EFFECTS OF SYNTHETIC 2, 4, 6-TRIHYDROXY-3-GERANYLACETOPHENONE UPON TNF-α-INDUCED EPITHELIAL DYSFUNCTION

TEE YEE SIM

FPSK(M) 2016 81
EFFECTS OF SYNTHETIC 2, 4, 6-TRIHYDROXY-3-GERANYLACETOPHENONE UPON TNF-α-INDUCED EPITHELIAL DYSFUNCTION

By

TEE YEE SIM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

February 2016
EFFECTS OF SYNTHETIC 2, 4, 6-TRIHYDROXY-3-GERANYLACETOPHENONE UPON TNF-α-INDUCED EPITHELIAL DYSFUNCTION

By

TEE YEE SIM

February 2016

Chairman: Professor Daud Ahmad Israf Ali, PhD
Faculty: Medicine and Health Sciences

Asthma is characterized by activation of Th-2 (T-helper-2)-type T-cell, and patients clinically presented with breathlessness, wheezing, cough, and chest tightness. Current treatments for asthma is just symptomatic relieve during acute exacerbation and prevent from attacks using controllers. All this treatment is not actually treating the new pathogenesis of this disease which is targeting the airway epithelium barrier. Studies shown 5-10% of asthma patient does not have any responds towards usual corticosteroid treatment, therefore there is a need to develop a new drug which can work on the actual pathogenesis of asthma. Airway epithelium plays a critical role in inflammatory reactions by acting as a barrier to external environment, producing chemokines and expressing cell-surface adhesion molecules for recruitment of effector cells. Preliminary studies show that 2,4,6-trihydroxy-3-geranylacetophenone (tHGA) inhibits the synthesis of cysteinyl leukotrienes in activated macrophages via inhibition of 5-lipoxygenase (5-LO) enzymatic activity. This study aimed to determine inhibitory effect of tHGA on adhesion molecule, epithelium hyperpermeability, tight junction barrier and pro-inflammatory signaling pathways that are involved. A549 cell was induced with tumor necrosis factor alpha (TNF-α) 10ng/mL and co-treated with different concentration of tHGA (50μM, 12μM, 3μM) and Dexamethsone 10 μM act as drug control group. Epithelium hyperpermeability was measured by fluorescein isothiocyanate–dextran (FITC-Dextran) permeability assay and trans-epithelial electrical resistance (TEER). Adhesion assay and transepithelium migration assay was performed by using A549 cells and U937 cells. Enzyme-linked immunosorbent assay (ELISA) was used to determine soluble intercellular adhesion molecule-1 (sICAM-1) level and monocyte chemoattractant protein-1 (MCP-1) levels. Membrane expression of tight junction complexes proteins (Zonula occluden 1, occludin, and E-cadherin) was investigated under immunofluorescence, gene expression and protein expression studies. Phosphorylation of mitogen-activated protein kinases (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) pathway was studied. The data obtained concluded that 50 μM tHGA had 32.10 ± 8.03% significantly suppressed leukocytes moving across epithelium. tHGA had reduced adhesion
molecule expression by 43.45 ± 0.16%, therefore inhibit adhesion of monocytes to tumor necrosis factor TNF-α induced epithelium (43 ± 5.77%) and reduce transepithelium migration. tHGA is able to increase TEER, reduce epithelium hyperpermeability by 41± 6.35%. tHGA enhance airway barrier integrity through re-distribution of TJ proteins (ZO-1, occludin) and AJ protein (E-cadherin) and NF-κB pathway and MAPK pathway be could involved in this process.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

KESAN SINTETIK 2, 4, 6-TRIHYDROXY-3-GERANYLACETOPHENONE TERHADAP TNF-α-STIMULASI EPITHELIAL DISFUNGSI

Oleh

TEE YEE SIM

Februari 2016

Pengerusi: Professor Daud Ahmad Israf Ali, PhD
Fakulti: Perubatan dan Sains Kesihatan

