EVALUATION OF WATER QUALITY USING PATTERN RECOGNITION TECHNIQUE IN MELAKA RIVER BASIN, MALAYSIA

ANG KEAN HUA

FPAS 2018 12
EVALUATION OF WATER QUALITY USING PATTERN RECOGNITION TECHNIQUE IN MELAKA RIVER BASIN, MALAYSIA

By

ANG KEAN HUA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

May 2018
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

EVALUATION OF WATER QUALITY USING PATTERN RECOGNITION TECHNIQUE IN MELAKA RIVER BASIN, MALAYSIA

By

ANG KEAN HUA

May 2018

Chair : Faradiella Mohd Kusin, PhD
Faculty : Environmental Studies

The unorganised expansion and uncontrolled urbanisation development had led to environmental issues involved with river water pollution that occurred within the Melaka River basin. There are three objectives study to solve the water quality of the Melaka River basin through (1) to identify the potential sources of Melaka River pollution in correlation with the temporal land use classification, (2) to determine the land use land cover changes in 2015 and predict the future land use land cover for 2022, and (3) to verify pattern recognition based on the land use classification between 2015 and 2022 in the determination of pollutant sources within the Melaka River. The results indicated HCA have two cluster areas (C1 and C2). The DA indicated 12 variables were found to be the most significant parameters with a high variation in the spatial distribution. The PCA found that the C1 was attributed to contamination from the agricultural and residential activities; while the C2 included the pollution sources from the agricultural, residential, industrial, animal husbandry, and sewage treatment activities. In the Pearson correlation analysis and ANOVA analysis shown Vegetation Area (VA), Non-Industrial Area (NIA), Industrial Area (IA), Open Space Area (OSA), and Farming Area (FA) were correlated with majority of the physico-chemical and biological variables. LULC incorporated with CA-Markov chain model analysis showed NIA (67.50%), IA (29.15%) and FA (3.35%) were increased from 2001 to 2015 and 2022; while the VA (89.59%), OSA (3.32%) and WB (7.08%) continued to decrease. In GIS, the LISA analysis indicates 2015 showed the clustered area of C1 with S1 as the main contributor; while C2 of S5 as the main contributor. The Moran I analysis from high-to-low pollutant sources are NIA (0.80) > VA (0.59) > IA (0.42) > OSA (0.40). In 2022, the contamination from high-to-low are VA (0.59) > NIA (0.58) > IA (0.50) > OSA (0.41) in the Melaka River. The hotspot analysis for year 2015 indicated C1 of S1 as the main contributor; while C2 of S5 as main contributor. General G-statistic analysis from high-to-low are IA (1.099 x 10^-3) > NIA (5.39 x 10^-4) > VA (6.9 x 10^-5). In 2022, the hotspot...
analysis in C1 indicated S7 as the main contributor; while C2 remains the same as S5 which is the main contributor to have pollutant sources from high-to-low area IA (3.012 x 10^{-3}) > NIA (5.95 x 10^{-4}) > VA (7.6 x 10^{-5}). In conclusion, Moran I and general G-statistic had gained support especially in benefiting from the PCA in recognising the pattern of pollutant sources (e.g. land use classes) with precise details. Simultaneously, LISA and hotspot analysis have an advantage over HCA by recognising the clustered area more specifically, which was based on the pattern of pollutant sources.
PENILAIAN KUALITI AIR MENGGUNAKAN TEKNIK CORAK
PENGIKTIRAFAN DI LEMBANGAN SUNGAI MELAKA, MALAYSIA

Oleh

ANG KEAN HUA

Mei 2018

Pengerusi : Faradiella Mohd Kusin, PhD
Fakulti : Pengajian Alam Sekitar

Pembangunan perbandaran yang tidak teratur dan tidak terkawal telah membuahkan isu-isu alam sekitar yang melibatkan pencemaran air sungai yang berlaku di dalam lembangan Sungai Melaka. Oleh itu, penyelesaian terhadap kualiti air sungai di lembangan Sungai Melaka melalui kajian objektif seperti (1) untuk mengenal pasti potensi sumber pencemar Sungai Melaka dalam korelasi dengan klasifikasi penggunaan tanah sementara, (2) untuk menentukan perubahan guna tanah antara 2015 dan meramalkan masa depan guna tanah pada 2022, dan (3) untuk mengesahkan pengiktirafan corak berdasarkan klasifikasi guna tanah antara 2015 dan 2022 dalam menentukan sumber pencemar di Sungai Melaka. Dapatan kajian menunjukkan HCA mempunyai dua kawasan cluster (C1 dan C2). DA menunjukkan 12 pembolehubah didapati merupakan parameter yang paling ketara dengan variasi yang tinggi dalam taburan spatial. PCA menunjukkan C1 dikaitkan dengan pencemaran dari aktiviti pertanian dan kediaman; manakala C2 termasuk sumber pencemaran dari aktiviti pertanian, kediaman, perindustrian, penternakan, dan rawatan kumbahan. Dalam analisis korelasi Pearson dan analisis varians (ANOVA) menunjukkan Vegetation Area (VA), Non-Industrial Area (NIA), Industrial Area (IA), Open Space Area (OSA), and Farming Area (FA) mempunyai perhubungan signifikan dengan majoriti pembolehubah fiziko-kimia dan biologi. Seterusnya, LULC menggabungkan analisis model rantai CA-Markov menunjukkan NIA (67.50%), IA (29.15%), dan FA (3.35%) telah meningkat dalam tempo 15 tahun (2001 hingga 2015) dan juga luas guna tanah masa depan (2022); manakala VA (67.50%), OSA (3.32%), dan WB (7.08%) pula terus berkurangan. Dalam GIS, analisis LISA tahun 2015 menunjukkan kawasan kluster C1 dengan S1 adalah penyumbang utama; manakala C2 adalah S5 sebagai penyumbang utama. Analisis Moran I dari sumber-sumber pencemar dari tinggi-ke-rendah adalah NIA (0.80) > VA (0.59) > IA (0.42) > OSA (0.40). Pada 2022, pencemaran dari tinggi-ke-rendah adalah VA (0.59) > NIA (0.58) > IA (0.50) > OSA (0.41) di Sungai Melaka. Analisis hotspot tahun
2015 menunjukkan C1 dari S1 adalah sebagai penyumbang utama; manakala C2 ialah S5 sebagai penyumbang utama. Analisis G-statistik umum dari tinggi-ke-rendah adalah IA (1.099 x 10^{-3}) > NIA (5.39 x 10^{-4}) > VA (6.9 x 10^{-5}). Pada tahun 2022, analisis hotspot di C1 menunjukkan S7 sebagai penyumbang utama; manakala C2 tetap sama dengan S5 sebagai penyumbang utama untuk mempunyai sumber pencemar dari tinggi-ke-rendah ialah IA (3.012 x 10^{-3}) > NIA (5.95 x 10^{-4}) > VA (7.6 x 10^{-5}). Kesimpulannya, Moran I dan G-statistik banyak menyokong terutama dalam memberi manfaat kepada PCA dalam mengiktiraf corak sumber pencemar (contohnya kelas luas guna tanah) dengan tepat dan terperinci. Pada masa yang sama, analisis LISA dan hotspot mempunyai kelebihan terhadap HCA dengan mengenali kawasan kluster dengan lebih spesifik dan khusus, yang berdasarkan corak sumber pencemar.
ACKNOWLEDGEMENTS

