UNIVERSITI PUTRA MALAYSIA

EFFECTS OF DIFFERENT TYPES OF PROTECTED FAT ON RUMEN METABOLISM, MEAT QUALITY AND METABOLOMICS IN DORPER CROSSBRED SHEEP

ATIQUE AHMED BEHAN

FP 2018 82
EFFECTS OF DIFFERENT TYPES OF PROTECTED FAT ON RUMEN METABOLISM, MEAT QUALITY AND METABOLOMICS IN DORPER CROSSBRED SHEEP

By

ATIQUE AHMED BEHAN

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

February 2018
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

This thesis is dedicated to

MY LATE FATHER

AND

MY MOTHER WITH LOVE

who always supported and encouraged me to do the best
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

EFFECTS OF DIFFERENT TYPES OF PROTECTED FAT ON RUMEN METABOLISM, MEAT QUALITY AND METABOLOMICS IN DORPER CROSSBRED SHEEP

By

ATIQUE AHMED BEHAN

February 2018

Chairman : Associate Professor Anjas Asmara @ Ab. Hadi Samsudin, PhD
Faculty : Agriculture

The prilled fat, lecithinized prilled fat and calcium soap (calcium salts of palm fatty acids) are the extensively used rumen protected fats (RPF). These are used in ruminant diets to protect dietary lipids from rumen biohydrogenation and to prevent detrimental effects of high fats on rumen fermentation. Supplementation of the protected fats could improve *in vitro* and *in vivo* rumen metabolism, nutrient intake and digestibility, meat quality and metabolomics; and modify meat fatty acid profile. There is very limited number of studies in the literature discusses the use of RPF and their impact on performance, meat quality characteristics and fatty acid profile in sheep. However, the influences of RPF supplementation on rumen metabolism have been highly variable and inconsistent and their impacts on meat quality remain obscure. Therefore there is a need for specific studies to permit personalized decisions and informed choices in the utilization of protected fats. Thus, the present study was conducted to examine the effects of different types of protected fats on *in vitro* and *in vivo* rumen metabolism, nutrient intake and digestibility, serum biochemistry; meat quality and fatty acid profile and meat metabolomics in Dorper crossbred sheep.

In vitro experiment was conducted using ruminal fluid from fistulated Dorper sheep. Treatment consisted of basal diet (70:30 concentrate to rice straw) with no added RPF (T1), basal diet plus prilled fat (T2), basal diet plus prilled fat with lecithin (T3) and basal diet plus calcium soap of palm fatty acids (T4). Completely randomized design (CRD) was followed. *In vitro* gas production, fermentation kinetics, *in vitro* dry matter digestibility (IVDMD), *in vitro* organic matter digestibility (IVOMD), rumen fermentation characteristics and apparent biohydrogenation of fatty acids were determined. The cumulative gas production and gas production kinetics were not affected by RPF. Prilled fat with lecithin increased IVDMD and IVOMD significantly.
Metabolizable energy was not affected by addition of RPF. The RPF did not influence significantly pH, ammonia nitrogen, methane, VFA and molar proportion of VFA. However, the diet containing prilled fat with lecithin (T3) reduced acetate to propionate ratio, decreased methane numerically and increased biohydrogenation of C18:2n-6 and C18 UFA without disrupting rumen fermentation.

For the in vivo experiment, 36 male Dorper crossbred sheep about 18 months of age were used to evaluate the effects of different protected fats on nutrient intake, nutrient digestibility, serum biochemistry, meat quality and fatty acids. The animals were fed with the four experimental diets for 90 days (including last 10 days for digestibility trial) and were slaughtered. The diets did not affect body weight (BW), feed conversion ratio (FCR) and feed efficiency. There was no significant difference (P>0.05) seen in the intake and digestibility of all nutrients except ether extract (EE) and crude fibre (CF).

The rumen fermentation characteristics including pH, methane (CH₄), VFA and molar proportions of VFA, acetate to propionate ratio differ significantly (P<0.05). The maximum CH₄ reduction was observed in the diet T3 while T2 showed the least reduction. Concentration of ammonia nitrogen was not different significantly (P>0.05) among the treatments. Numerically the lowest total VFA concentration was seen in the diet prilled fat with lecithin (T3). Fatty acid profile of rumen digesta was significantly different for ∑SFA, ∑MUFA, ∑PUFA, ∑n-3 and ∑n-6. Neither the diet nor the sampling time influenced serum cholesterols (total, HDL, LDL and VLDL), triglycerides, glucose and fatty acids. Serum fatty acids including ∑SFA, ∑UFA, ∑MUFA, ∑PUFA did not significantly differ (P>0.05). Sheep fed with diet containing RPF had higher (P<0.05) n-3 PUFA as compared to control. The diets did not influence (P>0.05) the levels of ALT, ALP and AST but the concentrations of ALP and AST were affected by sampling day.

There was no difference (P>0.05) in slaughter weight, hot and cold carcass weights, dressing percentage, chilling loss, rib eye area, non-carcass components, non-carcass fats, and primal cuts. However, back fat thickness was significantly affected among the treatments. Chemical composition of longissimus dorsi (LD) and semitendinosus (ST) muscles, meat cholesterol, meat pH, drip loss, cooking loss and shear force were not significantly affected.