Asma dicirikan oleh pengaktifan Th-2 (T-pembantu-2) -type T-sel, dan pesakit secara klinikal akan menghadapi sesak nafas, berdehit, batuk, dan sesak dada. Rawatan untuk pesakit asma hanya melegakan gejala semasa keparahan akut dan mengelakkan daripada serangan dengan menggunakan ubat pengawal. Semua rawatan ini tidak benar-benar merawat patogenesis baru penyakit ini yang memfokuskan saluran udara epithelium. Kajian membuktikan 5-10% daripada pesakit asma tidak mempunyai sebarang kesan terhadap rawatan ubat kortikosteroid. Oleh itu, suatu ubat yang baru perlu dikaji dan targetkan patogenesis sebenar asma. Epitelium salur udara memainkan peranan kritikal dalam tindak balas keradangan, dengan bertindak sebagai satu halangan kepada persekitaran luaran, menghasilkan chemokines dan mengekspresikan molekul molekul pelekatan permukaan sel untuk pengambilan sel efektor. Kajian awal menunjukkan bahawa 2,4,6-trihydroxy-3-geranylacetophenone (tHGA) menghalang sintesis cysteinyl leukotrienes di makrofaj yang diaftikkan melalui perencatan aktiviti enzim 5-lipoxygenase (5-LO). Kajian ini bertujuan mengenalpasti kesan tHGA di molekul pelekatan, epithelium hyperpermeability, simpang dekat dan laluan pro-inflamasi, yang terlibat. Sel A549 telah distimulasi dengan tumor necrosis factor alpha (TNF-α) 10ng/mL dan dikulturkan bersama dengan kepekatan berbeza tHGA (50μM, 12μM, 3μM) dan Dexamethsone 10 μM berfungi sebagai kumpulan kawalan dadah. Epitelium hyperpermeability telah disukat oleh fluorescein isothiocyanate–dextran (FITC Dextran) kebolehtelapan assay dan transepitelium electrical resistance (TEER). Assay pelekat dan transepithelium penghijrahan assay dikaji dengan menggunakan sel-sel A549 dan sel-sel U937. Enzyme-linked immunosorbent assay (ELISA) telah digunakan untuk menentukan tahap larut lekatan intercellular molekul - 1 (sICAM-1) dan monosit chemoattractant protein-1 (MCP-1). Kompleks persimpangan ketat protein (Zonula occluden 1, occludin, dan E-cadherin) telah disiasat dengan immunofluorescence, ekspresi gen dan ekspresi protein. Pemfosforilan laluan mitogen-activated protein kinases (MAPK) dan nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) dikaji. Data yang diperolehi, kesimpulannya 50 μM tHGA telah menghalangkan leukosit menyeberang epithelium sebanyak 32.10 ± 8.03%. tHGA telah mengurangkan molekul pelekatan pada 43.45 ± 0.16%, dengan itu
menghalang pelekat monosit pada TNF-α stimulasi epithelium (43 ± 5.77%) dan mengurangkan penghijrahan transepithelium. tHGA mampu meningkatkan TEER, mengurangkan epiteliun hyperpermeability sebanyak 41± 6.35%. tHGA meningkatkan integriti saluran udara melalui pengagihan semula protein TJ (ZO-1, occludin) dan AJ protein (E-cadherin) dan NF-κB laluan dan MAPK laluan terlibat dalam proses ini.
ACKNOWLEDGEMENTS

Firstly, I would like to express my utmost gratitude to my project supervisor; Prof. Dr. Daud Ahmad Israf Ali for his outstanding supervision, encouragement for never giving while facing any kinds of obstacles in research, and with his experience and knowledge in research field. He had constantly leaded us gaining more knowledge and ideas.

Next, I would like to thank my co-supervisors, Prof Khozirah Shaari, Prof Mohd Roslan Sulaiman and Dr. Tham Chau Ling for sharing their knowledge and support throughout this study.