I am very grateful to Buddha for His grace and mercy and for bestowing unto me the strength and blessings to endure until the completion of writing this thesis. Also, I am indebted to my supervisor, Dr. Faradiella Mohd Kusin, for her unfailing supervision and constant support. Her invaluable help in the form of constructive comments and suggestions throughout this thesis work have contributed to the success of this research. I would also like to convey my heartfelt thanks to my co-supervisors, Dr. Sarva Mangala Praveena, Dr. Zulfa Hanan Ashaari, and Dr. Nisfariza Mohd Noor, for their knowledgeable advice, guidance, support and endless encouragement by instilling enthusiasm in me to persevere throughout the entire duration of my PhD studies.

At the same time, I would like to extend my grateful thanks to the staff from the Department of Environmental Science, Faculty of Environmental Studies, as well as the School of Graduate Studies (SGS) UPM for their exemplary performance by providing us (graduates students) with important information and reminders regarding our thesis. Needless to say, I would also like to extend my cordial thanks to the Department of Environment (DOE) Malaysia, Department of Irrigation and Drainage (JPS) Malaysia, Department of Town and Country Planning (JPBD) Malaysia, Malaysian Remote Sensing Agency (ARSM), and the United States Geological Survey (USGS) for providing insightful information, cooperation, support and discussions regarding the water quality data and land use data in Melaka River basin.

Above all, a word of thanks to my family who have always stood by me and giving me their wholehearted support and encouragement. Their unwavering support, have given me the strength and confidence to complete this PhD study.

Finally, I hereby acknowledge with full appreciation that this study would not have been realised without the contribution of my field assistants and friends who have given immense contribution, motivation, kindness, and moral support all the way until the completion of this study. Many thanks for their laughter, friendship and great memories. Last but not least, a thousand thanks to the residents and villagers who have given additional information and co-operation when the collection data was carried out within the Melaka River. Hopefully, their collaborative contributions and valuable information will bring to fruition in the near future the aim of this research study which will help improve the future of the water quality that flows along the Melaka River.
I certify that a Thesis Examination Committee has met on 4 May 2018 to conduct the final examination of Ang Kean Hua on his thesis entitled “Evaluation of Water Quality Using Pattern Recognition Technique in Melaka River Basin, Malaysia” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Normala Halimoon, PhD
Senior Lecturer
Faculty of Environmental Studies
Universiti Putra Malaysia
(Chairman)

Ahmad Zaharin Aris, PhD
Professor
Faculty of Environmental Studies
Universiti Putra Malaysia
(Internal Examiner)

Mohd Hasmadi Ismail, PhD
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Internal Examiner)

Helmut Kroiss, PhD
Professor Emeritus
Institute for Water Quality, Resources and Waste Management
Vienna University of Technology
Austria
(External Examiner)

RUSLI HAJI ABDULLAH, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 27 September 2018
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Faradiella Mohd Kusin, PhD
Senior Lecturer
Faculty of Environmental Studies
Universiti Putra Malaysia
(Chairman)

Zulfa Hanan Asha’ari, PhD
Senior Lecturer
Faculty of Environmental Studies
Universiti Putra Malaysia
(Member)

Sarva Mangala Praveena, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Nisfariza Mohd Noor, PhD
Senior Lecturer
Faculty of Arts and Social Sciences
University of Malaya
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: __________________________________ Date: 18.10.18

Name and Matric No.: ANG KEAN HUA (GS40167)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:
Name of Chairman of Supervisory Committee: FARADIELLA MOHD KUSIN