The muscle and liver metabolomics was conducted using ¹H NMR spectroscopy. Six metabolites were identified from the muscle tissues including choline, creatine, glycerophosphocholine, inosine, isoleucine and lactate. The concentration of choline, creatine, glycerophosphocholine, inosine and lactate were significantly different but there was no significant difference observed in the concentration of isoleucine.
The supplementation of prilled fat with lecithin (T3) decreased SFA and increased MUFA and PUFA in the meat. Also, it increased the concentrations of C18:1n-9, CLA Cis-9 Trans-11, CLA Trans-10 Cis-12, C18-2n-6, C18-3n-3 and reduced n-6:n-3 which is beneficial to human health making the meat from Dorper crossbred sheep, free from negative effect.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KESAN JENIS LEMAK BERBEZA TERHADAP METABOLISME RUMEN, KUALITI DAGING DAN METABOLOMIK PADA KAMBING BIRI-BIRI DORPER

Oleh

ATIQUE AHMED BEHAN

Februari 2018

Pengerusi : Profesor Madya Anjas Asmara @ Ab. Hadi Samsudin, PhD
Fakulti : Pertanian

Eksperimen in vitro dijalankan menggunakan cecair ruminal dari kambing biri-biri Dorper yang difistula. Rawatan terdiri daripada diet asas (70:30 menumpukan konsentrat kepada jerami padi) tanpa tambahan RPF (T1), diet basal ditambah lemak terlindung (T2), diet basal ditambah lemak terlindung dengan lesitin (T3) dan diet asas serta kalsium asid lemak sawit (T4). Reka bentuk rawak sepenuhnya (CRD) diikuti. Pengeluaran gas in vitro, kinetik penapaian, penghadaman bahan kering dalam in vitro (IVDMD), in vitro bahan organik pencernaan (IVOMD), ciri penapaian rumen dan
biohidrogenasi asid lemak ditentukan. Pengeluaran gas kumulatif dan kinetik pengeluaran gas tidak terjejas oleh RPF. Lemak yang terlindung bersama dengan lesitin meningkat IVDMD dan IVOMD dengan ketara. Tenaga metabolizable tidak terjejas oleh penambahan RPF. RPF tidak mempengaruhi pH, amonia nitrogen, metana, VFA dan bahagian molar VFA yang ketara. Walau bagaimanapun, diet yang mengandungi lemak terlindung dengan lesitin (T3) mengurangkan asetat kepada nisbah propionat, menurunkan kadar metana dan peningkatan biohydrogenasi C18: 2n-6 dan C18 UFA tanpa mengganggu penapaian rumen.

Untuk eksperimen in vivo, 36 ekor kambing biri-biri Dorper jantan berusia kira-kira 18 bulan digunakan untuk menilai kesan-kesan lemak yang berlainan pada pengambilan nutrien, kecernaan nutrien, biokimia serum, kualiti daging dan asid lemak. Haiwan ini diberi makan dengan empat diet percubaan selama 90 hari (termasuk 10 hari terakhir untuk percubaan pencernaan) dan disembelih. Diet tidak mempengaruhi berat badan (BW), nisbah penukaran makanan (FCR) dan kecekapan suapan. Tidak terdapat perbezaan yang signifikan (P> 0.05) yang dilihat dalam pengambilan dan penghadaman semua nutrien kecuali keputusan ekstrak ether (EE) dan serat mentah (CF).

Ciri-ciri penapaian rumen termasuk pH, metana (CH4), VFA dan bahagian molar VFA, asetat kepada nisbah propionat berbeza dengan ketara (P <0.05). Pengurangan CH4 adalah maksimum diperhatikan dalam diet T3 manakala T2 menunjukkan pengurangan yang paling rendah. Kepekatan nitrogen ammonia tidak banyak berbeza (P> 0.05) di antara semua rawatan. Secara numerik jumlah kepekatan VFA yang paling rendah dilihat dalam diet lemak terlindung dengan lesitin (T3). Profil asid lemak rumen yang dicerminkan adalah berbeza dengan ketara untuk ΣSFA, ΣMUFA, ΣPUFA, Σn-3 dan Σn-6. Diet atau masa pensampelan tidak mempengaruhi kolesterol serum (jumlah, HDL, LDL dan VLDL), trigliserida, glukosa dan asid lemak. Asid lemak serum termasuk ΣSFA, ΣUFA, ΣMUFA, ΣPUFA adalah tidak berbeza jauh (P> 0.05). Kambing yang diberi makanan yang mengandungi RPF lebih tinggi n-3 PUFA secara ketara (P <0.05) berbanding dengan kawalan. Diet tidak mempengaruhi (P> 0.05) tahap ALT, ALP dan AST tetapi kepekatan ALP dan AST dipengaruhi oleh hari sampling.

Tidak ada perbezaan yang ketara (P> 0.05) dalam berat penyembelihan, berat badan panas dan sejuk, peratusan bersama kulit, kehilangan kerengsaan, kawasan mata rusuk, komponen bukan karkas, lemak bukan karkas, dan potongan awal. Walau bagaimanapun, ketebalan lemak belakang telah terjejas dengan ketara di kalangan rawatan. Komposisi kimia longissimus dorsi (LD) dan semitendinosus (ST) otot, kolesterol daging, pH daging, kehilangan titisan, daya masakan dan daya ricih tidak terjejas dengan ketara.
Metabolisma otot dan hati telah dijalankan menggunakan spektroskopi 1H NMR. Enam metabolit dikenal pasti dari tisu otot termasuk choline, creatine, glycerophosphocholine, inosine, isoleucine dan lactate. Kepekatan choline, creatine, glycerophosphocholine, inosine dan lactate sangat berbeza tetapi tiada perbezaan yang signifikan dalam kepekatan isoleucine.

