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In this research work, the goal is to establish the parallel evolution stages of 
microstructure development and properties development and their relationship. This 
kind of observation is absent in the literature since for several past decades, studies 
of the relationship between morphological properties and ferroelectric and dielectric 
properties of multiferroic materials have been focusing only on the product of the 
final sintering temperature, largely neglecting the parallel evolutions of 
morphological and properties and their relationship at various sintering temperatures. 
Erbium manganese oxide was prepared via high-energy ball milling (HEBM) in a 
hardened steel vial for 12 hours using a SPEX8000D mill. To get the evolving series 
of temperature, the pellet samples went through multi-sample sintering, where the 
samples were sintered from 600°C to 1200°C with 50°C increments, for any one 
sample being subjected to only one sintering temperature. The x-ray diffraction 
(XRD) results confirm the formation of the crystalline sample in an evolution series 
of ErMnO3. The evolution of microstructural properties was studied using FEI 
NovaNano 230 FeSEM. The dielectric studies were carried out by using an Agilent 
Impedance Analyzer Model 4291B. For ferroelectric transition temperature and P-E
hysteresis loop was measured using a typical LCR meter induced 4284A with 
VECSTAR furnace and a Precision LC from Radiant Technologies respectively. The 
XRD patterns showed an improvement of crystallinity with increasing sintering 
temperature. At 700°C sintering temperature, single phase material (ErMnO3)
starting to appear until 950°C and as at 950°C sintering temperature was known as 
the optimum crystallization temperature for ErMnO3. As degree of crystallinity 
increase with increasing sintering temperature, at final sintering temperature 1200°C, 
ErMnO3 peaks were the only observed with no other second phase peaks. SEM 
micrographs showed larger grain size as the sintering temperature increased, 
consequently increasing the multi-domain grains. For Polarization-Electric field (P-
E) plot reveals ErMnO3 is highly leaky ferroelectrics with P-E curve shape 
drastically different from the normal shape of highly insulating ferroelectrics. It 
shows the remanent polarization, the coercive field and dielectric constant generally 
decreased with increasing grain size. The dielectric studies on evolution 
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microstructure for ErMnO3 showed that the resonant frequency increasing with grain 
size. However the ferroelectric transition temperature (TFE) which is intrinsic 
properties did not change during microstructure evolution. The value estimates by 
experimentally is ~ 580°C.  
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Dalam kerja-kerja penyelidikan ini, matlamatnya adalah untuk mewujudkan tahap 
evolusi yang selari dengan pembentukan mikrostruktur dan perkembangan sifat dan 
hubungan yang wujud diantara mereka. Pemerhatian jenis ini tidak hadir dalam 
literatur kerana selama beberapa dekad yang lalu, kajian tentang hubungan antara 
ciri-ciri morfologi dan sifat feroelektrik dan dielektrik bahan multiferoik memberi 
tumpuan hanya pada produk suhu pensinteran akhir, dengan mengabaikan evolusi 
sifat-sifat mikrostruktur dan multiferoik yang selari pada pelbagai suhu pensinteran 
yang rendah. Mangan erbium oksida telah disediakan melalui pengisar bebola 
berkuasa tinggi (HEBM) di dalam bekas keluli keras selama 12 jam menggunakan 
pengisar SPEX8000D. Untuk mendapatkan siri evolusi yang berubah dengan 
kenaikan suhu, sampel berbentuk pelet telah melalui proses pensinteran iaitu 
pensinteran pelbagai sampel, di mana sampel disinter dari 600°C hingga 1200°C 
dengan kenaikan 50°C, dengan menggunakan sampel berlainan bagi setiap suhu. 
Data daripada pembelauan sinar-x (XRD) mengesahkan pembentukan sampel kristal 
dalam siri evolusi ErMnO3. Sifat mikrostruktur evolusi dikaji menggunakan FEI 
NovaNano 230 FeSEM. Kajian sifat-sifat dielecktrik telah dijalankan dengan 
menggunakan Penganalisis Impedan/Bahan model Agilent 4291B. Pengukuran untuk 
suhu peralihan sifat feroelektrik dan P-E gelung histeresis telah dibuat dengan 
menggunakan meter LCR biasa teraruh 4284A dengan relau VECSTAR dan 
Precision LC masing-masing daripada Radiant Technologies. Corak-corak 
pembelauan sinar-x menunjukkan peningkatan kehabluran dengan meningkatnya 
suhu pensinteran. Pensinteran pada suhu 700°C, fasa tunggal bahan manganit erbium 
mula muncul sehingga 950°C, dan pada suhu pensinteran 950°C dikenali sebagai 
suhu optimum bagi penghabluran untuk manganit erbium. Apabila suhu pensinteran 
meningkat tahap kehabluran akan meningkat, pada suhu akhir pensiteran, 1200°C, 
hanya fasa ErMnO3 dilihat dan tiada kehadiran fasa lain. Gambar SEM 
menunjukkan, butiran saiz meningkat dengan peningkatan suhu pensinteran, 
menyebabkan butiran pelbagai-domain meningkat. Bagi graf pengutuban-medan 
elektrik (P-E) mendedahkan ErMnO3 adalah bahan feroelektrik yang mempunyai 
kebocoran tinggi dengan perubahan bentuk lengkung P-E berbeza daripada bahan 
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penebat feroelektri biasa. Ia menunjukkan pengutuban kekal, medan paksa dan 
pemalar dielektrik umumnya akan menurun dengan peningkatan saiz butiran. Kajian 
dielektrik dengan evolusi mikrostruktur bagi ErMnO3 menunjukkan bahawa 
frekuensi resonan meningkat dengan saiz butiran. Walau bagaimanapun suhu 
peralihan feroelektrik (TFE) adalah merupakan sifat intrinsik yang tidak berubah 
dengan evolusi mikrostruktur. Nilai anggaran secara uji kaji adalah ~ 580 ° C. 
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CHAPTER 1 