Signature:
Name of Member of Supervisory Committee: ZULFA HANAN ASHA’ARI

Signature:
Name of Member of Supervisory Committee: SARVA MANGALA PRAVEENA

Signature:
Name of Member of Supervisory Committee: NISFARIZA MOHD NOOR
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Overview of River Water Pollution</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Overview of the Effect of Land Use</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Change on Water Quality</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>Problem Statement</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>Objective of Study</td>
<td>7</td>
</tr>
<tr>
<td>1.6</td>
<td>Research Questions</td>
<td>7</td>
</tr>
<tr>
<td>1.7</td>
<td>Scope of Work</td>
<td>8</td>
</tr>
<tr>
<td>1.8</td>
<td>Significance of Study</td>
<td>9</td>
</tr>
<tr>
<td>1.9</td>
<td>Structure of Thesis</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>12</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>12</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Melaka River Development</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>The Water Resources</td>
<td>13</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Physical Parameter</td>
<td>15</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Chemical Parameter</td>
<td>16</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Biological Parameter</td>
<td>18</td>
</tr>
<tr>
<td>2.2.4</td>
<td>The Impact Pollutants</td>
<td>19</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Environmetric Techniques</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>The Land Use and Land Resources</td>
<td>41</td>
</tr>
<tr>
<td>2.4</td>
<td>Fundamentals and History of Remote Sensing</td>
<td>44</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Process and Concept of Remote Sensing</td>
<td>45</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Land Use Techniques in Water Quality Study</td>
<td>47</td>
</tr>
<tr>
<td>2.5</td>
<td>Fundamentals of Geographical Information System</td>
<td>68</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Components of GIS</td>
<td>69</td>
</tr>
<tr>
<td>2.5.2</td>
<td>The Concept of GIS</td>
<td>71</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Application of GIS</td>
<td>73</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Pattern Analysis in Water</td>
<td>74</td>
</tr>
</tbody>
</table>
3 METHODOLOGY

3.1 Introduction 88
3.2 Research Material 88
3.3 Research Framework 89
 3.3.1 Study Area 92
3.4 Water Quality Monitoring 94
3.5 Field Sampling and Analysis 95
3.6 Data and Data Pre-treatment 98
3.7 Interpretation of Water Quality Data 99
 3.7.1 Hierarchical Cluster Analysis (HCA) 100
 3.7.2 Principal Components Analysis (PCA) 100
 3.7.3 Discriminant Analysis (DA) 101
 3.7.4 Pearson Correlation Coefficient 101
 3.7.5 Prediction of Relation Between Land Use and Water Quality Using Neural Network 102
 3.7.6 Water Quality Index (WQI) 103
3.8 Application of Remote Sensing 104
 3.8.1 Image Pre-Processing and Land Use Land Cover Classification 105
 3.8.2 Accuracy Assessment 107
 3.8.3 Map Observation and Evaluation Process 107
 3.8.4 LULC Change Detection Analysis 107
 3.8.5 Markov Chain Model Analysis 108
 3.8.6 Cellular Automata (CA) 109
 3.8.7 CA-Markov Chain Model 109
 3.8.8 Validating LULC Prediction Model 110
 3.8.9 Quality Assurance and Quality Control of Remote Sensing Analysis 110
3.9 Application of Geographical Information System (GIS) 111
 3.9.1 Moran I Analysis and LISA Analysis 111
 3.9.2 Hotspot Analysis 112
 3.9.3 Quality Assurance and Quality Control of GIS Analysis 113