I would also like to express immeasurable thanks to all my friends of Cell Signalling Lab and Physiology Lab. Great thanks to Pn. Norazren binti Ismail, Mr. Kelvin Lee, Mr. Mohammad Hafiq hashim, Ms. Yap Hui Min, Ms. Shirely, Ms. Foong Lye Yan, Ms. Ng Qing Ting, Ms. Ee Ai Chin, Ms.Chung Pui Peng, Ms. Jacklin, and Ms.Dilah for their never ending encouragements, support and motivations throughout the ups and downs this project. In addition, I would also like to extend my deepest gratitude to the Cell Signaling Laboratory staff especially Mr. Zulkhairi Zainol and Pn. Nora syikin for their excellent technical guidance.

Last but not least, I would like to extend my truthful gratefulness to my family members for their love, moral support and their sacrifices. My special thanks to my husband, Mr. Calvin Soh Kai Wen for his supports and endless love.
I certify that a Thesis Examination Committee has met on 26 February 2016 to conduct the final examination of Tee Yee Sim on her thesis entitled "Effects of Synthetic 2, 4, 6-Trihydroxy-3-Geranylacetophenone Upon TNF-α-Induced Epithelial Dysfunction" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Shamsul Bahri bin Hj. Mohd Tamrin, PhD
Associate Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Chairman)

Cheah Yoke Kqueen, PhD
Associate Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Internal Examiner)

Nor Fadilah Rajab, PhD
Associate Professor
National University of Malaysia
Malaysia
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 21 April 2016
The thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the Master of Science. The members of the Supervisory Committee were as follow:

Daud Ahmad Israf Ali, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Khozirah Shaari, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Mohd Roslan Sulaiman, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Tham Chau Ling, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: __________________ Date: __________________

Name and Matric No.: Tee Yee Sim, GS 32694
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature : ___________________
Name of Chairman of Supervisory Committee : ____________________

Signature : ___________________
Name of Member of Supervisory Committee : ____________________

Signature : ___________________
Name of Member of Supervisory Committee : ____________________

Signature : ___________________
Name of Member of Supervisory Committee : ____________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
</tr>
<tr>
<td>APPROVAL</td>
<td></td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS/ ANNOTATIONS</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
1.1 Background of study
1.2 Problem statement
1.3 Objectives
 1.3.1 General Objective
 1.3.2 Specific Objectives
1.4 Hypothesis

2 LITERATURE REVIEW
2.1 Asthma
2.2 The immune response in asthma
2.3 Role of epithelium in asthma
2.4 Mitogen-activated protein kinase (MAPK): key signalling molecules as therapeutic goal for asthma
2.5 Nuclear factor-κB (NF-κB): key signalling molecules as therapeutic goal for asthma
2.6 The need of new drug development for asthma
2.7 *Melicope ptelefolia*
2.8 2, 4, 6-trihydroxy-3-geranyl acetophenone (tHGA)

3 MATERIALS AND METHODS
3.1 Materials
3.2 Methods
 3.2.1 Media preparation
 3.2.2 Cell culture
 3.2.3 Cell treatment
 3.2.4 MTT assay
 3.2.5 ICAM-1 and MCP-1 Analysis by Enzyme-linked Immunosorbent assay (ELISA)
 3.2.6 Epithelial-monocyte adhesion assay
 3.2.7 Transepithelial migration (TEM) assay
 3.2.8 Permeability of A549 monolayer
 3.2.9 Measurement of transepithelial electrical resistance
 3.2.10 Membrane expression of tight junction proteins
 3.2.11 RT-PCR
 3.2.12 Electrophoresis
3.2.13 Western Blot Analysis
 3.2.13.1 Sample preparation
 3.2.13.2 Whole cell protein extraction
 3.2.13.3 Protein quantification
 3.2.13.4 SDS-polyacrylamide gel electrophoresis (PAGE)
 3.2.13.5 Semi-dry protein transfer
 3.2.13.6 Membrane staining
 3.2.13.7 Gel staining and destaining
 3.2.13.8 Immunoblotting
 3.2.13.9 Visualization
 3.2.13.10 Membrane stripping