Suplemen lemak terlindung dengan lesitin (T3) menurunkan SFA dan meningkatkan MUFA dan PUFA dalam daging. Selain itu, ia meningkatkan kepekatan C18: 1n-9, CLA Cis-9 Trans-11, CLA Trans-10 Cis-12, C18-2n-6, C18-3n-3 dan mengurangkan n-6: n-3 dimana ia bermanfaat untuk kesihatan manusia yang menjadikan daging dari kambing biri-biri Dorper bebas dari kesan negatif.
ACKNOWLEDGEMENTS

First and foremost, I am grateful to Almighty Allah for the strength, wellbeing and patience to complete this journey.

I would like to express my gratitude to the chairman of my supervisory committee, Associate Professor Dr. Anjas Asmara @ Ab. Hadi Bin Samsudin for his support, patience, willingness to help, encouragement and guidance throughout my candidature. I would like to extend my thanks to members of my supervisory committee, Professor Dr. Loh Teck Chwen and Associate Professor Dr. Datin Sharida Fakurazi for their encouragement, constructive criticism and valuable suggestions.

I am very grateful to Sindh Agriculture University, Tandojam, Pakistan for providing me scholarship to pursue my PhD at UPM. I would like to extend my thanks and appreciations to all staff members of the Department of Animal Science, Faculty of Agriculture and Ruminant Unit Farm 2 for their kind cooperation and help in conducting my experiments.

Special thanks are due to all friends, Malaysian and international for their fine cooperation and moral support during the hard times, among them, Dr. Tanbir Ahmed, Dr. Abdul Kareem, Dr. Osama Alsaeed, Dahiru Soli, Humam Ali Merrza, Abubakar, Muideen Ahmed Adewale, Jurhamid C. Imlan, Dr. Adeyeme Kazeem Dauda, Hasfar, Dr. Candyrine and others not mentioned here but their help is fully appreciated.

Thanks are extended to Dr. Mahdi Ebrahimi, Dr. Ubedullah Kaka, Dr. Asmatullah Kaka, Dr. M. Umar Chhalgari, Dr. Tanweer Fatah Abro, Dr. Abdul Raheem Channa, Dr. Abdul Razaque Chhachhar, Dr. Shafeeqeque Ahmed Memon, Dr. Khaleeq ur Rehman Bhattu, Dr. Pasand Ali Khoso, Dr. Ghulam Mujtaba Khushk, Dr. Agha Mushtaque, Dr. Muhammad Zuber, Dr. Saifullah Bullo, Dr. Muhammad Tayyab Akhtar, Dr. Waseem Muntaz, Zulfiqar Ahmed Maher, Noor Ahmed Brohi, Mansoor Ali Khuhro, Mazhar Iqbal, Sadaf Shakoor, Sidra Rana and Farhana Haque for their continuous help and support throughout my stay at UPM.

All Pakistani students in UPM were involved in this work in one way or another and their contribution is highly appreciated.

I extend my thanks to my well-wishers Syed Allah Bachayo Shah, Mushtaque Ahmed Memon, Zulfiqar Ali Behan, Abdul Razaque Behan, Abdul Hayue Behan, Dr. Abdul Qayoom Khanzada, Dr. Ghulam Nabi Dahri, Dr. Muhammad Haroon Baloch, Dr. Irshad Ali Korejo, Dr. Ali Hassan Buriro, Dr. Shahid Laghari, Dr. Razique Hussain Laghari, Dr. Majeed Hakeem Dhamrah, Dr. Bashir Ahmed Dahri, Dr. G. Murtaza
Laghari, Dr. Faheem KK, Dr. G. Ali Jalalani, Dr. Abdul Salam Chandio, Abdul Jabbar Dahri, Dr. Akeel Ahmed Memon, Dr. Barkatullah Qureshi, Dr. Muhammad Yaqoob Koondhar, Jam Muhammad Zaman Vako, Qari Muhammad Shareef, Aijaz ur Rehman Behan for their prayers and moral support.

I am sincerely grateful to my family members including my mother, my wife my sons and my daughter, my sisters and my brother Muhammad Issa Behan for their love, endless support, encouragement, understanding, and reassurance during my study.
I certify that a Thesis Examination Committee has met on 19 February 2018 to conduct the final examination of Atique Ahmed Behan on his thesis entitled "Effects of Different Types of Protected Fat on Rumen Metabolism, Meat Quality and Metabolomics in Dorper Crossbred Sheep" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Halimatun binti Yaakub, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Awis Qurni bin Sazili, PhD
Associate Professor
Institute of Tropical Agriculture and Food Security
Universiti Putra Malaysia
(Internal Examiner)

Md Zuki bin Abu Bakar @ Zakaria, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Reza Valizadeh, PhD
Professor
Ferdowsi University of Mashhad
Iran
(External Examiner)

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 28 June 2018
This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Anjas Asmara @ Ab. Hadi Bin Samsudin, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Loh Teck Chwen, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Sharida Fakurazi, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature: ___________________ Date: _______________

Name and Matric No: Atique Ahmed Behan, GS33285
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature:
Name of Chairman of Supervisory Committee: Associate Professor Dr. Anjas Asmara @ Ab. Hadi Bin Samsudin

Signature:
Name of Member of Supervisory Committee: Professor Dr. Loh Teck Chwen

Signature:
Name of Member of Supervisory Committee: Associate Professor Dr. Sharida Fakurazi
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

