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By 
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Faculty : Agriculture 

Conventional approaches of using higher fertilizer inputs to sustain profitable yields in 

oil palm plantations can be uneconomical and produce inconsistent results. In addition, 

the biological potential of attaining much higher oil yield is often limited by marginal 

environments. Nutrient efficient genotypes could potentially lead to higher productivity 

when grown on marginal land and eventually improve the sustainable use of resources 

and production of palm oil. Studies on interaction effects between planting material and 

nutrient inputs show differential uptake and utilization efficiency between the 

commercially available oil palm planting materials. The differences in leaf nutrient 

contents between genotypes and yield response to K fertilizer inputs demonstrated the 

presence of more efficient uptake characteristics. If such potassium efficient cultivars 

could be widely adopted, the industry would not only be capable of saving resources but 

also to increase productivity as well. Potassium use in palm oil production ranges from 

approximately 13 to 21 kg of palm oil per kg of potassium with varying degree of 

efficiency depending on planting varieties. The potassium use efficiency could 

potentially increase by 50 % in the most potassium efficient cultivar. The objectives of 

this study were (1.) to evaluate the growth response of selected oil palm crosses under K 

deficient environment and (2.) to estimate potassium use efficiency of different oil palm 

genotypes as part of the effort to elucidate the physiological mechanism potassium-

efficient oil palms. Phenotypic responses of 5 oil palm genotypes with genetic origin 

from Deli and Nigerian Dura interbred with AVROS, Nigerian and Yangambi Pisiferas 

grown under deficient and adequate potassium supplies were evaluated. Potassium-

efficient genotypes were differentiated in this experiment, where the potassium-efficient 

genotypes produced higher biomass (by 37.3 %) and had higher potassium uptake 

activity (by 41.7 %). The efficient genotypes were capable of extracting higher amount 

of soil potassium (by 95 %) under deficient potassium supplies. The K-efficient genotype 

was capable of sustain growth and to adapt to potassium-deficient environments. 

Alterations in rooting behaviour (increasing fine root proliferation) and maintenance of 

shoot growth (frond production rate) are the primary physical traits of adaptation to 
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potassium-deficient environment. The ability to remobilize the limiting nutrients from 

sink tissues to source tissues i.e. from the bole and rachis to the pinnae (the 

photosynthetically active tissues) and roots (to search for more nutrients allows the plant 

to further acquire more resources to ensure continuous growth) is also a key trait. 

Comparative analysis of transcriptomic differences between the efficient and in-efficient 

genotypes showed significant upregulation of potassium transporters (KUP3, KUP8 and 

KUP11) in the roots of the K-efficient genotype and genes which confer tolerance to 

stress, minimizes cellular damage, stress regulation and potassium homeostasis. Traits 

for potassium efficiency are conferred by the interaction of multiple complex 

mechanisms, governed by pool of genes controlling the physiological processes of stress 

regulation, cellular development and metabolite homeostasis. Stress detection and 

regulating cellular processes to mitigate the effect of stress could be the key in first 

tolerating and reducing damages to cellular and consequently enhancing the genotype’s 

ability to adapt, absorb and utilize nutrients more effectively.  

ii 
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Fakulti  : Pertanian 

Pendekatan konvensional menggunakan kadar pembajaan yang tinggi untuk 

mengekalkan penghasilan yang menguntungkan oleh industri kelapa sawit sering 

mencapai keputusan yang tidak konsisten dan tidak ekonomik. Di samping itu, potensi 

untuk mendapatkan hasil minyak sawit yang tingi sering dijejaskan oleh keadaan 

persekitaran yang tidak memberangsangkan. Genotip yang cekap di dalam penggunaan 

nutrien mampu meningkatkan potensi produktiviti dan mengurangkan penggunaan 

sumber. Kajian terhadap interaksi di antara genotip dan nutrien menunjukkan perbezaan 

dalam pengambilan dan penggunaan nutrien antara kultivar komersial. Penanaman 

kultivar yang cekap dalam penggunaan kalium memerlukan baja kalium yang rendah dan 

secara tidak langsung mampu meningkatkan hasil sawit nasional serta menjimatkan 

penggunaan sumber baja. Ketika ini, industri kelapa sawit menghasilkan antara 13 

hingga 21 kg minyak sawit untuk setiap kilogram baja kalium diggunakan. Pengunnaan 

kultivar yang cekap dalam kalium mampu meningkatkan hasil sebanyak 50 %. Objektif 

kajian ini adalah untuk menilai pengaruh kalium dalam tanah terhadap pertumbuhan 

genotip sawit terpilih dan kecekapan penggunaan kalium oleh baka tanaman sawit ini. 

