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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 

of the requirement for the degree of Doctor of Philosophy 

RESISTANCE MECHANISM OF Limnocharis flava (L.) Buchenau TO 

ACETOHYDROXY ACID SYNTHASE INHIBITORS 

By 

NORAZUA BINTI ZAKARIA 

February 2018 

Chairman :   Muhammad Saiful Ahmad Hamdani, PhD 

Faculty :   Agriculture 

Limnocharis flava, a problematic weed of rice fields, is reported to have multiple 

resistance to 2,4-D (synthetic auxin), and bensulfuron-methyl (AHAS inhibitor) due 

to over-reliance on their use. The present study was conducted to appraise the level of 

resistance and cross-resistance patterns in L. flava, and to elucidate the mechanisms 

endowing its resistance. Morphological responses between susceptible (S) and 

resistant (R) populations were evaluated with a view of addressing the species 

resistance profile. The levels and patterns of resistance in the R population were 

determined by LD50 and GR50 values. Seven AHAS inhibitors (bensulfuron-methyl, 

metsulfuron-methyl, pyrazosulfuron-ethyl, pyribenzoxim, imazethapyr, penoxsulam, 

and bispyribac-sodium) were examined for their efficacy at different dosages against 

the S and R populations, respectively. It was found that the S population was 

successfully controlled by all AHAS inhibitors but the R population survived the 

applications of the first four from seven tested inhibitors, indicating high-level of 

resistance to bensulfuron-methyl, with various levels of cross-resistance to other 

AHAS inhibitors. To demonstrate the mechanisms endowing resistance in the R 

population, molecular investigation was carried out by AHAS amino acids sequence 

comparison on R plants that survived the inhibitors application. Evidently, the plants 

were endowed with similar AHAS gene mutation of single nucleotide polymorphism 

(SNP) (GAC to GAG). This resulted in Asp substitution by Glu at amino acid position 

376, suggesting point mutation as the molecular basis of resistance. In vitro assays 

were conducted using standards for AHAS inhibitors consisting of bensulfuron-

methyl (99.6%), metsulfuron-methyl (99.2%), pyrazosulfuron-ethyl (99.1%), and 

pyribenzoxim (99.8%) with seven concentrations (0, 0.001, 0.01, 0.1, 1, 10, and 100 

µM). The I50 of in vitro AHAS activity showed that R population was >83333-, 398-, 

172-, and 48-fold greater than S population for the respective AHAS inhibitors. This 

suggests stronger cross-resistance to sulfonylureas than to pyrimidinyl (thio) benzoate 

(pyribenzoxim). The result of non-target site mechanism experiments showed that S 
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and R populations did not differ significantly in their ability to absorb, translocate, and 

metabolize bensulfuron-methyl. This indicates that non-target site resistance 

mechanisms of differential metabolism, absorption, and translocation did not confer 

resistance in the R population. The morphological and physiological characteristics of 

AHAS inhibitors on S and R populations were examined using progenies of AHAS 

herbicide-resistant (R) individuals that survived the application of bensulfuron-methyl 

(Progeny 1) and pyribenzoxim (Progeny 2). Both R and S plants were compared in 

terms of fresh weight, dry weight, height, epicuticular wax weight, stomata density, 

leaf area index, and leaf micromorphology for growth assessment.  Net photosynthetic 

rate, stomatal conductance, intercellular carbon dioxide, and transpiration rate were 

monitored using Progeny 1 from R population with S plants as control. The results 

showed that R plants carrying AHAS Asp-376-Glu mutation did not differ in the 

morpho-physiological characteristics and were comparable to that of S plants. In 

conclusion, the basis of AHAS-inhibitors resistance in L. flava was identified to be 

due to an Asp-376-Glu mutation that reduced sensitivity of the target site to AHAS 

inhibitors. The current study presents the first report of resistance mechanism in L. 

flava.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

MEKANISASI RINTANGAN OLEH Limnocharis flava (L.) Buchenau 

TERHADAP PENGHALANG ACETOHYDROXY ACID SYNTHASE 

Oleh 

NORAZUA BINTI ZAKARIA 

Februari 2018 

Pengerusi :   Muhammad Saiful Ahmad Hamdani, PhD 

Fakulti :   Pertanian 

Limnocharis flava, spesies rumpai akuatik bermasalah di sawah padi, telah dilaporkan 

mempunyai kerintangan berbilang kepada racun rumpai yang berasaskan 2,4-D 

(auksin sintetik) dan bensulfuron-methyl (penghalang AHAS) oleh kerana 

pergantungan berlebihan terhadap penggunaannya. Kajian ini dijalankan untuk 

menilai pola kerintangan serta kerintangan bersilang pada L. flava dan untuk mengkaji 

mekanisma kerintangan tersebut.  Reaksi morfologi antara populasi rentan (S) dan 

rintang (R) telah dikaji dengan tujuan penambahan maklumat dalam profil kerintangan 

pada spesies tersebut. Paras dan corak kerintangan dalam populasi R telah ditentukan 