3.3 Statistical analysis
3.4 Summary of Methodology

4 RESULTS
4.1 Effect of tHGA on the viability of A549 cells
4.2 tHGA inhibited TNF-α induced monocytes adhesion
4.3 tHGA inhibits TNF-α induced MCP-1 secretion
4.4 tHGA inhibited TNF-α induced soluble ICAM-1 secretion, gene expression and protein expression
4.5 tHGA reduced epithelial hyper permeability and increase TEER of epithelium monolayer
4.6 tHGA prevent disruption of junctional complexes molecules
4.7 tHGA inhibits phosphorylation of MAPK pathway
4.8 tHGA inhibits phosphorylation of NFκB pathway

5 DISCUSSION

6 SUMMARY, CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH

REFERENCES
APPENDICES
BIODATA OF STUDENT
LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primer sequences, operating conditions and PCR product sizes</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>OneStep RT-PCR reaction components</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>Solution for preparing resolving gel in SDS-PAGE</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>Solutions for preparing staking gel in SDS-PAGE</td>
<td>71</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Overview of primary sensitization of the airways in the induction of allergic-type asthma</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Epithelial barrier function</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Schematic representation of how epithelial damage and repair interact with inflammatory components in chronic asthma</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Schematic representation of asthma over the life course</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>MAPK phosphorelay systems</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>Chemical structure of tHGA</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>(A) Picture illustration of Millicell® ERS-2</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>(B) Picture illustration of air-liquid interface (ALI) culture</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>Effects of tHGA on the viability of A549 cells by MTT assay</td>
<td>26</td>
</tr>
<tr>
<td>9</td>
<td>Effect of tHGA on TNF-α induced monocyte adhesion to A549</td>
<td>27</td>
</tr>
<tr>
<td>10</td>
<td>Effect of tHGA on TNF-α induced transepithelium migration of monocytes</td>
<td>29</td>
</tr>
<tr>
<td>11</td>
<td>Effect of tHGA on TNF-α induced MCP-1 secretion and gene expression by A549 cells</td>
<td>31</td>
</tr>
<tr>
<td>12</td>
<td>Effect of tHGA on TNF-α induced sICAM-1 secretion, gene expression and protein expression by A549 cells</td>
<td>32</td>
</tr>
<tr>
<td>13</td>
<td>Effect of tHGA on TNF-α induced epithelial hyperpermeability and TEER value in A549 monolayer</td>
<td>34</td>
</tr>
<tr>
<td>14</td>
<td>Effects of tHGA on junctional complexes molecules in TNF-α induced A549 cells</td>
<td>37</td>
</tr>
<tr>
<td>15</td>
<td>Effects of tHGA on junctional complexes molecules in A549 cells by confocal study</td>
<td>40</td>
</tr>
<tr>
<td>16</td>
<td>Effects of tHGA on TNF-α induced MAPK phosphorylation in A549 cells</td>
<td>43</td>
</tr>
<tr>
<td>17</td>
<td>Effects of tHGA on TNF-α induced nuclear translocation of NF-κB p65 in A549 cells</td>
<td>46</td>
</tr>
<tr>
<td>No.</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>18</td>
<td>Effects of tHGA on TNF-α induced nuclear translocation of NF-κB p65 in A549 cells</td>
<td>47</td>
</tr>
<tr>
<td>19</td>
<td>Schematic diagram of the 96-well plate for A549 cells dose response studies</td>
<td>62</td>
</tr>
<tr>
<td>20</td>
<td>RNA integrity gel staining with ethidium bromide</td>
<td>66</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS AND ANNOTATION