2.1 Global contribution of livestock
2.2 The impact of livestock products on human health
2.3 Livestock industry in Malaysia
2.4 Sheep production in Malaysia
2.5 Ruminant feeds in Malaysia
2.6 Global meat production and consumption
2.7 Sheep meat production and consumption in Malaysia
2.8 Rumen microbial ecosystem
2.9 Fat supplementation in ruminant diet
2.10 Level of fat supplementation in the ruminant diet
2.11 Fat metabolism in the rumen
2.12 Rumen protected fats (RPF)
2.13 Significance of RPF supplementation
2.14 General properties of RPF
2.15 Types of RPF
2.15.1 Natural RPF
2.15.2 Chemically prepared RPF
2.16 Methods of RPF preparation
2.16.1 Crystalline or prilled fats
2.16.2 Calcium soaps
2.16.3 Formaldehyde-treated fats
2.16.4 Fatty acyl amides
2.17 RPF and in vitro fermentation
2.18 RPF and growth performance
2.19 RPF and nutrient intake
2.20 RPF and nutrient digestibility
3 EFFECTS OF DIFFERENT TYPES OF PROTECTED FAT ON IN VITRO RUMEN FERMENTATION AND APPARENT BIOHYDROGENATION OF FATTY ACIDS

3.1 Introduction

3.2 Materials and Methods
3.2.1 Donor Animals
3.2.2 Treatments and experimental design
3.2.3 Chemical analysis
3.2.4 Preparation of in vitro samples for analysis
3.2.5 Collection of rumen liquor
3.2.6 Preparation of buffered solutions
3.2.7 Preparation of media
3.2.8 In vitro rumen fermentation of samples
3.2.9 Determination of pH
3.2.10 In vitro gas production and fermentation kinetics
3.2.11 In vitro dry matter digestibility (IVDMD)
3.2.12 In vitro organic matter digestibility (IVOMD)
3.2.13 Determination of volatile fatty acids (VFA)
3.2.14 Determination of ammonia nitrogen (NH₃-N)
3.2.15 Determination of methane (CH₄)
3.2.16 Determination of metabolizable energy (ME)
3.2.17 Fatty acid analysis
3.2.18 Rate of biohydrogenation
3.2.19 Statistical analysis

3.3 Results
3.3.1 In vitro cumulative gas production
3.3.2 In vitro gas production kinetics
3.3.3 In vitro rumen fermentation characteristics
3.3.4 Fatty acid composition of rumen liquor after 72 hours of incubation
3.3.5 Apparent biohydrogenation of fatty acids after 72 h incubation

3.4 Discussion

3.4.1 *In vitro* cumulative gas production

3.4.2 *In vitro* gas production kinetics

3.4.3 *In vitro* rumen fermentation characteristics

3.4.4 Fatty acid profile and apparent biohydrogenation of fatty acids

3.5 Conclusion

4 EFFECTS OF DIFFERENT TYPES OF PROTECTED FAT ON NUTRIENT INTAKE, APPARENT DIGESTIBILITY, BODY WEIGHT CHANGES AND SERUM BIOCHEMISTRY IN DORPER CROSSBRED SHEEP

4.1 Introduction

4.2 Materials and Methods

4.2.1 Experimental site

4.2.2 Animals and housing management

4.2.3 Treatments and experimental design

4.2.4 Live body weight changes and feed intake

4.2.5 Apparent digestibility

4.2.6 Chemical analysis

4.2.7 Blood sampling

4.2.8 Serum biochemistry

4.2.9 Slaughtering

4.2.10 Collection of rumen liquor

4.2.11 Determination of rumen liquor pH

4.2.12 Rumen fermentation parameters

4.2.13 Fatty acid analysis

4.2.14 DNA extraction of rumen microbes

4.2.15 Quantitative Real-Time PCR

4.2.16 Statistical analysis

4.3 Results

4.3.1 Chemical composition of experimental diets

4.3.2 Body weight changes and feed efficiency

4.3.3 Nutrient intake in Dorper sheep

4.3.4 Apparent nutrient digestibility in sheep

4.3.5 Rumen fermentation characteristics of sheep

4.3.6 Rumen microbial population

4.3.7 Fatty acid profile of ruminal digesta in Dorper sheep

4.3.8 Blood serum biochemistry

4.3.9 Serum enzyme activity

4.3.10 Fatty acid profile of blood serum

4.3.11 Sums and ratios of serum fatty acids

4.4 Discussion

4.4.1 Body weight changes and feed efficiency

4.4.2 Nutrient intake
5 EFFECTS OF DIFFERENT TYPES OF PROTECTED FAT ON CARCASS CHARACTERISTICS, MEAT QUALITY AND TISSUE FATTY ACID PROFILES IN DORPER CROSSBRED SHEEP

5.1 Introduction

5.2 Materials and Methods
5.2.1 Slaughter and carcass sampling
5.2.2 Ageing of meat
5.2.3 Chemical analysis of muscles
5.2.4 Determination of muscle pH
5.2.5 Determination of meat colour coordinates
5.2.6 Determination of Water Holding Capacity (WHC)
5.2.6.1 Drip Loss
5.2.6.2 Cooking loss
5.2.7 Texture analysis
5.2.8 Determination of fatty acid composition
5.2.9 Determination of cholesterol
5.2.10 Statistical analysis

5.3 Results
5.3.1 Carcass composition in Dorper sheep
5.3.2 Non-carcass components
5.3.3 Non-carcass fats
5.3.4 Primal cuts
5.3.5 Chemical composition of meat
5.3.6 pH, water holding capacity and shear force of longissimus dorsi (LD) muscle in Dorper sheep
5.3.7 pH, water holding capacity and shear force of semitendinosus (ST) muscle in Dorper sheep
5.3.8 Colour coordinates of longissimus dorsi (LD) muscle in Dorper sheep
5.3.9 Colour coordinates of semitendinosus (ST) muscle in Dorper sheep
5.3.10 Fatty acid composition of longissimus dorsi (LD) muscle in sheep
5.3.11 Fatty acid composition of semitendinosus (ST) muscle in sheep
5.3.12 Fatty acid composition of the liver in Dorper sheep

