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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 
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Chairman: Professor Datin Siti Nor Akmar Abdullah 
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Vitamin E possesses important nutritional attributes that play various roles in human 

disease protection. The most well-known function of this noble compound is that of chain 

breaking antioxidant activity that scavenge free radical ions and reduce lipid peroxidation 

in membrane systems. Homogentisate geranylgeranyl transferase (HGGT) and 

homogentisate phytyl transferase (HPT) that catalyse the first committed step of 

tocotrienol and tocopherol biosynthesis, respectively are important in determining plant 

vitamin E composition. In Elaeis guineensis, there is high variability in the level of 

vitamin E among the germplasm materials from Angolan and Tanzanian origins. 

Therefore, the first objective of this study was to determine important sequence variants 

in these key vitamin E genes from E. guineensis germplasm materials that can be used 

for the development of DNA-based markers. The second objective was to analyse the 

effects of the sequence variants on vitamin E content and composition by overexpression 

of the HGGT gene and its mutant derivatives in Arabidopsis thaliana. Sequence analysis 

reveals no important variants in HPT gene that could be associated with low and high 

vitamin E content. However, the analysis reveals four SNPs at positions 193, 2225, 2429 

and 6932 in the coding region of the HGGT gene that are associated with the vitamin E 

content. SNPs at 193 and 2429 positions lead to non-conservative amino acid changes in 

the sequence from Proline (CCT) in low vitamin E to Serine (TCT) in high vitamin E 

and from Methionine (ATG) in low to Isoleucine (ATA) in high vitamin E palms, 

respectively. SNP markers 193F/413R and 2225F/2429R were developed at these SNP 

locations for selection of high and low vitamin E germplasm materials in E.  guineensis. 

Fourty one germplasm materials with different vitamin E level were screened to validate 

these two functional SNP markers using designed PCR-based mismatch primers. The 

results showed 100% success of the SNP-based markers in differentiating low and high 

vitamin E accessions. Furthermore, single nucleotide mutagenesis was successfully 

carried out to generate three cDNA sequence variants (193SNPHGGT, 2429SNPHGGT 

and HighSNPHGGT) with one or both SNP variants incorporated into the sequence of 

the commercial D×P genotype (LowSNPHGGT). The variant HGGT cDNA sequences 

together with the unmodified cDNA were successfully transformed into Arabidopsis 
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thaliana. The relative expression levels of HGGT in T3 homozygous lines having the 

four different constructs separately showed significant (P≤0.005) up-regulated 

expression compared with untransformed wild type Arabidopsis. However, there was no 

significant difference observed in the expression among transgenic Arabidopsis plants 

harbouring the different HGGT constructs. This demonstrated that the different variants 

of the E.  guineensis HGGT gene was expressed at about the same levels in the transgenic 

Arabidopsis. HPLC analysis indicates significant increase (p≤0.05) in the total 

tocotrienol content between wild type and all the four transgenic lines (1.50 – 1.82-fold 

increase). Similarly, significant difference (p≤0.05) in total tocotrienol was also recorded 

within the transgenic lines specifically between the two lines that harboured the two 

SNPs changes (HighSNPHGGT) and the one harboring the unmodified gene 

(LowSNPHGGT), which showed 1.22-fold increase. According to these results the two 

SNP variants introduced into the HGGT sequence of low vitamin E commercial variety 

affect the tocotrienol content and composition when analysed by functional 

characterization in Arabidopsis thaliana. 
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PEMBANGUNAN PENANDA BERASASKAN DNA 

Oleh 

BABURA SULAIMAN RUFA’I 

Februari 2018

Pengerusi: Profesor Datin Siti Nor Akmar Abdullah, PhD 

Fakulti: Pertanian 

Vitamin E mempunyai ciri nutrisi penting yang memainkan pelbagai peranan dalam 

ketahanan penyakit manusia. Fungsi yang paling dikenali bagi sebatian adi ini adalah 

aktiviti antioksidan pemutus rantai yang mengaut ion radikal bebas dan mengurangkan 

pemperoksidaan lipid dalam sistem membran. Homogentisat geranilgeranil transferase 