Di samping itu, mekanisi fisiologi dalam penggunaan kalium akan dikaji. Tindak balas 

fenotip baka tanaman yang berlainan asal-usulnya iaitu AVROS, Nigeria dan Yangambi 

dibawah pengaruh kalium telah dikaji. Kadar pengambilan kalium dan pertumbuhan 

pokok diukur di dalam rumah kaca dengan menggunakan teknik radioisotop. Tindak 

balas molekular telah diprofilkan dan dikira. Genotip yang ber-kecekapan tinggi 

berupaya menghasilkan biojisim yang lebih tinggi (> 37.3 %), mempunyai kadar 

pengambilan kalium yang lebih tinggi (> 41.7 %) dan berupaya mengextrak kandungan 

kalium yang lebih tinggi (> 95 %) daripada tanah yang mempunyai kandungan kalium 

yang rendah. Genotip yang sedemikian menyesuaikan diri kepada persekitaran kalium 

rendah dengan mengubah tingkah laku perakaran, meningkatkan percambahan akar dan 

mengekalkan nisbah akar dan daun. Tiada variasi atau perubahan morfologi di antara 

genotip. Analisis perbandingan perbezaan transkrip antara genotip cekap dan cekap 

memperlihatkan peningkatan besar pengangkut potasium (KUP3, KUP8 dan KUP11) 

dalam akar genotip dan gen yang efisien yang memberikan toleransi terhadap stres, 

mengurangkan kerosakan selular, peraturan tekanan dan kalium homeostasis. Ciri-ciri 

kecekapan kalium diberikan oleh interaksi pelbagai mekanisme kompleks, yang 
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dikendalikan oleh gen gen yang mengawal proses fisiologi pengawalan tekanan, 

pembangunan selular dan homeostasis metabolit. Pengesanan tekanan dan mengawal 

selia proses selular untuk mengurangkan kesan tekanan boleh menjadi kunci dalam 

menoleransi pertama dan mengurangkan kerosakan kepada selular dan seterusnya 

meningkatkan keupayaan genotip untuk menyesuaikan, menyerap dan menggunakan 

nutrien dengan lebih berkesan. 
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1 

 
 

CHAPTER 1 

 

INTRODUCTION 

 

Occupying merely 4.8 % of the total oil crop area planted worldwide, the oil palm 

contributed approximately 34.7 % of the global vegetable oil production, ranking it the 

highest oil producing crop known to-date.  At a global production average of 3.8 tonnes 

of crude palm oil (CPO) per hectare, the palm oil productivity has very much stagnated 

over the last two decades especially in Malaysia. The stagnation could be attributed to 

the expansion of oil palm plantation on marginal land where the soil and terrain is least 

favorable for oil palm cultivation (Jalani et al. 2002). The efficient dissemination of 

selected planting material to end users, particularly to small holders is also a key factor 

for productivity improvement in the oil palm. 

 

 

The projected biological potential of oil palm via experimental data indicates that the 

best progenies could be capable of yielding 11.5 tonnes of CPO per hectare. The highest 

plantation yield reported to-date achieved an average of about 6.5 tonnes of CPO, which 

is equivalent to about half of its biological yield potential. The vast gap between this 

biological yield potential and actual yield attained indicates an immense opportunity for 

yield improvement. The productivity of CPO increased from 1.3 to 6.5 tonnes per hectare 

through breeding advances, introduction of pollinating weevils and improved 

management whilst fertilization alone accounted for 29 % of the increase (Davison, 

1993; Corley and Tinker, 2003). Combination of both adequate fertilization regime and 

improved materials that could strive under poor and marginal growing conditions could 

provide viable alternatives in ensuring and improving sustainable production of oil palms 

grown on those marginal areas.  

 

 

Amongst all oil crops, oil palm consumed the highest amount of potash fertilizer i.e. 

about 7 % of total global potash consumption, whilst soybean and other oil crops 

collectively consumed 12 % (Heffer, 2013). On the contrary, consumption of nitrogenous 

and phosphorus fertilizer is relatively low with potash constituting almost 60 % of total 

fertilizer usage for oil palm cultivation. The demand of potassium inputs for growth and 

oil production increases in parallel to the yield and it is further elevated by losses caused 

by the degraded land in the tropics. On per hectare basis, the oil palm requires up to 250 

kg of potassium annually (Goh et al. 1994) and its planting on tropical soils that are 

inherently low in potassium fertility and prone to potassium leaching (Amberger, 2006) 

further contributes to high potassium requirement. 

 

 

Yield responses to potassium fertilization are mostly soil-dependent and are affected by 

the soils inherent potassium fertility; higher yield response is recorded on soils with low 

soil potassium reserve and vice versa. Such yield response variations often translate into 

varying degree of optimal potash fertilization rate which is generally site specific.  

Generally, less than 1.3 kg K palm-1 yr-1 on fertile coastal soils to as high as 6.0 kg K 
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2 

 
 

palm-1 yr-1 are needed for maximum yield on sandy textured soils. On most inland 

sedentary soils, many of the long-term fertilization trial showed an optimum range of 1.8 

to 2.3 kg of potassium palm-1 yr-1.   

 

 

Realizing such limitations, gradual effort is now being concentrated into improving the 

oil palm productivity via adopting nutrient efficient genotypes which could potentially 

lead to higher productivity on marginal land and eventually to a more sustainable use of 

resources and to the sustainable production of palm oil. The main objectives of this study 

are (1) to assess the variability of oil palm genotypes in potassium use efficiency and (2) 

to identify the physiological mechanism underlying the adaptation to potassium-deficient 

soil and the increase of potassium use efficiency.  
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