4 RESULTS AND DISCUSSION 115
4.1 Introduction 115
4.2 Water Quality Analysis 115
 4.2.1.1 River Water Quality
<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Water Pollution Source by Sector in 2012 (Malaysia)</td>
</tr>
<tr>
<td>2.1</td>
<td>Category of Water Resources</td>
</tr>
<tr>
<td>2.2</td>
<td>The Major Categories and Impact of Pollutants</td>
</tr>
<tr>
<td>2.3</td>
<td>Environmetric Techniques in Water Quality Studies</td>
</tr>
<tr>
<td>2.4</td>
<td>Milestone in the History of Remote Sensing</td>
</tr>
<tr>
<td>2.5</td>
<td>The Main Part of Spectrum</td>
</tr>
<tr>
<td>2.6</td>
<td>LULC Techniques in Water Quality Study</td>
</tr>
<tr>
<td>2.7</td>
<td>Hardware, Software and Users</td>
</tr>
<tr>
<td>2.8</td>
<td>GIS Operation</td>
</tr>
<tr>
<td>2.9</td>
<td>Pattern Analysis in Water Quality Studies</td>
</tr>
<tr>
<td>3.1</td>
<td>River Physical and Functional Changes</td>
</tr>
<tr>
<td>3.2 (i)</td>
<td>Coordinate of Sampling Station</td>
</tr>
<tr>
<td>3.2 (ii)</td>
<td>Recommended Storage Condition for Certain Analysis of Water Sample</td>
</tr>
<tr>
<td>3.3</td>
<td>Classes Delineated on the Basis of Supervised Classification</td>
</tr>
<tr>
<td>4.1</td>
<td>Mean (and Standard Deviation) Values of Water Quality Data Along Melaka River from Years 2001 to 2015</td>
</tr>
<tr>
<td>4.2 (i)</td>
<td>National Water Quality Standard for Malaysia, NWQS</td>
</tr>
<tr>
<td>4.2 (ii)</td>
<td>Water Quality Classification According to National Water Quality Standard (NWQS) for Malaysia</td>
</tr>
<tr>
<td>4.2 (iii)</td>
<td>PCC between Physical, Chemical and Biological Parameter in Melaka River Basin</td>
</tr>
<tr>
<td>4.3</td>
<td>Classification Matrix for DA of Spatial Variation in Melaka River Basin</td>
</tr>
<tr>
<td>4.4</td>
<td>Varimax Rotation PCs for Water Quality Data Based on Two Clusters within Melaka River Basin</td>
</tr>
<tr>
<td>4.5 (i)</td>
<td>Pearson Correlation Coefficient and Coefficient of Variance Between Land Use Variables with Water Quality Variables in 2001 to 2015</td>
</tr>
<tr>
<td>4.5 (ii)</td>
<td>The Prediction Performance of R2 and RMSE for Multi-Layered Perceptron of Feed-Forward Neural Network</td>
</tr>
<tr>
<td>4.5 (iii)</td>
<td>The Land Use Categories in 2015</td>
</tr>
<tr>
<td>4.5 (iv)</td>
<td>Comparison of Actual and Projected LULC types in 2015</td>
</tr>
<tr>
<td>4.6</td>
<td>Area (ha) of LULC type in Melaka River Basin for 2001, 2008, 2015 and 2022</td>
</tr>
<tr>
<td>4.7</td>
<td>Transition Probability of Area and Matrix Calculated using Land-use Maps of 2001-2008</td>
</tr>
<tr>
<td>4.8</td>
<td>Transition Probability of Area and Matrix Calculated using Land-use Maps of 2008-2015</td>
</tr>
<tr>
<td>4.9</td>
<td>Transition Probability of Area and Matrix Calculated</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>4.10</td>
<td>Rate of Losses, Gains, and Net Changes of LULC Areas (ha)</td>
</tr>
<tr>
<td>4.11</td>
<td>Moran Index Analysis for Vegetation Area, Non-Industrial Area, Industrial Area, Open Space Area and Farming Area between the year of 2015 to 2022</td>
</tr>
<tr>
<td>4.12</td>
<td>General G-Statistic Analysis for Vegetation Area, Non-Industrial Area, Industrial Area, Open Space Area and Farming Area between the year of 2015 to 2022</td>
</tr>
<tr>
<td>4.13</td>
<td>LISA Analysis for Vegetation Area, Non-Industrial Area, Industrial Area, Open Space Area and Farming Area between the year of 2015 to 2022</td>
</tr>
<tr>
<td>4.14</td>
<td>Hotspot Analysis for Vegetation Area, Non-Industrial Area, Industrial Area, Open Space Area and Farming Area between the year of 2015 to 2022</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Tree Analysis of Land Use Change in Melaka River Basin</td>
</tr>
<tr>
<td>1.1</td>
<td>River Water Quality Status in Malaysia (2005-2012)</td>
</tr>
<tr>
<td>2.1</td>
<td>Independent and Dependent Variable</td>
</tr>
<tr>
<td>2.2</td>
<td>Symptoms of Problems of Pressure on Land and Resources</td>
</tr>
<tr>
<td>2.3</td>
<td>Overview of the Process of Remote Sensing</td>
</tr>
<tr>
<td>2.4</td>
<td>Electromagnetic Spectrum</td>
</tr>
<tr>
<td>2.5</td>
<td>GIS Components</td>
</tr>
<tr>
<td>2.6</td>
<td>The Concept of GIS</td>
</tr>
<tr>
<td>2.7</td>
<td>GIS Applied in Various Activities</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow Chart of Research Framework</td>
</tr>
<tr>
<td>3.2</td>
<td>Sampling Stations Along Melaka River Basin</td>
</tr>
<tr>
<td>3.3</td>
<td>A Schematic Diagrams of The Final Neural Network</td>
</tr>
<tr>
<td>4.1 (a)</td>
<td>Mean Electrical Conductivity and Total Dissolved Solids</td>
</tr>
<tr>
<td>4.1 (b)</td>
<td>Mean Data for pH, Temperature, Salinity, Total Suspended Solid, and Turbidity</td>
</tr>
<tr>
<td>4.1 (c)</td>
<td>Mean Data for BOD, COD, DO, and NH3N</td>
</tr>
<tr>
<td>4.1 (d)</td>
<td>Mean Data for Trace Metals of As, Hg, Cd, Cr, Pb, and Zn</td>
</tr>
<tr>
<td>4.1 (e)</td>
<td>Mean Data for Total Coliform and Escherichia Coliform</td>
</tr>
<tr>
<td>4.2</td>
<td>Dendogram of Water Quality Monitoring Stations Clusters using Ward Linkage Method in HCA</td>
</tr>
<tr>
<td>4.3</td>
<td>Box and Whisker Plots of Some Parameters Separated from DA Associated with Water Quality Data of Melaka River</td>
</tr>
<tr>
<td>4.4 (a)</td>
<td>Cluster 1 with 6 Principal Components</td>
</tr>
<tr>
<td>4.4 (b)</td>
<td>Cluster 2 with 8 Principal Components</td>
</tr>
<tr>
<td>4.4 (c1)</td>
<td>The Performance of R2 for Multi-Layered Perceptron of Feed-Forward Neural Network between Land-use and Water Quality</td>
</tr>
<tr>
<td>4.4 (c2)</td>
<td>The Performance of RMSE for Multi-Layered Perceptron of Feed-Forward Neural Network between Land Used and Water Quality</td>
</tr>
<tr>
<td>4.4 (d1)</td>
<td>Prediction for Vegetation Area with Water Quality Variables</td>
</tr>
<tr>
<td>4.4 (d2)</td>
<td>Prediction for Non-Industrial Area with Water Quality Variables</td>
</tr>
<tr>
<td>4.4 (d3)</td>
<td>Prediction for Industrial Area with Water Quality Variables</td>
</tr>
<tr>
<td>4.4 (d4)</td>
<td>Prediction for Open Space Area with Water Quality Variables</td>
</tr>
<tr>
<td>4.4 (d5)</td>
<td>Prediction for Farming Area with Water Quality Variables</td>
</tr>
</tbody>
</table>
4.5 (a) LULC Actual Maps of 2001
4.5 (b) LULC Actual Maps of 2008
4.5 (c) LULC Actual Maps of 2015
4.5 (d) LULC Simulated Map of 2015
4.5 (e) LULC Simulated Map of 2022
4.6 Moran's Index Analysis of VA2015, VA2022, NIA2015, NIA2022, IA2015, IA2022, OSA2015, OSA2022, FA2015, FA2022
4.7 General G Analysis of VA2015, VA2022, NIA2015, NIA2022, IA2015, IA2022, OSA2015, OSA2022, FA2015, FA2022
4.8 LISA Index Analysis of VA2015, VA2022, NIA2015, NIA2022, IA2015, IA2022, OSA2015, OSA2022, FA2015, FA2022
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>AOI</th>
<th>Area of Interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>APHA</td>
<td>American Public Health Association</td>
</tr>
<tr>
<td>CA-Markov</td>
<td>Cellular Automata-Markov</td>
</tr>
<tr>
<td>DA</td>
<td>Discriminant Analysis</td>
</tr>
<tr>
<td>DF</td>
<td>Discriminant Function</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Environment</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographical Information System</td>
</tr>
<tr>
<td>Ha</td>
<td>Hectare</td>
</tr>
<tr>
<td>HCA</td>
<td>Hierarchical Cluster Analysis</td>
</tr>
<tr>
<td>HPS</td>
<td>High-Pollution Sources</td>
</tr>
<tr>
<td>ICP-MS</td>
<td>Inductive Coupled Plasma-Mass Spectrometry</td>
</tr>
<tr>
<td>LISA</td>
<td>Local Indicators of Spatial Association</td>
</tr>
<tr>
<td>LULC</td>
<td>Land Use Land Cover</td>
</tr>
<tr>
<td>MLD</td>
<td>Millions of Litres per Day</td>
</tr>
<tr>
<td>MPS</td>
<td>Moderate-Pollution Sources</td>
</tr>
<tr>
<td>MRSA</td>
<td>Malaysian Remote Sensing Agency</td>
</tr>
<tr>
<td>NWQS</td>
<td>National Water Quality Standard</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>QC/QA</td>
<td>Quality Control and Quality Assurance</td>
</tr>
<tr>
<td>ROI</td>
<td>Region of Interest</td>
</tr>
<tr>
<td>RS</td>
<td>Remote Sensing</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>Sis</td>
<td>Sub-Indexes</td>
</tr>
<tr>
<td>SS</td>
<td>Sampling Station</td>
</tr>
<tr>
<td>UNESCO</td>
<td>United Nations Educational, Scientific and Cultural Organization</td>
</tr>
<tr>
<td>USGS</td>
<td>United States Geological Survey</td>
</tr>
<tr>
<td>VFs</td>
<td>Varimax Factor</td>
</tr>
<tr>
<td>WQI</td>
<td>Water Quality Index</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Malaysia achieved the best performance in the Environmental Performance Index (EPI) which was recognised as the best in the Asia-Pacific region and ranked 25th out of a total of 132 countries worldwide (MRPE Official Portal, 2012). New Zealand took the top position followed by Japan and Malaysia in the Asia-Pacific region. The EPI for Malaysia is equivalent to the EPI for the best-performing group of countries such as Germany, Iceland, Finland, Denmark, Belgium, and Japan. Among the various aspects that were evaluated ranged from climate change, agriculture, fisheries, forestry, air and water pollution (MRPE Official Portal, 2012). Inevitably, water pollution is considered an important aspect that requires attention which would affect the EPI performance.