dan homogentisat fitil transferase yang memangkin langkah berkomitmen pertama 

daripada biosintesis tokotrienol dan tokoferol adalah penting dalam menentukan 

komposisi vitamin E tumbuhan. Dalam Elaeis guineensis, terdapat variabiliti yang tinggi 

dalam paras vitamin E di antara bahan germplasma yang berasal dari Angola dan 

Tanzania. Dengan itu, objektif pertama kajian adalah untuk menentukan varian jujukan 

penting dalam gen vitamin E utama dari bahan germplasma E. guineensis yang boleh 

digunakan untuk pembangunan penanda berasasakan DNA. Objektif kedua adalah untuk 

menganalisis kesan varian jujukan keatas kandungan dan komposisi vitamin E melalui 

pengekspresan melampau gen HGGT dan mutan yang terhasil darinya dalam 

Arabidopsis thaliana. Analysis jujukan mendedahkan tiada varian dengan fungsi yang 

penting dalam gen HPT yang boleh dikaitkan dengan kandungan vitamin E yang rendah 

dan tinggi. Walau bagaimanapun, analisis mendedahkan empat SNPs pada kedudukan 

193, 2225, 2429 dan 6932 dalam kawasan pengekodan gen HGGT yang dikaitkan dengan 

kandungan vitamin E. SNPs pada kedudukan 193 dan 2429, masing-masing membawa 

kepada perubahan non-konservatif asid amino dalam jujukan dari Prolin (CCT) dalam 

vitamin E yang rendah kepada Serine (TCT) dalam vitamin E yang tinggi dan dari 

Methionein (ATG) dari yang rendah kepada Isoleusin (ATA) dalam palma yang 

bervitamin E tinggi. Penanda SNPs 193F/413R dan 2225F/2429R telah dibangunkan 

pada lokasi SNPs untuk pemilihan bahan germplasma vitamin E yang tinggi dan rendah 

dalam E.guineensis. Empat puluh satu bahan germplasma dengan paras vitamin E yang 

berbeza telah disaring untuk mengesahkan dua penanda SNP fungsional menggunakan 

primer berasasakan PCR yang tidak sepadan. Keputusan menunjukkan 100% kejayaan 

penanda SNP tersebut dalam membezakan aksesi vitamin E yang rendah dan tinggi. 

Tambahan pula, kaedah mutagenesis nukleotida tunggal telah berjaya dilakukan untuk 

menjana tiga varian jujukan cDNA (193SNPHGGT, 2429SNPHGGT dan 
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HighSNPHGGT) dengan satu atau dua varian SNP dimasukkan ke dalam jujukan cDNA 

genotip D×P komersial (LowSNPHGGT). Varian jujukan cDNA bersama dengan cDNA 

yang tidak diubah suai telah bejaya ditransformkan kedalam Arabidopsis thaliana. Paras 

ekspresi relatif HGGT dalam titisan homozigot T3 yang mempunyai empat konstruk 

berbeza yang berasingan menunjukkan ekspresi menaik yang ketara (P≤0.05) berbanding 

Arabidopsis jenis liar yang tidak diubahsuai. Walau bagaimanapun, tiada perbezaan 

ketara yang diperhatikan dalam ekspresi antara tumbuhan Arabidopsis transgenik yang 

memiliki konstruk HGGT yang berbeza. Ini menunjukkan varian gen HGGT E. 

guineensis yang berbeza telah diekspres pada paras yang sama dalam Arabidopsis 

transgenik. Analisis HPLC menunjukkan peningkatan yang ketara (P≤0.05) dalam 

kandungan tokotrienol keseluruhan antara jenis liar dan empat titisan transgenik (1.5-

1.82 kali ganda meningkat). Begitu juga, perbezaan ketara (P≤0.05) dalam keseluruhan 

tokotrienol juga direkodkan diantara titisan transgenik terutama di antara dua titisan yang 

mempunyai dua perubahan SNPs (HighSNPHGGT)  dan yang mempunyai gen tidak 

diubahsuai (LowSNPHGGT), yang mana menunjukkan peningkatan 1.22 kali ganda. 