5.4 Discussion
5.4.1 Carcass composition in Dorper sheep 96
5.4.2 Non-carcass components 97
5.4.3 Non-carcass fats 97
5.4.4 Primal cuts 98
5.4.5 Chemical composition of muscles 99
5.4.6 Cholesterol level in LD and ST muscles 99
5.4.7 pH values of LD and ST muscles of sheep 100
5.4.8 Drip loss and cooking loss in LD and ST muscles of sheep 101
5.4.9 Shear force in LD and ST muscles of sheep 102
5.4.10 Colour coordinates of LD and ST muscles of sheep 103
5.4.11 Fatty acid profile of different tissues in Dorper sheep 104

5.5 Conclusion 107

6 EFFECTS OF DIFFERENT TYPES OF PROTECTED FAT ON
MUSCLE AND LIVER METABOLOME OF DORPER SHEEP
USING 1H NMR SPECTROSCOPY 108
6.1 Introduction 108
6.2 Materials and Methods 109
 6.2.1 Sample collection 109
 6.2.2 Extraction of tissue metabolites 109
 6.2.3 Preparation of extracts for NMR Spectroscopy 110
 6.2.4 NMR measurement and data processing 110
 6.2.5 Statistical analysis 110
6.3 Results 111
 6.3.1 Muscle tissue 111
 6.3.2 Liver Tissue 114
6.4 Discussion 117
6.5 Conclusion 118

7 GENERAL DISCUSSION 119

8 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR
FUTURE RESEARCH 123
8.1 Summary 123
8.2 Conclusion 124
8.3 Recommendation for future research 124