dengan nilai LD50 dan GR50. Tujuh penghalang AHAS (bensulfuron-methyl, 

metsulfuron-methyl, pyrazosulfuron-ethyl, pyribenzoxim, imazethapyr, penoxsulam, 

dan bispyribac-sodium) telah dikaji keberkesanannya pada dos yang berbeza terhadap 

populasi S dan R. Keputusan menunjukkan bahawa populasi S telah dapat dikawal 

keseluruhannya oleh kesemua penghalang AHAS tetapi populasi R terselamat 

daripada aplikasi empat penghalang pertama daripada tujuh penghalang AHAS yang 

diuji, menunjukkan daya ketahanan yang tinggi terhadap bensulfuron-methyl dengan 

beberapa paras kerintangan terhadap penghalang AHAS yang lain. Untuk mengkaji 

mekanisma kerintangan dalam populasi R, kajian molekular telah dijalankan dengan 

menggunakan kaedah perbandingan jujukan asid amino pada AHAS ke atas pokok R 

yang terselamat daripada aplikasi penghalang AHAS. Semua pokok R didapati 

mempunyai gen mutase yang serupa pada AHAS melalui polimorfisma nucleotid 

tunggal (SNP) (GAC to GAG). Ini menghasilkan penggantian Asp oleh Glu pada asid 

amino berkedudukan 376, sekaligus mentafsirkan mutasi tunggal sebagai asas 

mekanisma kerintangan. Ujian in vitro telah dijalankan dengan menggunakan 

penghalang AHAS standard yang mengandungi bensulfuron-methyl (99.6%), 

metsulfuron-methyl (99.2%), pyrazosulfuron-ethyl (99.1%), and pyribenzoxim 

(99.8%) dalam tujuh kepekatan (0, 0.001, 0.01, 0.1, 1, 10, and 100 µM). Aktiviti I50 

bagi in vitro AHAS menunjukkan bahawa populasi R adalah >83333-, 398-, 172- dan 
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48-kali lebih tinggi ketahanannya daripada populasi S untuk setiap penghalang AHAS. 

Ini menunjukkan bahawa populasi R mempunyai kerintangan bersilang lebih tinggi 

terhadap sulfonylureas berbanding pyrimidinyl(thio)benzoate (pyribenzoxim). 

Keputusan eksperimen untuk mekanisma luar tapak-sasaran menunjukkan bahawa 

tiada perbezaan ketara antara populasi S dan R dalam keupayaan menyerap, 

mengangkut, dan memetabolisma bensulfuron-methyl. Ini membuktikan bahawa 

mekanisma luar tapak-sasaran iaitu perbezaan metabolisma, penyerapan, dan 

translokasi tidak menyumbang kepada kerintangan dalam populasi R.  Sifat morfologi 

dan fisiologi penghalang AHAS ke atas populasi S dan R juga telah dikaji dengan 

menggunakan generasi rintang (R) daripada individuyang terselamat daripada rawatan 

bensulfuron-methyl (Progeny 1) dan pyribenzoxim (Progeny 2). Kedua-dua pokok R 

dan S telah dibandingkan dari segi berat segar, berat kering, ketinggian, berat lilin 

epikutikular, ketumpatan stomata, indeks keluasan daun, dan mikromorfologi daun 

bagi menilai tumbesaran. Kadar fotosintesis bersih, konduksian stomata, karbon 

dioksida antara sel, dan kadar transpirasi telah dipantau pada Progeny 1 dari populasi 

R dengan pokok S sebagai kawalan.  Keputusan menunjukkan bahawa pokok R yang 

mempunyai mutasi AHAS Asp-376-Glu adalah tidak berbeza pada sifat morfo-

fisiologi apabila dibandingkan dengan pokok S.  Pada kesimpulan nya, asas 

kerintangan terhadap penghalang AHAS pada populasi R telah dikenalpasti 

disebabkan oleh mutasi Asp-376-Glu dalam gen AHAS yang mengurangkan kepekaan 

tapak-sasaran kepada penghalang AHAS. Kajian ini merupakan kajian pertama yang 

melaporkan mekanisma kerintangan kepada penghalang AHAS pada L. flava. 
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CHAPTER 1 

1 INTRODUCTION 

Agriculture is an important sector of Malaysia's economy. It has contributed 

significantly to the national Gross Domestic Product (GDP), providing employment 

for a good percentage of the population.  Rubber and oil palm are the two main crops 

that have dominated the agricultural exports although the Malaysian share of the 

world's production of these crops has declined over the past years. 

Rice is a staple food in the daily diet of Malaysians. It is a symbol of traditional 

Malaysian culture.  Rice plays an important part in the country's agriculture although 

the overall production has yet to meet the country's needs.  According to The National 

Agrofood Policy of Malaysia, 2011-2020, local rice production should be increased to 

ensure the country’s future demand. Rice production has been facing several 

constraints. Crop pests including weeds, pathogens, insects, rodents as well as birds 

have always been acknowledged as among the most devastating factors that 

significantly reduce production.  Among other factors include overuse of pesticides, 

excessive nitrogen fertilizer applications and unpredictable weather conditions. 