Generally, Malaysia is made up of thirteen states, in which Melaka is the smallest state after Perlis and Penang. The Melaka state is located in the southern region of the Peninsular Malaysia and is bordered by Negeri Sembilan to the north and Johor to the south. The Melaka state also known as a state of traditions and was listed as a UNESCO World Heritage Site since 7th July, 2008 (UNESCO Official Portal, 2016). This has provided immense economic development and job opportunities through various sectors such as tourism, commercial and industrial activities. However, the rapid development and urbanisation have indirectly affected the political, cultural, and environmental aspects in the Melaka state.

Inadvertently, unorganised expansion and uncontrolled urbanisation development have led to several water pollution issues within the Melaka River (Rosli et al., 2015). As highlighted earlier, the rapid development and urbanisation that took place in the Melaka state have indirectly resulted in drastic and extreme land use changes within a few years back. In other words, forest land are being victimised for deforestation to transform into agriculture, urban, industrial, as well as farmland, which are important to enhance the quality of human life. This circumstance is taking place especially in Kampung Batu Berendam sub-basin in the urban area after it was recognised as the world tourism centre, where majority of the land resources was in the process of conversion into other classes of land use for human activity purposes (Figure 1.0). Due to the increasing demand for land resources within a period of 5 years after 2007 (Daneshmand et al., 2011), the development for urbanisation has also increased and is suspected to extend northwards into Kampung Cheng, Kampung Tualang and Kampung Harmoni Belimbing Dalam sub-basin.
area. Since various activities are carried out along the Melaka River and within the Melaka River basin, this has indirectly caused river water pollution (Hamid et al., 2016; Rosli et al., 2015; Baharuddin et al., 2014; Mustpha et al., 2013; Lim et al., 2012; Juahir et al., 2011) and has impacted the riverine ecosystem (Govorov et al., 2016; Sun, 2015; Zhai et al., 2014). This was supported by previous studies of Bu et al. (2014), Fucik et al. (2014) and Kibena et al. (2014), who emphasised that any changes in land use will affect the environmental ecosystem, especially the quality of river water.

Until today, the development of Melaka State is still in line with its mission to be a developed country by 2020. In line with the vision, the state government had planned to reconstruct the Melaka State into three phases, namely (i) the urban areas with residential and commercial activities, (ii) sub-urban areas with industrial activities, as well as (iii) rural areas with agriculture and farming activities. Continuous development could cause pollution in the Melaka River to increase, as the circumstances are connected with the illegal vegetation and farming activities, rapid and uncontrolled development of residential and commercial activities, failure to maintain and manage sewage treatment plant, as well as focusing less on industrial activities. This would probably lead to the inability to control the unceasing pollution due to the ignorance of the danger of pollution on waste dumping, legal law and regulation. These are unavoidable in order to prevent direct discharge of wastewater, as 40% of household, 30% of industrial, and 30% of agriculture are connected with sewage network in the Melaka River basin (Figure 1.0).

In this case, the river water will experience high level of organic and inorganic pollution. This condition would increase when wastewater from factories and household are discharged directly into the river without undergoing any treatment. Similarly, there are also issues where wastewater treated in plants does not meet the environmental standards. In other words, the river water quality can be deteriorated due to majorly by anthropogenic activities and a minor contribution from natural activities (Al-badaii et al., 2016; Hamid et al., 2016; Herojeet et al., 2016). This means that any changes of land resources from the natural into constructed environment (El-Zeiny and El-Kafrawy, 2016; Mishra and Rai, 2016; Yildiz and Doker, 2016) will directly or/and indirectly affect the good and healthy quality of water condition.