REFERENCES 125
APPENDICES 157
BIODATA OF STUDENT 169
LIST OF PUBLICATIONS 170
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Production, consumption and self-sufficiency of goat and sheep meat (2004-2013) in Malaysia</td>
<td>9</td>
</tr>
<tr>
<td>3.1</td>
<td>Ingredients, chemical and fatty acid composition of experimental diets</td>
<td>28</td>
</tr>
<tr>
<td>3.2</td>
<td>Fatty acid composition of rumen protected fats</td>
<td>29</td>
</tr>
<tr>
<td>3.3</td>
<td>In vitro gas production, gas production kinetics and digestibility with different rumen protected fats</td>
<td>36</td>
</tr>
<tr>
<td>3.4</td>
<td>In vitro rumen fermentation characteristics of substrates with different rumen protected fats</td>
<td>37</td>
</tr>
<tr>
<td>3.5</td>
<td>Fatty acid composition of rumen liquor at 72 hours of incubation of substrates with different rumen protected fats</td>
<td>38</td>
</tr>
<tr>
<td>3.6</td>
<td>Apparent biohydrogenation of fatty acids at 72 hours of incubation of substrates with different rumen protected fats</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of rumen protected fat on body weight changes, average daily gain and feed conversion ratio in Dorper sheep</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of different rumen protected fats on daily average nutrient intake in Dorper sheep</td>
<td>54</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of different rumen protected fats on apparent nutrient digestibility in sheep</td>
<td>55</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of different rumen protected fats on rumen fermentation characteristics in Dorper sheep</td>
<td>56</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of different rumen protected fats on microbial population (copies/ml) in rumen of Dorper sheep</td>
<td>57</td>
</tr>
<tr>
<td>4.6</td>
<td>Effect of different rumen protected fats on fatty acid composition of rumen digesta in Dorper sheep</td>
<td>58</td>
</tr>
<tr>
<td>4.7</td>
<td>Serum biochemical parameters in sheep as influenced by diet and sampling time</td>
<td>59</td>
</tr>
<tr>
<td>4.8</td>
<td>Effect of rumen protected fats on serum enzyme activity in Dorper sheep as influenced by diet and sampling time</td>
<td>60</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>4.9</td>
<td>Saturated and monounsaturated fatty acids (% of total fatty acids) in serum of Dorper sheep as influenced by diet and sampling time</td>
<td>61</td>
</tr>
<tr>
<td>4.10</td>
<td>Polyunsaturated fatty acids (% of total fatty acids) in serum of Dorper sheep as influenced by diet and sampling time</td>
<td>62</td>
</tr>
<tr>
<td>4.11</td>
<td>Sums and ratios of total fatty acids in serum of Dorper sheep as influenced by diet and sampling time</td>
<td>63</td>
</tr>
<tr>
<td>5.1</td>
<td>Effect of rumen protected fat on carcass composition in sheep</td>
<td>83</td>
</tr>
<tr>
<td>5.2</td>
<td>Effect of rumen protected fat on non-carcass components in sheep</td>
<td>84</td>
</tr>
<tr>
<td>5.3</td>
<td>Effect of rumen protected fat on non-carcass fats in Dorper sheep</td>
<td>85</td>
</tr>
<tr>
<td>5.4</td>
<td>Effect of rumen protected fat on primal cuts in Dorper sheep</td>
<td>85</td>
</tr>
<tr>
<td>5.5</td>
<td>Effect of rumen protected fat on chemical composition of longissimus dorsi and semitendinosus muscles in Dorper sheep</td>
<td>86</td>
</tr>
<tr>
<td>5.6</td>
<td>Influence of rumen protected fat on pH, water holding capacity and shear force of longissimus dorsi (LD) muscle in Dorper sheep</td>
<td>87</td>
</tr>
<tr>
<td>5.7</td>
<td>Influence of rumen protected fat on pH, water holding capacity and shear force of semitendinosus (ST) muscle in Dorper sheep</td>
<td>88</td>
</tr>
<tr>
<td>5.8</td>
<td>Effect of rumen protected fat on colour coordinates of longissimus dorsi (LD) muscle in Dorper sheep at different ageing days</td>
<td>89</td>
</tr>
<tr>
<td>5.9</td>
<td>Effect of rumen protected fat on colour coordinates of semitendinosus (ST) muscle in Dorper sheep at different ageing days</td>
<td>90</td>
</tr>
<tr>
<td>5.10</td>
<td>Effect of rumen protected fat on fatty acid composition of longissimus dorsi (LD) muscle in Dorper sheep</td>
<td>92</td>
</tr>
<tr>
<td>5.11</td>
<td>Effect of rumen protected fat on fatty acid composition of semitendinosus (ST) muscle in Dorper sheep</td>
<td>93</td>
</tr>
<tr>
<td>5.12</td>
<td>Effect of rumen protected fat on fatty acid composition of liver in Dorper sheep</td>
<td>95</td>
</tr>
<tr>
<td>6.1</td>
<td>Characteristic 1H NMR chemical shifts and multiplicity of indentified metabolites in muscle of Dorper sheep</td>
<td>111</td>
</tr>
<tr>
<td>6.2</td>
<td>Relative quantification of metabolites found in Dorper sheep longissimus dorsi muscle tissues</td>
<td>114</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Rumen protected fats (RPF)</td>
<td>29.</td>
</tr>
<tr>
<td>3.2</td>
<td>In vitro cumulative gas production profile</td>
<td>35.</td>
</tr>
<tr>
<td>5.1</td>
<td>Location of Longissimus dorsi (LD) and Semitendinosus (ST) muscles</td>
<td>78.</td>
</tr>
<tr>
<td>5.2</td>
<td>Primal cuts of carcass</td>
<td>79.</td>
</tr>
<tr>
<td>5.3</td>
<td>The location for measuring the rib eye area and back fat thickness</td>
<td>80.</td>
</tr>
<tr>
<td>5.4</td>
<td>Location of Longissimus dorsi (LD) and Semitendinosus (ST) muscles</td>
<td>78.</td>
</tr>
<tr>
<td>6.1</td>
<td>PCA score plot of Dorper sheep longissimus dorsi muscle</td>
<td>112.</td>
</tr>
<tr>
<td>6.2</td>
<td>PCA Loading scatter plot of Dorper sheep longissimus dorsi muscle</td>
<td>112.</td>
</tr>
<tr>
<td>6.3</td>
<td>1H NMR spectrum of Dorper sheep longissimus dorsi muscle showing identified metabolites acquired at 700 MHz</td>
<td>113.</td>
</tr>
<tr>
<td>6.4</td>
<td>PCA score plot of Dorper sheep liver</td>
<td>115.</td>
</tr>
<tr>
<td>6.5</td>
<td>PLS score plot of Dorper sheep liver</td>
<td>115.</td>
</tr>
<tr>
<td>6.6</td>
<td>Validation of PLS-DA model with permutation test (100 permutation)</td>
<td>116.</td>
</tr>
<tr>
<td>6.7</td>
<td>J-resolved spectrum of Dorper sheep longissimus dorsi muscle</td>
<td>117.</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Names of fatty acids</td>
</tr>
<tr>
<td>B</td>
<td>Chemical analysis</td>
</tr>
<tr>
<td>C</td>
<td>Preparation of solution for in vitro gas production</td>
</tr>
<tr>
<td>D</td>
<td>DNA extraction protocol</td>
</tr>
<tr>
<td>E</td>
<td>Primers used for quantitative real-time polymerase chain reaction (q-PCR)</td>
</tr>
<tr>
<td>F</td>
<td>Protocol for extraction of tissue metabolites</td>
</tr>
<tr>
<td>G</td>
<td>Experimental Animals</td>
</tr>
<tr>
<td>H</td>
<td>Dressed carcasses in the chiller during postmortem ageing</td>
</tr>
<tr>
<td>I</td>
<td>A chromatogram of fatty acids in rumen liquor</td>
</tr>
<tr>
<td>J</td>
<td>A 700 MHz nuclear magnetic resonance (NMR) instrument</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>ADF</td>
<td>Acid detergent fibre</td>
</tr>
<tr>
<td>ADG</td>
<td>Average daily gain</td>
</tr>
<tr>
<td>ADL</td>
<td>Acid detergent lignin</td>
</tr>
<tr>
<td>ALP</td>
<td>Alkaline phosphatase</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanine aminotransferase</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartate aminotransferase</td>
</tr>
<tr>
<td>BH</td>
<td>Biohydrogenation</td>
</tr>
<tr>
<td>BW</td>
<td>Body weight</td>
</tr>
<tr>
<td>CCW</td>
<td>Cold carcass weight</td>
</tr>
<tr>
<td>CF</td>
<td>Crude fibre</td>
</tr>
<tr>
<td>CH₄</td>
<td>Methane</td>
</tr>
<tr>
<td>CLA</td>
<td>Conjugated linoleic acid</td>
</tr>
<tr>
<td>cm</td>
<td>Centimetre</td>
</tr>
<tr>
<td>cm²</td>
<td>Centimetre square</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CP</td>
<td>Crude protein</td>
</tr>
<tr>
<td>d</td>
<td>Day</td>
</tr>
<tr>
<td>DM</td>
<td>Dry matter</td>
</tr>
<tr>
<td>DMD</td>
<td>Dry matter digestibility</td>
</tr>
<tr>
<td>DMI</td>
<td>Dry matter intake</td>
</tr>
<tr>
<td>EBW</td>
<td>Empty body weight</td>
</tr>
<tr>
<td>EE</td>
<td>Ether extract</td>
</tr>
<tr>
<td>FA</td>
<td>Fatty acid</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>NH₃-N</td>
<td>Ammonia-nitrogen</td>
</tr>
<tr>
<td>NRC</td>
<td>National Research Council</td>
</tr>
<tr>
<td>OM</td>
<td>Organic matter</td>
</tr>
<tr>
<td>OMD</td>
<td>Organic matter digestibility</td>
</tr>
<tr>
<td>PUFA</td>
<td>Poly unsaturated fatty acid</td>
</tr>
<tr>
<td>RPF</td>
<td>Rumen protected fat</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of means</td>
</tr>
<tr>
<td>SFA</td>
<td>Saturated fatty acid</td>
</tr>
<tr>
<td>ST</td>
<td>Semitendinosus</td>
</tr>
<tr>
<td>TVFA</td>
<td>Total volatile fatty acid</td>
</tr>
<tr>
<td>UFA</td>
<td>Unsaturated fatty acid</td>
</tr>
<tr>
<td>VFA</td>
<td>Volatile fatty acid</td>
</tr>
<tr>
<td>VLDL</td>
<td>Very low density lipoprotein</td>
</tr>
<tr>
<td>WG</td>
<td>Weight gain</td>
</tr>
<tr>
<td>WHC</td>
<td>Water holding capacity</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Feed is considered a major proportion of the cost of raising ruminants. The raw ingredients for animal feed such as cereal grains, vegetable and animal proteins, mineral sources, micro-ingredients and other additives are not produced in Malaysia but are imported from other countries (Loh, 2004). So as to reduce the cost incurred on the import of these raw ingredients there is a need of utilizing available low-cost indigenous resources for animal feeds to fulfil their energy needs by producing more with spending less. In this connection, there has been a recent emphasis to utilize by-products of oil palm industry as animal feed (Alimon and Wan Zahari, 2012).

