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Chairman : Associate Professor Siva Kumar Balasundram, PhD 
Faculty  : Agriculture 

Viroids are single-stranded, low molecular weight, circular RNA between 246 and 401 
nucleotides that lacks a protective protein coat. Viroids have only been found in the 
plants. Coconut cadang-cadang viroid (CCCVd; Genus Cocadviroid, Family 
Pospiviroidae) is one of the known species of viroids that has been reported to cause 
Orange Spotting (OS) disease in the oil palm (Elaeis guineensis Jacq.; Arecaceae). OS 
disease is an emerging oil palm disease in Malaysia. Variants of CCCVd have been 
reported in both symptomatic and asymptomatic oil palm. Currently, there is no direct 
control measure reported that can be recommended to control OS disease. 
Replacement of the infected plants is the only measure to reduce losses. Molecular 
marker techniques are used to detect CCCVd-infected plants. But these techniques are 
destructive and typically take a longer time in molecular analysis and sequence 
characterisation. Therefore, for early disease detection, visible-near infrared 
spectroscopy was employed for the first time at the leaf scale to screen oil palm 
seedlings using a hand-held spectroradiometer. Glasshouse experiment was conducted 
on three-month-old inoculated and healthy oil palm seedlings for a duration of four 
months in two different years, 2015 and 2017. In this research, oil palm seedlings were 
inoculated with a CCCVd oil palm variant (OP246), and an ASD spectroradiometer 
was employed to measure reflectance from inoculated and control seedling. In 
particular, the red edge region (680-780 nm), which has been frequently shown to 
indicate plant stress, was investigated for selection of red edge wavebands, red edge 
indices, and development of the Orange Spotting Disease Index (OSDI) using red edge 
parameters. Firstly, using a standard foreoptic with a 25° Field of View (FOV), two 
red edge wavebands (i.e. 680 nm and 754 nm) were identified. Their reflectance 
sensitivity was also examined. Secondly, using a contact probe, two other red edge 
wavebands (i.e., 700 nm and 768 nm) and a red edge index (i.e., Enhanced Vegetation 
Index 2) were identified. Finally, a simple ratio, i.e. the sum of the first derivative 
spectra of right side – Red Edge Point (REP) to the sum of the first derivative spectra 
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of left side – REP of the red edge region, was developed as an OSDI. The OSDI values 
between experiment batch of 2015 and 2017 demonstrated a strong correlation (r = 
0.96). The OSDI is a first spectral index developed for early detection of OS disease 
at the leaf scale and can be tested at canopy scale in the future. This study has proved 
that OS disease can be detected at an early stage using a hand-held spectroradiometer. 
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Pengerusi :   Profesor Madya Siva Kumar Balasundram, PhD 
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Viroid adalah organisma yang sangat kecil mengadungi satu rantai, berat molekul 
yang rendah, size RNA diantara 246 dan 401 nukleotida dan tidak mempunyai lapisan 
protein pelindung. Viroid hanya ditemui di tumbuh-tumbuhan. Coconut cadang-
cadang viroid (CCCVd; Genus Cocadviroid, Family Pospiviroidae) adalah salah satu 
spesies viroid yang diketahui yang menyebabkan Penyakit Orange Spotting (OS) 
dalam kelapa sawit (Elaeis guineensis Jacq., Arecaceae). Penyakit OS dalam kelapa 
sawit adalah penemuan terbaru di Malaysia. Varian CCCVd telah dilaporkan dalam 
kedua-dua kelapa sawit simtomatik dan asimptomatik. Pada masa ini, tiada langkah 
kawalan langsung yang dilaporkan yang boleh disyorkan untuk mengawal penyakit 
OS. Penggantian tumbuhan yang dijangkiti hanyalah langkah untuk mengurangkan 
kerugian. Teknik  molekul digunakan untuk mengesan tumbuhan yang dijangkiti 
CCCVd. Tetapi teknik ini merosakkan dan biasanya mengambil masa yang lebih lama 
dalam analisis molekul dan jujukan rantai DNA. Oleh itu, untuk pengesanan penyakit 
awal, spektroskopi inframerah yang kelihatan pada masa dahulu digunakan pada skala 
daun untuk menanam benih kelapa sawit menggunakan spectroradiometer tangan. 
Dalam kajian ini, biji benih kelapa sawit disuntik dengan varian kelapa sawit CCCVd 
(OP246) dan spectroradiometer ASD digunakan untuk mengukur anak benih yang 
disuntik.  Anak kelapa sawit diletak di kaca rumah dilakukan selama lebih dari tiga 
bulan dalam dua tahun yang berlainan, iaitu tahun 2015 dan 2017. Khususnya, 
kawasan gelombang merah (680-780 nm), yang sering ditunjukkan untuk 
menunjukkan tekanan tumbuhan, disiasat diikuti oleh pemilihan pada kawasan tepi 
gelombang  merah, indeks kelebihan merah, dan perkembangan Indeks Penyakit 
Bercahaya Orange (OSDI) dengan menggunakan parameter tepi merah. Pertama, 
menggunakan 25º foreoptic, dua helai kelebihan merah (iaitu 680 nm dan 754 nm) 
telah dikenal pasti berdasarkan titik permulaan dan titik cerun curam, masing-masing. 
Kepekaan and kejituan juga diperiksa. Kedua, menggunakan penyelidikan tumbuhan, 
dua helai pinggir merah lain (iaitu, 700 nm dan 768 nm) dan indeks kelebihan merah 
(iaitu, Indeks Peningkatan Tanaman 2) telah dikenalpasti. Nisbah mudah, iaitu jumlah 
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spektra derivatif pertama sebelah kanan Red Edge Point (REP) kepada jumlah spektra 
derivatif pertama sebelah kiri - REP dari kawasan pinggir gelombang  merah, telah 
dicatatkan sebagai OSDI. Nilai OSDI antara kumpulan percubaan pada tahun 2015 
dan 2017 telah menunjukkan korelasi yang kuat (r = 0.96). OSDI adalah indeks 
spektrum pertama yang dicatatkan untuk pengesanan awal penyakit OS pada skala 
daun dan boleh diuji pada skala kanopi pada masa akan datang. Kajian ini telah 
membuktikan bahawa penyakit OS dapat dikesan pada peringkat awal menggunakan 
spectroradiometer tangan. 
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CHAPTER I