Apart from reducing the water quality level, the riverine ecosystem will be harmful as some organic pollution will lead to the spread of disease resulting to the death of fishes. For instance, several issues on the pollution of the Melaka River had been reported for the death of aquatic fisheries due to lack of oxygen and disease spreading within the river water (PPPP Official Portal, 2015; Sinar Official Portal, 2012; Nasbah, 2010; Jabar, 2010), where such circumstances would cause a decline in the fish species and families resulting to extinction. Simultaneously, the water diseases in the river would be harmful to the aquatic species, which are considered as food supply in the food chain. This will directly or indirectly transfer the disease to the human community upon consumption of the food. Therefore, drastic land use changes could lead to the
destruction and impairment of the river water quality as well as to animal and human which are fully dependent on the environment for survival.

In view of this, the present study intends to investigate the extent to which the Melaka River had been contaminated. By taking into account the potential sources of water pollution in relation to the changes in previous and current land uses, future prediction of the affected areas would be possible. This is especially important for future development planning and decision making in order to avoid any overexploitation of the existing land use.

1.2 Overview of River Water Pollution

Every day, 2 million tons of industrial and agricultural discharges were released into the world water, of which the estimated amount of wastewater produced annually is about 1,500 millions of litres per day (MLD) (UNWWAP, 2009). The National Geographic Portal (2016) reported that developing countries produced 70% of industrial wastes that were dumped untreated into waters. The deterioration in the quality of the river water was due to growing population, rapid urban development, anthropogenic inputs (e.g. municipal and industrial wastewater discharges, agricultural runoff) and natural processes (e.g. chemical weathering and soil erosion) (Figure 1.0) (Holloway et al., 1998; Singh et al., 2011; Shin et al., 2013) that have threatened human and ecological health, availability of drinking water, and further economic development (Houser and Richardson, 2010; Li and Zhang, 2010; Morse and Wolheim, 2014).
Figure 1.0: Tree analysis of land use change in Melaka River basin.

- **Effects**
 - Declining fish species
 - Riverine ecosystem being harmful
 - Water diseases

- **Problems**
 - River water quality deterioration

- **Causes**
 - Households, industrial, and agriculture are sewage network
 - High level of solid waste
 - Less focus on industrial activities
 - Continuous pollution
 - Pollution’s danger
 - Legal law and regulation
 - Rapid and uncontrolled development
 - Incompliance of wastewater treatment standard
 - Households, industrial, and agriculture are sewage network

- **Forest Land**
- **Agriculture Land**
- **Urban Land**
- **Industrial Land**
- **Farmland**
The contamination of river water is no exception for a developing country like Malaysia. According to the Department of Environment (2012), among the 473 rivers monitored, only 278 (59%) were found to be clean, 161 (34%) were slightly polluted and 34 (7%) were already polluted (Figure 1.1). Apparently, within 8 years from 2005 to 2012, the total number of rivers that have a clean condition had decreased by about 60 rivers. The trend indicates that the quality of clean river water is decreasing, whereas a higher percentage of the rivers had changed into slightly polluted or polluted river. Notwithstanding, generally the status of the river water pollution can be associated with the level of water quality indicators such as biochemical oxygen demand (BOD), ammoniacal nitrogen (NH₃N), and suspended solids (SS). For instance, a high BOD can be attributed to inadequate treatment of sewage or effluent from agro-based and manufacturing industries. NH₃N mainly comes from livestock farming and domestic sewage; while SS is mainly due to improper earthworks and land clearing activities. Apparently, most of the factors that have led to river water pollution are caused by human activities as shown in Table 1.1.

![Figure 1.1: River water quality status in Malaysia (2005-2012)](Source: DOE Malaysia Report, 2012)

<table>
<thead>
<tr>
<th>Type of Sources</th>
<th>No. of Sources</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing Industries</td>
<td>4,595</td>
<td>0.276</td>
</tr>
<tr>
<td>Agro-based Industries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Rubber Mill</td>
<td>72</td>
<td>0.004</td>
</tr>
<tr>
<td>(b) Palm Oil Mill</td>
<td>436</td>
<td>0.026</td>
</tr>
<tr>
<td>Animal Farm (Pig Farming)</td>
<td>754</td>
<td>0.045</td>
</tr>
<tr>
<td>Sewage Treatment Plant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Public</td>
<td>5,800</td>
<td>0.349</td>
</tr>
<tr>
<td>(b) Private</td>
<td>4,083</td>
<td>0.246</td>
</tr>
</tbody>
</table>
1.3 Overview of the Effect of Land Use Change on Water Quality

Melaka state is experiencing rapid economic growth with various kinds of transformation through industrialisation and urbanisation. This has somehow resulted to an overexploitation of natural resources and massive increase in the discharge of pollutants into the waterways. This is especially pronounced in areas of dense population with rapid population growth and rapid changes in land use land cover (LULC). Among the most affected areas in the state of Melaka are within the Melaka River basin; potentially due to increased industrial and residential expansion. Many researchers agreed that uncontrolled and unmanageable land use development would seriously pollute the river water quality (Bu et al., 2014; Fucik et al., 2014; Gyawali et al., 2013). Generally, both industrial and domestic wastewater discharged by human activities may cause serious water quality degradation such as water eutrophication, algal blooms, loss of ecological function and other problems (Zhao et al., 2012). Since industrial wastewater has complex chemical components, and is difficult to treat, degrade and purify, it could be more harmful than the domestic wastewater. Apparently, the impact of industrialisation and urbanisation on water quality is inevitable. However, careful management of current and future land use may negate the impact and lessen the extent of contamination on our waterways.