In order to fulfill the energy needs, dietary lipids are being used in ruminant nutrition. However, feeding lipids in high concentrations could adversely influence rumen microbial metabolism, affecting nutrient digestibility and animal performance (Hartati et al., 2012; Szumacher-Strabel et al., 2009; Naik et al., 2007a). The adverse effects of lipid supplementation are because of extensive biohydrogenation (BH) of fatty acids (FA), especially BH of unsaturated fatty acids (UFA) to saturated fatty acids (SFA) by rumen microbes. Thus, the negative impact of lipid supplementation can be easily overwhelmed by feeding rumen protected fats (RPF) or rumen inert or rumen bypass fats to ruminants.

Rumen protected fats are generally, a by-product of palm oil industry, considered as insoluble fats due to their protection from microbial fermentation and biohydrogenation. They remain insoluble at normal rumen pH range of 6 to 7 and escape rumen fermentation. They are then utilized as a source of energy when absorbed through the small intestine (Warner et al., 2015). The use of RPF enhance fibre digestibility in high fat supplemented diets by forming insoluble soaps (Palmquist and Jenkins 1980). Moreover, supplementation of RPF improves energy efficiency as a result of reduced production of methane from the rumen and direct use of long-chain fatty acids (Park et al., 2010). Owing to their inert nature, RPF can be successfully used in relatively large amounts without compromising rumen function (Ayasan and Karakozak, 2011) and reducing feed intake (Gooden, 1977).

The common available RPF include calcium soaps (calcium salts of palm fatty acids), hydrogenated fats from palm oil, fractionated palm oil fatty acids (C16), straight fats (tallow) and dry fat premixes (blends of vegetable and/or animal fats). The common methods of RPF preparation include microencapsulation with a water-insoluble lipid coating, formaldehyde treatment of a lipid-protein matrix, the formation of calcium salts of fatty acids and preparation of fatty acyl amides (Bauman et al., 2003; Putnam et al., 2003).
The calcium soap of palm fatty acids and the prilled fat are the most extensively used protected fats, both of which are highly digestible. Calcium soap of palm fatty acids, prilled fat and lecithinized prilled fat are the highly concentrated source of energy supplement fats, specially produced from 100 percent fully refined palm oil fraction which are non-hydrogenated and free from trans fatty acids (TFA). The high palmitic acid contents in these fats can bypass rumen and become a direct energy source for the ruminants. Moreover, lecithinized prilled fats improve the emulsifying properties and thus increase the digestibility of animals.

The calcium salts of palm fatty acids are produced by reacting palm fatty acids distillate with calcium hydroxide to form calcium soaps. The calcium soaps would not be influenced in the rumen (pH 6.5 to 6.8), and finally are fully opened making the fatty acids accessible for absorption in abomasum and duodenum (pH 3.5) (Mierlita, 2018). It was reported that the RPF in the form of calcium soap allows normal rumen fermentation and digestibility of nutrients (Schauff and Clark, 1989; Jenkins and Palmquist, 1984). Prilled fats are made by liquefying a mixture of fatty acids high in saturated fatty acid content and spraying the mixture under pressure into a cooled atmosphere in order to form a dried prilled fatty acid supplement that is inert in the rumen and does not alter rumen fermentation (Grummer, 1988; Chalupa, 1986). Furthermore, the prilled fat with lecithin act as an emulsifier by dispersing fatty acids and enhancing fatty acid absorption (Wettstein et al., 2011).