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>one way analysis of variance</td>
</tr>
<tr>
<td>BCA</td>
<td>bicinchoninic acid</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>CAMs</td>
<td>cell adhesion molecules</td>
</tr>
<tr>
<td>ddH2O</td>
<td>double distilled water</td>
</tr>
<tr>
<td>Dex</td>
<td>Dexamethasone</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s Modified Eagle Medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulphoxide</td>
</tr>
<tr>
<td>E-CAD</td>
<td>E-cadherin</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>ERK</td>
<td>extracellular signal-regulated kinase</td>
</tr>
<tr>
<td>FBS</td>
<td>fetal bovine serum</td>
</tr>
<tr>
<td>GADPH</td>
<td>glyceraldehydes-3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>HRP</td>
<td>horseradish peroxidase</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>intercellular adhesion molecules type 1</td>
</tr>
<tr>
<td>IKK</td>
<td>I-κB kinase</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>I-κB</td>
<td>inhibitory protein κB</td>
</tr>
<tr>
<td>JAKs</td>
<td>Janus kinases</td>
</tr>
<tr>
<td>JNK</td>
<td>c-Jun N-terminal kinases</td>
</tr>
<tr>
<td>MAPK</td>
<td>mitogen-activated protein kinase</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>MAPKK</td>
<td>MAPK kinase</td>
</tr>
<tr>
<td>MAPKKK</td>
<td>MAPKK kinase</td>
</tr>
<tr>
<td>MCP-1</td>
<td>monocyte chemotactic protein -1</td>
</tr>
<tr>
<td>MMP</td>
<td>matrix metalloproteinases</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>MTT</td>
<td>3-(4,5-dimethylthiazol-2 yl)-2,5-diphenyltetrazolium</td>
</tr>
<tr>
<td>NF-κB</td>
<td>nuclear factor-kappaB</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PD 98059</td>
<td>2'-amino-3'-methoxyflavone</td>
</tr>
<tr>
<td>PVDF</td>
<td>polyvinylidene fluoride</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell Park Memorial Institute</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>reverse transcription-polymerase chain reaction</td>
</tr>
<tr>
<td>SB 203580</td>
<td>4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl) Imidazole</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of the mean</td>
</tr>
<tr>
<td>SP 600125</td>
<td>anthra[1,9-cd]pyrazol-6(2H)-one</td>
</tr>
<tr>
<td>TBE</td>
<td>tris/Borate/EDTA</td>
</tr>
<tr>
<td>TBST</td>
<td>tris buffered saline-tween 20</td>
</tr>
<tr>
<td>TEM</td>
<td>transepithelium migration</td>
</tr>
<tr>
<td>TEMED</td>
<td>tetramethylethylenediamine</td>
</tr>
<tr>
<td>TFFIB</td>
<td>transcription factor II B</td>
</tr>
</tbody>
</table>
Annotations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>alpha</td>
</tr>
<tr>
<td>β</td>
<td>beta</td>
</tr>
<tr>
<td>°C</td>
<td>degree celcius</td>
</tr>
<tr>
<td>γ</td>
<td>gamma</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td><</td>
<td>lesser than</td>
</tr>
<tr>
<td>≤</td>
<td>less or equal</td>
</tr>
<tr>
<td>μ</td>
<td>micro</td>
</tr>
<tr>
<td>μg</td>
<td>micro gram</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>μL</td>
<td>microlitre</td>
</tr>
<tr>
<td>μM</td>
<td>micromolar</td>
</tr>
<tr>
<td>mL</td>
<td>millilitre</td>
</tr>
<tr>
<td>mM</td>
<td>milimolar</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>%</td>
<td>percent</td>
</tr>
<tr>
<td>±</td>
<td>plus and/or minus</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of study

Asthma is an inflammatory airway disease that affects 300 million people worldwide. In Malaysia, asthma has been ranked as third main chronic disease by the Third National Health and Morbidity Survey (NHMS III) 2006. Asthma prevalence for Malaysians aged 18 years and above over duration of 12 months was 4.5%; more than 50% of adult asthmatics seek medical attention due to acute exacerbation. The airway epithelium is a barrier between tissues of the airways and the external environment. Proteins and receptors in tight junctions (TJ) such as zonula occludens (ZO) 1-3, claudin 1-5, occludin, and trans-membrane adhesion proteins (E-cadherin, catenin and junctional adhesion molecule) regulate intercellular rephrases and interact with adjacent cells (Holgate 2008). Tight junctions, adherens junctions, desmosomes and hemidesmosomes form an epithelium junctional complex that functions as a unit. Studies shown that the airway epithelium was disrupted in asthma and involves detached columnar ciliated cells, interference of the junction molecule E-cadherin at sites of epithelial detachment, and the increase in permeability to allergens, and presence of epithelial aggregates in sputum (Holgate 2008).