1 INTRODUCTION

Oil palm industry is the backbone of Malaysian economy.  Malaysia is one of the 
largest producers and exporters of oil palm in the world. In 2017, Malaysia contributed 
greatly to the world palm oil industry accounting for approximately 29% of the 
production and 37% of the exports. In 2017 alone, the total exports of oil palm 
products has been increased from 23.29 million tonnes to 23.97 million tonnes, which 
is 2.9% higher than that of 2016 (MPOB, 2018). In the recent years, the Malaysian oil 
palm industry has been facing significant constraints from crop disease outbreaks 
leading to significant yield decline.  

Orange Spotting (OS) is an emerging disease of oil palm (Elaeis guineensis Jacq.; 
Arecaceae) which has been associated with Coconut cadang-cadang viroid (CCCVd; 
Genus, Cocadviroid, Family, Pospiviroidae). Over 40 million coconut palms have 
been killed by CCCVd since first being described 1914 (Hanold and Randles, 1991a,
Randles and Rodriguez, 2003). CCCVd variants characterised from oil palm (i.e. 
OP246, OP297, OP293, and OP270) had more than 90% sequence similarity with a 296-nt 
form of CCCVd variant in coconut palm (Vadamalai et al., 2006; Wu et al., 2013).
Detection of CCCVd based on molecular biology techniques are destructive, 
expensive and time consuming. Instead, non-imaging hyperspectral remote sensing is 
a new indirect diagnostic approach that provides a rapid and non-destructive means to 
investigate crop disease (Sankaran et al., 2010).

1.1 Background  

Recently, non-imaging hyperspectral remote sensing has emerged as a powerful 
technique for diagnosing a wide range of plant diseases. Non-imaging hyperspectral 
data are basically multivariate in nature, combining more than hundred contiguous 
spectral wavebands within the electromagnetic spectrum. Particularly, there has been 
an ongoing interest in non-imaging Visible/Near-infrared (VNIR) spectroscopy. 
VNIR spectroscopy employs wavebands between visible and Near-infrared (NIR) 
range (400-1050 nm) of the spectrum. This is a fast emerging technique that provides
an optical means for non-destructive and cost-effective crop diagnosis. 

A spectral index that is developed from a ratio of disease sensitive wavebands is called 
Spectral Disease Index (SDI). This technique involves selection of inflection points 
(i.e. peaks and troughs) which are found to be sensitive to plant disease. A disease 
sensitive waveband can indicate crop stress caused by a disease. No study has 
previously reported on the use of VNIR spectroscopy to diagnose OS disease at the
leaf scale (nursery stage). This study aimed at developing Orange Spotting Disease 
Index (OSDI), which would become the first SDI for OS disease. For this, twenty 
novel red edge parameters (Li et al., 2016, Liu et al., 2007) were derived from red 
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edge region (680-780 nm) of the electromagnetic spectrum and tested. The red edge 
region, which is located between the far red and NIR range of the spectrum, has been 
frequently shown to indicate plant stress.  

1.2 Research problems  

1. Infection of CCCVd variants which causes bright orange non-necrotic spots (size 
about 2-3 mm) in oil palm frond, has been reported in commercial plantations in 
South East (SE) Asia and South West Pacific region (Randles et al., 1980; 
Imperical et al., 1985; Hanold and Randles, 1991b). Evidence of horizontal and 
vertical spread of CCCVd in commercial plantations has been seen in recent years.
Viroids detected in DxP hybrids in Oceania and SE Asia has revealed a close 
association between CCCVd and a specific type of OS in oil palm. In addition, 
commercial oil palm with OS symptoms was reported to show stunting over a 
period of 5-15 years. OS disease was found to be irreversible and very lethal during 
this period (Randles et al., 2009).