1.4 Problem Statement

Rapid population growth, unorganised expansion, and uncontrolled urbanisation development has led to various environmental issues in the Melaka state (Rosli et al., 2015). Among the apparent environmental issues which was reported to the public and the state authorities are cases of water pollution in the river. In recent years, several cases involving river water pollution have been reported on Melaka River (Nasbah, 2010; Jabar, 2010). Various efforts have been carried out to reduce and prevent continuous pollution in the river, e.g. through the beautification of the Melaka River which is a synchronised effort with the state tourism sector (Sinar Official Portal, 2012). Even with multiple beautification and rehabilitation programmes in place, the Melaka River continues to be polluted. For instance, numerous cases have been reported on aquatics death and the situation is still worrying (PPPP Official Portal, 2015; Zakinan, 2015). Therefore, it is important that extensive monitoring and assessment of the river water quality be carried out to identify potential sources of pollution across the river basin (Hamid et al., 2016; Al-badaii et al., 2016; Rosli et al., 2015; Baharuddin et al., 2014).
In most previous studies, the water quality was analysed using statistical data analysis. The analysis confirmed that the water quality was affected due to the temporal and spatial variations that have possibly caused the contamination (Hamid et al., 2016; Al-badaii et al., 2016; Aris et al., 2013; Juahir et al., 2011). According to a report by DOE in 2012, the river water pollution as indicated by the values of Biochemical Oxygen demand (BOD), Suspended Solid (SS), and Ammoniacal-Nitrogen (NH₃-N), was suspected to have come from industrial, residential, agriculture, as well as farming activities (Mishra and Rai, 2016; Parsa et al., 2016; Yulianto et al., 2016; Wilson, 2015; Fucik et al., 2014; Gyawali et al., 2013). These are being continuously investigated to find an appropriate solution towards water quality destruction of the Melaka River basin (Rosli et al., 2015; Daneshmend et al., 2011). In other words, land use classes are anticipated to have a relationship with the water quality in order to sustain the level of ecological health (Govorov et al., 2016; Shi et al., 2016; Fucik et al., 2014; Kibena et al., 2014). Therefore, if the land use changes in the future, the level of contamination will also be subjected to changes. However, there are uncertainties on what the impact would be. Hence, several studies have suggested that land uses are assumed to influence the river water quality and are appropriate to be included as part of the analysis (El-Zeiny and El-Kafrawy, 2016; Kibena et al., 2014), rather than be dependent on the water quality data when determining the source of the pollutants (Hamid et al., 2016; Al-badaii et al., 2016; Rosli et al., 2015; Baharuddin et al., 2014). Therefore, by suggesting land use as a variable, this study is conducted to determine with the relation between land use and water quality in the Melaka River basin using Geographical Information System (GIS) and remote sensing techniques.

1.5 Objectives of Study

This study aims to identify the pollutant sources in the Melaka River using the LULC change model and pattern analysis. The specific objectives can be described as follows;

(a) To identify the potential sources of Melaka River pollution in relation with temporal land use classification;
(b) To determine the land use land cover changes in 2015 and predict the land use land cover for 2022;
(c) To verify the pattern recognition based on land use classification between 2015 and 2022 in the determination of the pollutant source within the Melaka River.

1.6 Research Questions

This study will attempt to identify the sources of pollution within a catchment scale based on the changes in river water quality and corresponding land uses. The underlying research questions are:

- What is the extent of river pollution occurrence in the Melaka River? Is there any relation between land use classification and water quality variables?
What are the changes from previous, current and future land use in relation to water quality in a particular area?
What is the pattern of pollutant source in conjunction with the land use that may impact the river water quality in the Melaka River?

1.7 Scope of Work

River pollution is reported yearly worldwide (Al-badaii et al., 2016; Baharuddin et al., 2014; Mustapha et al., 2013; Gazza et al., 2012; Juahir et al., 2011). According to DOE (2012), Melaka River was listed in the report as having pollution in the country. This condition was supported by Daneshmand et al. (2011) and the river water quality is expected to continue decreasing (Rosli et al., 2015). As has been proven, daily news had reported that some aquatic species were found dead (PPPP Official Portal, 2015; Zakinan, 2015) in the Melaka River. Apparently, the quality of the riverine ecosystem has been greatly affected. This condition reflects that contamination might have occurred in the Melaka River basin.

Applied environmetric techniques using HCA, DA and PCA were popularly used by researchers to investigate and identify the source of pollution (Hamid et al., 2016; Al-badaii et al., 2016; Aris et al., 2013; Juahir et al., 2011) in the Melaka River basin (Rosli et al., 2015; Daneshmand et al., 2011). In general, the river water was investigated of its pollution level based on the physicochemical parameters (i.e. pH, temperature, electrical conductivity (EC), salinity, turbidity, total suspended solid (TSS), dissolved solids (DS), dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD) and ammoniacal-nitrogen (NH\textsubscript{3}N), biological indicators (i.e. total coliform and Escherichia coli) as well as trace elements (i.e. mercury, cadmium, chromium, arsenic, zinc, lead, and iron). Pollution can be anticipated from anthropogenic activities (such as industrial, municipal and domestic waste, agricultural runoff, animal farm, land clearing) and/or natural processes (e.g. erosion and runoff) (Al-badaii et al., 2016; Hamid et al., 2016; Mustapha et al., 2013; Juahir et al., 2011). Therefore, environmetric techniques are suitable for application in the Melaka River basin as these techniques are important for collating information regarding the pollutant sources.

In general, the water pollution in the Melaka River basin continues to occur until today. Therefore, suggestion to incorporate land use and water quality data has become the main subject in this study. In particular, the pollutant sources are suspected to be linked with land use classes. The land use classes are able to change temporarily over a period of time (Mishra and Rai, 2016; Parsa et al., 2016; Yulianto et al., 2016; Wilson, 2015). In other words, land use classes possess connectivity with human activities, where this condition requires particular focus on the land use change (El-Zeiny and El-Kafrawy, 2016; Kibena et al., 2014) especially when involving extensive development. For example, the activities that is associated with industrial, residential, commercial, transportation, and sewage treatment plant (Wilson, 2015; Fuck et al., 2014; Gyawali et al., 2013). Therefore, the techniques in GIS (e.g. Moran I
and LISA, as well as general G-statistic and Hotspot analysis) have become
the major tools to pattern the pollutant source in a river basin. Accordingly, this
study uses the land use classes and water quality data to determine the
pollutant source based on the monitored station along the Melaka River.
Apparently, the application of GIS in the river water quality analysis had been
widely used in the discovery of the contamination (Sun, 2015; Alqadi et al.,
2014; Lezzaik and Milewski, 2014), and additional input from the land use data
(El-Zeiny and El-Kafrawy, 2016; Kibena et al., 2014; Chang, 2008) will
extensively support the findings that is produced from the environmetric
technique approach.