Weeds have always been a major pest in most rice production areas, be it in Malaysia 

or anywhere else in the world.  Weeds are generally accepted as plants growing where 

they are not wanted. Most of the weeds co-evolved with crops and in some cases, they 

were ancestors of cultivated plant species. The common weeds in rice fields are 

frequently legacies of previous years’ crops which are seeds, rhizomes, tubers and 

bulb surviving in the soil. The general impact of weeds on rice fields includes increase 

in production costs as costs of weed control, act as secondary hosts for other insect 

pests, effect on harvesting and grain quality, and blockage of irrigation canals caused 

by invasive and persistent aquatic weed species.  

To overcome weed problem in rice fields, farmers generally depend on herbicides for 

their control. Before the introduction and use of modern herbicides, rice farmers 

depended on hand weeding, ploughing or tillage, crop rotations as the main methods 

of weed control.  However, these were not sustainable in vast fields because of high 

labour requirements and time-consuming issues.  The introduction of herbicides for 

weed control has a huge relief to farmers all over the world. Among the modern 

herbicides, synthetic auxin, 2,4-D was developed for the control of broadleaf weeds.  

Following this introduction, the use of herbicides has been the most rapidly adopted 

strategy by farmers for the management of weeds in rice as well as in other crops 

production entities.  Without doubt, it has become the most dependable and reliable 

weed control method  (Heap, 2014).  In Malaysian rice fields, herbicides have been 

extensively used for the control of broad-spectrum weed species.  
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There are numerous herbicide modes of action that have been used to control weeds. 

One of these most widely used herbicides is acetohydroxyacid synthase (AHAS) 

herbicides/inhibitors.  Currently, there are 26 different herbicide sites of action being 

documented (Heap, 2017); including having various residual properties, selectivity, 

application times, and crop-type application suitability. Although herbicides are 

highly preferred by farmers because of their high efficacy in weed management, over-

dependent on and overuse of a particular herbicide or groups of herbicides having 

similar mode of action is conceivable to result in weed species developing resistance 

towards the herbicides used. It has been reported that there are 485 cases of weeds 

resistant to herbicides with 252 weed species reported to have developed resistance to 

163 herbicides in 92 crops over 69 countries (Heap, 2017). Among the herbicide 

groups, AHAS inhibitors top the list with the highest herbicide resistant cases of 159 

weed species worldwide, including Malaysia (Heap, 2017).  

Demand for herbicides for efficient weed control has always been high in Malaysian 

rice fields. Unfortunately, continuous dependence on herbicides has caused some 

weed species to develop resistance to the herbicides used.  A total of 16 species have 

been recorded as herbicide resistant weeds, predominantly in vegetable farms, 

plantations, and rice fields (Heap, 2017).  Of these, 9 species are weeds commonly 

found in rice field, namely (in the alphabetical order) Bacopa rotundifolia (Michx.) 

Wettst, Echinochloa crus-galli (L.) P. Beauv., Fimbristylis quinquangularis (Vahl) 

Kunth, Leptochloa chinensis (L.) Nees, Limnocharis flava (L.) Buchenau, Limnophila 

erecta Benth, Oryza sativa L. complex, Sagittaria guayanensis Kunth, and 

Sphenoclea zeylanica Gaertn. (Ruzmi et al., 2017; Dilipkumar et al., 2017). These 

weed species have been reported either resistant to single herbicide, or cross-resistant 

to several herbicides having similar mode of action, or multiple resistant to several 

herbicide modes of action. Among these herbicide-resistant weed species, 

Limnocharis flava has been recognized as one of the most common in Malaysian rice 

fields (Heap, 2017). This species was reported to have developed the resistance in 

1998, and is the first weed species that evolved multiple resistance to both 

bensulfuron-methyl (AHAS inhibitors) and 2,4-D (synthetic auxins) (Heap, 2017).  

The species has become invasive in many rice fields, causing farmers to cost thousands 

of ringgit in terms of control and yield loss through competition, as well as blocking 

irrigation canals.  To date, there has been no record on the resistance in terms of 

patterns and mechanisms for this aquatic weed species, resulting in lack of information 

on effective and efficient management of the species.  

The present study specifically focused on the resistance evolution across AHAS 

inhibitors and aimed at defining the mechanisms conferring resistance to these 

herbicides in L. flava populations in Malaysian rice fields. The specific objectives 

were: 



© C
OPYRIG

HT U
PM

3 

1. To quantify and characterize the level of resistance and cross-resistance patterns

to AHAS inhibitors in a resistant L. flava population infesting rice fields;

2. To elucidate target-site AHAS gene mutation endowing resistance to AHAS

inhibitors at the molecular and enzyme levels of the resistant L. flava population;

3. To identify the co-existence of possible non-target site resistance mechanism(s)

from resistant L. flava individuals carrying no known AHAS gene mutation(s) by

comparing the uptake, translocation, and metabolism of AHAS inhibitors with that

of a susceptible population;

4. To determine and compare the morphological and physiological responses

between susceptible and resistant L. flava populations in the presence and absence

of AHAS inhibitor.
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