2. In recent years, for detecting CCCVd in oil palm, many diagnostic assays have 
been evaluated such as the Reverse Transcription-polymerase Chain Reaction 
(RT-PCR) (Wu et al., 2013; Vadamalai et al., 2006), Ribonuclease Protection 
Assay (RPA) (Vadamalai et al., 2009), and Reverse Transcription Loop-mediated 
Isothermal Amplification (RT-LAMP) (Thanarajoo et al., 2014). These techniques
have confirmed presence of low concentration of CCCVd varaints in oil plam. 
However, due to low concentration of CCCVd, these techniques are neither 
consistent nor sensitive and not able to quantify the viroid concentrations 
(Thanarajoo, 2014). 

3. Symptom expression is not a necessary outcome of CCCVd infection. Previously 
reported CCCVd oil palm variants, OP297, OP293 and OP270, were all obtained from 
an asymptomatic oil palm in Malaysia (Vadamalai et al., 2006). In a recent
investigation, an oil palm variant (CCCVd293 OP) showed low accumulation of 
viroid load with no symptoms one year after inoculation (Thanarajoo, 2014).

1.3 Problem Statement  

OS disease has similar foliar symptoms to that of potassium deficiency in oil palm. 
Symtomatic separability between OS disease and potassium deficiency is very 
difficult to achieve via visual assessment (Selvaraja et al., 2013). Asymptomatic 
infection of CCCVd even makes detection process much harder. So far, real-time and 
on the spot detection of OS disease has not been possible using any molecular 
techniques. To resolve this problem, oil palm seedlings can be screened using a non-
imaging hand-held spectroradiometer. The spectroradiometer measures solar radiation 
reflected from the plants. On the basis of percentage reflectance, healthy and diseased 
plants can be differentiated. In this research, reflectance of OS infected seedlings will 
be measured using a spectroradiometer, pre-processed by pre-processing techniques, 
and analysed by multivariate analyses.  
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1.4 Scope and relevance  

Application of hyperspectral ground sensor (hand-held spectroradiometer) for plant 
disease diagnosis is gaining much prominence due to its non-destructive feature. To 
date, there has only been one recent documentation on the use of spectroradiometer 
for detection of OS disease by Selvaraja et al. (2013) at the canopy scale. They used a 
spectroradiometer to discriminate between reflectance spectra of OS disease and 
potassium deficiency, both of which manifest symptoms that are similar.    

A hand-held spectroradiometer can be used to screen oil palm seedlings prior to 
confirmation by any molecular techniques. On the basis of spectral signatures and 
OSDI values, oil palm seedlings can be differentiated between infected and healthy 
seedlings. This technique can also be considered as a promising tool for mechanical 
control of OS disease in order to eliminate infected seedlings. Randles et al. (2009) 
reported that CCCVd spreads naturally by unknown means. Its eradication has not yet 
been successful. Currently, it can only be managed by physical removal of affected 
palms. 

The use of spectral signatures and OSDI to detect infected oil palm seedlings is a 
plausible idea. Mahlein et al. (2012a) studied different spectral signatures on host-
pathogen (sugar beet-fungi) interaction for early detection of fungal leaf diseases of 
sugar beet (Beta vulgaris). Mahlein et al. (2013) have developed SDIs and Healthy 
Index (HI) for screening sugar beet foliage disease using a single waveband and 
normalized waveband differences. The works of Mahlein et al. (2012a; 2013) have 
motivated this work of developing a spectral index for OS disease. Diagnosis of plant 
diseases caused by fungi, bacteria and viruses using hand-held spectroradiometer is 
not new. However, the application of a hand-held spectroradiometer to study plant 
disease caused by viroids is new, particularly in oil palm.  

In this research, oil palm seedlings were inoculated with a CCCVd oil palm variant 
(OP246). This research was designed to observe the spectral changes between CCCVd-
inoculated and healthy oil palm seedlings followed by development of spectral 
signatures, selection of red edge wavebands, selection of red edge indices and 
development of the OSDI using red edge parameters.  

It is further noted that every new technique has its own merits and demerits. Every oil 
palm grower cannot be an expert on sensor application, data processing and data 
interpretation. Another concern is one needs to be proficient in developing indices 
from spectral wavebands. Several researchers have proposed several indices for 
disease detection rather than completely rely on spectral signatures. A spectral index 
plays an important role in data-dimensionality reduction and data analysis. 
Nonetheless, a long distance yet to cover for popularising the use of spectroradiometer 
for OS disease detection. The major issues are availability, affordability and 
applicability of the spectroradiometer. 
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1.5 Objectives  

1. To measure spectral reflectance from CCCVd-inoculated and healthy oil palm 
seedlings and select optimal red edge wavebands and indices that offer maximum 
information for diagnosis of OS disease  

2. To develop OSDI based on the red edge parameters for discriminating between 
diseased and healthy oil palm seedlings 

3. To verify OSDI values in a repeated experiment and test the performance and 
efficacy of OSDI in diagnosing OS disease  
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