1.8 Significance of Study

Environmetric techniques analysing the spatial variability of large and complex
river water quality data provide meaningful information by identifying,
-delineating, and differentiating contaminants resulting from various sources
(Hamid et al., 2016; Al-badaii et al., 2016; Aris et al., 2013; Juahir et al., 2011).
Considering the methods applied such as HCA, DA, and PCA in the
-techniques, the findings offer reliable classification and serve as an excellent
tool for water resources control and management (Hamid et al., 2016; Al-badaii
et al., 2016; Rosli et al., 2015; Baharuddin et al., 2014). These techniques
allow the optimisation of a monitoring programme by decreasing the number of
sampling stations, number of parameters monitored, as well as serving as a
cost-effective method in the water quality assessment (Papaioannou et al.,
2010a). Therefore, this study applies environmetric techniques into water
quality data analysis to visualise the condition of the pollutant source in the
Melaka River basin.

Further discussion on the river pollution has become the main point of study for
majority of the researchers. The pollutant source is typically related with river
water quality and the land use change (Mishra and Rai, 2016; Parsa et al.,
2016; Yulianto et al., 2016; Wilson, 2015; Fucik et al., 2014; Gyawali et al.,
2013). The land use in LULC analysis is anticipated to be linked with water
quality in the river (Wilson, 2015; Fucik et al., 2014; Gyawali et al., 2013). This
condition may continue to affect the river in the future, -if it has connection with
the land use (Mishra and Rai, 2016; Parsa et al., 2016; Yulianto et al., 2016).
Additional evidence from El-Zeiny and El-Kafrawy (2016), as well as Kibena et
al. (2014) indicated that the land use may be considered as a variable (e.g.
independent) in the analysis, whenever land use has relation with the water
quality data. Hence, this study is carried out to evaluate the land use classes
that potentially impact the water quality in the river. Therefore, this study is
focused on the previous and current land use changes while predicting the
future trend in relation to the water quality in the Melaka River basin. On the
other hand, GIS was typically included for assessment of the water quality data
(Sun, 2015; Alqadi et al., 2014; Lezzaik and Milewski, 2014). Previous studies
suggested that pattern analysis of GIS (Moran I and LISA, general G-statistic
and Hotspot) are favourable for inclusion into the river water quality study to
interpret the pollutant source in a particular area (Shi et al., 2016; Govorov et
al., 2016; Zhai et al., 2014; Zhao et al., 2012). Therefore, this study is carried
out to incorporate the land use classes and water quality analysis to recognise the pattern of pollutant source in the Melaka River basin. This study applies land use classes as independent variable and water quality data as dependent variable.

1.9 Structure of Thesis

The content of this thesis is presented in five chapters as follows:

(i) Chapter One: Introduction

In this chapter, an overview of the river water pollution in Malaysia is presented. This chapter also highlights the problem statement of the contamination that has occurred in the Melaka River. This will be further explained through the objectives of the study, thus strengthening the significance of this study. Literature reviews and research findings are presented in the following chapters.

(ii) Chapter Two: Literature Review

The literature review explains the previous studies on river water quality including the fundamentals of water quality characteristics (i.e. physico-chemical and biological parameters), as well as the impact of water pollution. The conceptual and fundamental methods and techniques applied in the methodologies will also be described, which include the environmetric technique, LULC change models, and pattern analysis models.

(iii) Chapter Three: Methodology

The methodology section describes the research methodology that includes primary and secondary data collection. The collection and analysis of data for river water quality is presented alongside the land use data acquisition. In addition, the concepts of environmetric models, LULC change models, and pattern analysis models are also explained in this chapter.

(iv) Chapter Four: Results and Discussion

This chapter reports on the major findings of the study. This begins with a discussion and interpretation of the river water quality assessment of the Melaka River. It is followed by the results of the land use and land cover changes across the study area. This includes the discussion on previous and current land uses and future prediction changes, as well as the pattern analysis based on the land use classification.
(v) Chapter Five: Conclusion and Recommendation

Chapter Five summarises the overall research findings and the conclusion drawn from the study. This section also provides some recommendations for further improvement for future research.
REFERENCES

index for drinking purposes for river Netravathi, Mangalore, South India. *Environmental Monitoring and Assessment*, 143(1-3), 279-290.

Department of Environment Malaysia (DOE) (2012). Malaysia

Fučík, P., Novák, P., & Žížala, D. (2014). A combined statistical approach for evaluation of the effects of land use, agricultural and urban activities on stream water chemistry in small tile-
drained catchments of south Bohemia, Czech Republic. *Environmental Earth Sciences*, 72(6), 2195-2216.

Huang, J., Li, Q., Pontius Jr, R. G., Klemas, V., & Hong, H. (2013). Detecting the dynamic linkage between landscape characteristics and water quality in a subtropical coastal
watershed, Southeast China. *Environmental management*, 51(1), 32-44.

in planning practice (pp. XVI-214). Springer.

perceptron Markov chain analysis for land use and land cover change prediction in Patna district (Bihar), India. *Arabian Journal of Geosciences, 9*(4), 1-18.

Shi, W., Xia, J., & Zhang, X. (2016). Influences of anthropogenic
activities and topography on water quality in the highly regulated Huai River basin, China. *Environmental Science and Pollution Research, 1*-15.

Wilson, C. O. (2015). Land use/land cover water quality nexus:

Zhao, X., Huang, X., & Liu, Y. (2012). Spatial autocorrelation analysis of
Chinese inter provincial industrial chemical oxygen demand discharge. *International journal of environmental research and public health*, 9(6), 2031-2044.
