumour metastasis and poor prognosis in various human malignancies including prostate cancer, lung adenocarcinoma, gliomas, rectal cancer, gastric cancer and oral squamous cell carcinoma (Luo et al., 2013). In bladder cancer cases, it was proven to show that increased expression of NANOG was associated with the increase in pathological grade (Zhang Y et al., 2012). However, the relationship of NANOG expression with other clinicopathological parameters and the pathways involved in the increase of its expression is still unknown.

Thus far, 353 genes have undergone further analyses in the pursuit to identify the transcriptionally active and inactive genes that are co-regulated with NANOG expression. Transcriptionally inactive genes co-regulated by NANOG are the genes that specify transcription factors which are important for differentiation into extra-embryonic, endodermal, mesodermal and ectodermal lineages. NANOG also found to be potential therapeutic target for cancers. Among the 353 genes, LHX5 and ISL1 are homeobox genes that are involved in lineage differentiation. LHX5 was believed to be involved in ectoderm differentiation, while ISL1 takes part in both ectoderm and endoderm differentiation.

Studies done on ISL1 and LHX5 also showed that they played important role in a few types of cancer. For example, ISL1 was found to play an important role in development of pancreatic endocrine tumours, diffuse large B-cell lymphoma (DLBCL) and gastric cancer. LHX5 was found to have a prognostic role in breast cancer. Thus understanding on how these genes are co-expressed in bladder cancer will aid in delineating the role of these genes in bladder cancer development. Besides, the study will help in the current management and treatment as bladder cancer has high tendency rate to recur from low grade to high grade of tumour.

Therefore, a study to delineate the expression of homeobox genes (NANOG, ISL1 and LHX5) in urothelial carcinoma cells across its different stages and grades is necessary in order to identify the relationship between the expression of ISL1 and LHX5 with NANOG. The relationship of these genes expression will also be correlated with clinicopathological parameters to assess the utility of the protein
expression of these genes as potential biomarkers for prognostication. The identification of cancer cell populations that express or suppress these expressions of these genes will help in the discovery of new and effective therapies for bladder cancer in the future.

1.2 Problem statement

The diagnosis of urothelial carcinoma of the bladder is generally achieved through cystoscopy and biopsy. Urothelial carcinoma has a very high frequency of recurrence and therefore requires follow-up cystoscopy as well as urine cytology for periodic surveillance to identify early recurrence. Failure to treat this cancer at an early stage will lead to the development of advance stage disease which may further complicate the management of the patient. Radical cystectomy is the current treatment for urothelial carcinoma. As this cancer needs long-term follow-up and surveillance procedures to monitor for tumour recurrence, many of the patients tend to default their follow up or suffer the morbidities associated with the procedure. This study was conducted to delineate the association of homeobox protein (NANOG, ISL1 and LHX5) expression with the progression of urothelial carcinoma in the hope that new biomarkers that can predict bladder cancer progression can be developed. These biomarkers may help urologists make clinical decisions that will reduce the need for periodic cystoscopy surveillance and improve patient outcomes by identifying potentially aggressive disease early.

1.3 Objective

1.3.1 General objective

To characterise the protein expression of NANOG, ISL1 and LHX5 in urothelial carcinoma of the bladder.

1.3.2 Specific objectives

1. To determine the protein expression and localization of NANOG, ISL1 and LHX5 in urothelial carcinoma of the bladder.
2. To determine the pattern of protein expression of NANOG, ISL1 and LHX5 across different stages and grades of urothelial carcinoma of the bladder.
3. To determine the association between the protein expression of NANOG, ISL1 and LHX5.
4. To determine the association between the protein expression of NANOG, ISL1 and LHX5 and patient demographic factors as well as clinicopathological parameter
1.4 Research Hypothesis

1.4.1 There is a significant difference in the expression pattern of NANOG, ISL1 and LHX5 in different stages and grades of urothelial carcinoma of the bladder.

1.4.2 There is a significant association between the expression of ISL1, LHX5 and NANOG.

1.4.3 There is a significant association between the expression of NANOG, ISL1 and LHX5 and patient demographic factors as well as clinicopathological parameters.
1.5 Conceptual Framework

Localisation of NANOG, ISL1 and LHX5
Ye et al., 2008

Immunohistochemical staining of urothelial carcinoma of the bladder

Expression of NANOG

Expression of ISL1

Expression of LHX5

Clinicopathological Parameters
- Stage
- Tumour invasion
- Grade
- Lymph node metastasis
- Distant metastasis
He et al., 2011

Demographic Factors
- Gender
- Age
- Race
He et al., 2011
REFERENCES

Agaimy, A., Erlenbach-Wunsch, K., Konukiewitz, B., Schmitt, A.M., Rieker, R.J., Vieth, M., Kiewetter, F., Hartmann, A., Zamboni, G., Perren, A. and Kloppe, G. 2013. ISL1 expression is not restricted to pancreatic well differentiated neuroendocrine neoplasms, but is also commonly found in well and poorly differentiated neuroendocrine neoplasms of extrapancreatic origin. Modern Pathology 26:995-1003.

Morgan, R 2011 HOX genes: HOX transcription factors as biomarker in cancer