Bhatt et al. (2015); (2013b) reported that supplementation of protected fat of industrial grade of improved nutrient digestibility, body condition and carcass characteristics in sheep. There was no adverse effect of supplementation of RPF on the rumen fermentation (Naik et al., 2013). Alexander et al. (2002) reported that calcium soap prepared from sunflower acid oil at 10 % of DM can be fed to sheep without affecting fibre digestibility in sheep. However, there was a significant reduction in in vitro DM degradability (IVDMD) with an increase in the level of bypass fat (Tangendjaja et al., 1993). Manso et al. (2006) reported that supplementation of calcium soaps of palm fatty acids improved EE digestibility and FCR in growing lambs. Therefore protected fat supplementation could improve digestibility and FCR in adult sheep as well so there is a need to evaluate the effects of protected fats in adult sheep.

Red meat is one of the major dietary sources of protein and essential nutrients such as vitamins and minerals that play vital role in human health. However, consumption of red meat may increase the risk of cardiovascular disease (CVD) and cancer in the colon (McAfee et al., 2010) because of high SFA contents in it. Thus, reducing SFA content and the n-6/n-3 ratio is of major importance in meat research (Mierlita, 2018). Therefore, modifying the FA composition of ruminant meat is of prime significance (Mapiye et al., 2015; Scollan et al., 2014).
The supplementation of RPF has been one of the methods to reduce undesirable SFA and increase beneficial UFA in the meat (Warner et al., 2015). In this regard, several studies have been conducted on effects of dietary lipids and their FA composition on various aspects of meat quality (Wood et al., 2008; Schmid et al., 2006; Wood et al., 2004; Palmquist and Jenkins, 1980). However, most of the published studies have been inconclusive in proving whether the use of protected fat increases the content of essential fatty acids in animal meat (Lima et al., 2017). Therefore, there is a need to conduct such experiment in order to evaluate the effects of protected fats.

In previous studies effects of protected fats on live weight, carcass and meat characteristics and fatty acid composition of muscle have been evaluated. However, no characterization of the muscle and liver metabolomes of sheep has ever been evaluated. Therefore the present study was planned to characterize the metabolome of the muscle and liver of sheep, and study the effect of protected fat in these tissues, which are important from the productive and metabolic perspectives. The NMR-metabolomics based approach, which, was for the first time applied to Dorper sheep for dietary fat supplementation.

Although RPF has been extensively evaluated in dairy animals (Gowda et al., 2013; Naik, 2013; Shelke et al., 2012; Wadhwa et al., 2012) and to some extent beef cattle (Mangrum et al., 2016; Long et al., 2014; Hightshoe et al., 1991) yet there is a need to evaluate RPF especially in sheep for meat purpose where there is a very limited number of studies done. The studies conducted on RPF in sheep are in young lambs (Bhatt et al., 2015; Bhatt et al., 2013b) none of those has been conducted in adult sheep, therefore adult animals (about one and half a year of age) were selected to be used in the present study especially with intention to focus on fat deposition. It is well established that fat deposition in the body is age-dependent and subcutaneous fat is accumulated at the later stage of growth (Bhatt et al., 2013a). Leon et al. (1999) reported higher body fat reserves at 12 and 16 months of age as compared to 8 month old lambs.

It is hypothesized that supplementation of protected fat in the form of calcium soap, prilled fat and lecithinized prilled fat will improve in vitro and in vivo rumen metabolism; nutrient intake and digestibility; meat quality, meat metabolomics and will increase the circulating unsaturated fatty acids in blood and consequently depositing them into the intramuscular meat. However, producing the meat that is low in saturated fatty acids, high in monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), concurrently prevents the development of cardiovascular disease would be an effective approach. Therefore, different types of protected fats were selected to evaluate with the following general objective:

- To determine the effects and efficacy of RPF supplementation in improving the quality of meat production in small ruminants.
The specific objectives of the study include:

1. To evaluate the effects of RPF on \textit{in vitro} gas production, rumen fermentation, and apparent biohydrogenation of fatty acids.
2. To determine the effects of RPF on nutrient intake, digestibility, rumen fermentation, serum biochemistry and serum fatty acid profile in Dorper sheep.
3. To determine the influences of RPF on carcass characteristics, meat quality and meat fatty acid profile.
4. To determine the effects of RPF on muscle and liver metabolites using NMR-based metabolomics.

\textbf{Presentation of the thesis}

The thesis is divided into eight chapters. The first two chapters discuss the framework of the experimental research. Chapter 1 provides the rationale for the focus of the research. Chapter 2 presents the review of literature covering the livestock industry, sheep meat production and consumption in Malaysia, rumen microbial ecosystem, fat supplementation to ruminants and its metabolism in rumen, rumen protected fats (RFP) and significance of RPF supplementation, effects of RPF on body weight changes, nutrient intake and digestibility, rumen fermentation, carcass traits, meat quality and livestock metabolomics. From Chapter 3 to 6 present the experimental works for this study. Chapter 7 describes the major findings and highlights the practical importance. Chapter 8 presents the summary, conclusions and recommendations for future research.
REFERENCES

Department of Standards Malaysia (2009). MS1500: 2009 (1st revision) Halal food production, preparation, handling and storage-general guideline (pp. 1–13).

DVS. (2015). Department of Veterinary Services, Malaysia; Livestock products statistics.

Stanstrup, J. (2014). *Metabolomics investigation of whey intake: Discovery of markers and biological effects supported by a computer-assisted compound identification pipeline* (Doctoral dissertation, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen).