2,4,6-trihydroxy-3-geranyl acetophenone (tHGA) was previously isolated from Melicope ptelefolia and subsequently a synthetic form was demonstrated to be effective in aberration of pulmonary inflammation (Ismail et al., 2012). Furthermore, Shaari et al., 2011, proved that tHGA inhibits the synthesis of cysLTs in activated macrophages via inhibition of 5-lipoxygenase (5-LO) enzymatic activity.

1.2 Problem statement

Asthma is a multi-factorial disease which is associated with genetic, allergic, infections, environment and emotional aspects. Asthma causes many deaths yearly and expensive hospitalization and medical bills that had been a burden to underdeveloped countries. Currently, treatments for asthma are just symptomatic relieve during acute exacerbation and no treatment is actually available to cure the actual pathogenesis of this disease. Furthermore, studies have shown that 5-10% of asthma patients do not respond to usual corticosteroid treatment; therefore there is a need to develop new drugs which aim to cure asthma.

Epithelial tight junctions act as physical barrier between the external environment and the internal tissues. In asthmatic patients, they presented with TJ disruptions even without exogenous stimuli. Subepithelial collagen deposition and thickening of the lamina reticularis were ways of healing responses within the airways in barrier dysfunction and act as the protective barrier in the absence of a functional epithelium in
asthma. Airways play a fundamental role in the initiation of innate immunity. Activated epithelial cells will release cytokines and chemokines on stimulation due to expression of pattern-recognition receptors like Toll-like receptors (TLRs). When there is a disruption of the TJ integrity, external antigens will penetrate the TJ causing activations of DCs and innate immunity. These processes caused amplified recruitment of effector cells, and further diminish of barrier function, thus breakdown of barrier homeostasis (Swindle et al., 2009).

Shaari 2006 had proven anti-inflammatory properties of Melicope ptelefolia resulted in the identification of 2,4,6-trihydroxy-3-geranylacetophenone (tHGA), a drug-like compound containing the phloroglucinol as bioactive structural-core. Originally, this compound was found to have a dose-dependent effect towards inhibition of soybean 15-LOX. Subsequently, this compound exerts a dose-dependent inhibition of cysteinyi leukotriene secretion from activated macrophage cells. Further studies were carried out on both the chemistry and pharmacology of tHGA revealed that tHGA inhibited 5-lipoxygenase (5-LOX) and both cyclooxygenase (COX) isoforms. tHGA was as effective as Zileuton, a commercial LOX inhibitor in an acute model of murine asthma. To date, tHGA is able to reduce pulmonary cellular infiltration, control airway hyperresponsiveness towards methacholine challenge, reduce goblet cell metaplasia, decrease cytokine (IL-4, IL-5, IL-13) and cysteinyi leukotriene secretion and systemic IgE concentrations. However, the study of tHGA properties on restoration of epithelium barrier integrity has not yet been done. Therefore, it is important to highlight the potential of tHGA on the epithelial tight junction restoration. Furthermore, in future many asthma patients can have the maximal beneficial of a non steroidal drug which can reverse and prevent the asthma disease from deteriorating, and further save up millions of expensive medical expenses.

1.3 Objectives

1.3.1 General Objective

The objective of the study was to determine the effect of tHGA upon TNF-α induced in-vitro model of airway epithelium dysfunction which mainly focus on the restoration of disrupted tight junctions properties.

1.3.2 Specific Objectives

i. To determine the effects of tHGA on extracellular secretion and intracellular genes and protein expression of cell adhesion molecules, epithelium hyper permeability and chemokine synthesis in TNF-α induced A549 cells.

ii. To determine the effects of tHGA on epithelium cells – leukocytes interaction on adhesion and migration.

iii. To determine the effects of tHGA upon dysregulated junctional protein expression.

iv. To determine the effects of tHGA upon major epithelial tight junctions pathways mainly NF-κB and MAPK pathways which regulate tight junctions proteins expression.
1.4 Hypothesis

tHGA will be able to reduce the recruitment and migration of leukocytes, reduce adhesion molecule expression and enhances TJ barrier integrity. tHGA exerts an effect on NF-κB and MAPK pathways.
REFERENCES