Berdasarkan penemuan ini, kedua varian SNPs yang dimasukkan kedalam  HGGT varieti 

komersial dengan vitamin E rendah memberi kesan terhadap kandungan dan komposisi 

vitamin E apabila dianalisis melalui pencirian kefungsian dalam Arabidopsis thaliana.  
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CHAPTER 1 

INTRODUCTION

The term vitamin E is used to describe eight lipophilic, naturally occurring compounds 

that include four tocopherols designated as α-, β-, γ- δ- tocopherols and their four 

corresponding tocotrienols (Peh et al., 2015). Tocopherols and tocotrienols isomers are 

distinguished based on the number and position of the methyl groups on their chromanol 

ring. Tocopherols have saturated phytyl tail that differentiates them from tocotrienols, 

which possess unsaturated tail containing three double bonds. Tocopherols are important 

lipid soluble antioxidants that protect cell membrane from oxidation by reacting with 

lipid radicals produced in the lipid peroxidation chain reaction (Hunter and Cahoon, 

2007). Like tocopherols, tocotrienols are good antioxidants that tend to guard plant cells 

against any biochemical stress especially those arising from the breakdown of 

unsaturated fatty acids is the seeds (Das et al., 2005). Compared with tocopherols, 

tocotrienols are sparsely studied, but the current research direction is starting to give 

more attention to the tocotrienols, the lesser known but more potent antioxidant in 

vitamin E. Tocotrienols are  believed to possess greater ability than tocopherols in 

scavenging free radical ions and reducing peroxidation of lipids in membrane system 

(Shahidi et al., 2010). In addition, some studies suggested that tocotrienols have 

specialized role in protecting neurons from damage (neurodegradation) (Sen et al., 2006) 

and cholesterol reduction properties (Das et al., 2005). Oral consumption of tocotrienols 

protects against stroke-associated brain damage in vivo (Khanna et al., 2005). Generally, 

most reports on vitamin E have shown that many of the properties in tocotrienols are not 

present in tocopherols. Tocotrienols are commercially produced from extracts of rice and 

oil palm and can be purchased in different forms (Cahoon et al., 2003). 

Crude red palm oil is a unique vegetable oil obtained from the fruits of oil palm tree 

(Elaeis guineensis). The only natural oil produces a mixture of different antioxidants and 

phytonutrients such as tocopherol/tocotreinol (vitamin E), alpha and beta-carotene (pro-

vitamin A) in high level, phytosterol complex and coenzymes. No other vegetable oil has 

this natural combinations of phytonutrients (Corley, 2007). Malaysian Palm Oil Board 

(MPOB) has most member of Elaeis guineensis germplasm materials in the whole world 

(Zaki et al., 2012). Among the E. guineensis germplasm materials, the Angolan and 

Tanzanian materials were observed to have high variability in the level of vitamin E 

content ranging from 300 – 1600 ppm, while the level is 500 – 1000 ppm in the 

commercial (D×P) variety (Wahid et al., 2005). This variation may arise from the 

molecular set up of the genes responsible for the production of vitamin E in the plant. 

Thus, it would be interesting to study functional nucleotide variants in the key vitamin E 

biosynthetic genes (HGGT and HPT), which catalyses the first committed step of 

tocotreinol and tocopherol biosynthesis, respectively.  

Identification of potentially functionally important sequence variants in the form of SNPs 

or indels as well as functional analysis of HGGT responsible for tocotrienol biosynthesis 
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and HPT gene responsible for tocopherol biosynthesis in oil palm would be very 

valuable. It could help in identifying the sources of vitamin E content variation among 

the accessions, and in the production of nutritionally rich palm oil in the long term. Since 

such studies have not been done so far, the results obtained will serve as valuable 

background information for genetic improvement of the oil palm. The objectives of this 

study are: 

 

 

1) To determine the sequence variations in homogentisate geranylgeranyl 

transferase (HGGT) and homogentisate phytyltransferase (HPT) genes that 

differentiates accessions producing high and low vitamin E in Elaeis guineensis 

germplasm materials. 

2) To develop SNPs/Indels markers for high and low vitamin E germplasm 

materials identification based on potential functional nucleotide variants. 

3) To produce different expression vector constructs by introducing different 

combination of variant nucleotides into the HGGT sequence from D×P variety 

for functional studies. 

4) To analyse the effects of sequences variant on vitamin E composition and 

content by overexpression of the HGGT gene and its mutant derivatives in 

transgenic model plant (Arabidopsis thaliana).  
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