INTRODUCTION 

1.1 General Introduction 

Over the last few decades, studies on the relationship between morphology and 
magnetic properties in polycrystalline material have become a great interest and 
widely investigated. Few materials such as Nickel Zinc Ferrite (Ismail et al., 2012),
Yttrium Iron Garnet (Rodziah et al., 2012) and Co0.2Ni0.3Zn0.5Fe2O4 (Waje et al., 
2010) show a significant increase in magnetic response by manipulating their 
microstructure growth with the influence of sintering temperature 

Multiferroic materials exhibit more than one primary ferroic order such as 
ferromagnetic, ferroelectric and ferroelastic. They have many potential applications 
in the oxide electronics, spintronics and even the green energy devices for reducing 
the power consumption. Since there exists giant magneto-resistance in rare-earth 
manganese oxide REMnO3, it has attracted special attention due to the coexistence of 
ferroelectric and magnetic orders. For rare-earth elements with a small ionic radius, 
RE= Ho, Er, Tm, Yb, and Lu, they exhibit ferroelectromagnets’ properties where 
these hexagonal manganese oxides have a ferroelectric transition at high temperature 
and an antiferromagnetic transition at low temperature (Park et al., 2002). Thus, it is 
important to correlate the microstructure and multiferroic properties of ErMnO3

relating them from nanometer grain-size microstructure until they have evolved to 
their final forms at their last evolution stage. 

1.2 Problem Statement 

Researchers nowadays and in the past have neglected a fundamental line of 
scientific enquiry: What would be the composition-microstructure relationships at 
various intermediate sintering conditions during the parallel evolutions of the 
morphology and the properties of a sintered ferroelectric material? Do the changes 
of microstructure affect the dielectric and ferroelectric properties of the materials? 
How do dielectric and ferroelectric properties evolve with the microstructure 
changes? What would happen to the ions of the materials parallel to the 
microstructure changes, do they also contribute to polarization of the materials? 
Thus this work intends to observe carefully and the fundamental evolutions and 
their relationships. 
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1.3 Project objective and workstep objectives 

The main goal of this research is to critically track the evolution of the ferroelectric 
and dielectric properties parallel to the microstructural changes. Previous literature 
has shown little evidence of synthesis work via high energy ball milling to reach 
nanometer grain-size region and critically track the microstructural grain growth to 
micron size. Thus due to the significant amount of material required mechanical 
alloying seems to be the only practical technique in studies involving the evolution of 
the microstructure of the material. Thus this research embarks on the following 
objectives: to study the evolution of dielectric and ferroelectric properties with 
microstructure changes. 

The work steps of the project are to ensure the successful attainment of the project 
objective. These are: 

1) To prepare ErMnO3 using mechanically alloyed nanoparticles 
2) To study the phase formation and crystallite size evolution using XRD. 
3) To study the effect of the sintering temperature on the microstructural 

evolution for dielectric and ferroelectric properties of erbium manganite. 

1.4 Thesis Outline 

This thesis comprises 6 chapters. In the introduction, general introduction of 
evolution and material study, microstructural- dielectric and ferroelectric properties 
and some research questions are discussed. 

The second chapter deals with literatures of the synthesis methods, mechanical 
alloying and important material properties, multiferroic theory and material 
properties, some microstructural consideration on ferroelectric and dielectric 
properties and some overview about material evolution studies. 

The third chapter presents the basic theories on manganites and sintered materials. In 
some aspects of the theory, the chapter describes the basic crystal structure that 
controls the ferroelectric behavior of the multiferroic material. 

Experimental and measurement techniques which include sample preparation and the 
apparatus used for both microstructural-ferroelectric and dielectric analysis will be 
discussed in the fourth chapter.  

The fifth chapter presents the results of microstructural-ferroelectric and dielectric 
analysis. The ceramics analysed using XRD, SEM, EDX, and TEM will lead to the 
understanding of the microstructure evolution observed. Data obtained from dielectric 
and ferroelectric measurements are also discussed.
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The sixth or final chapter summarizes and concludes the research findings and 
comments on the ErMnO3 ceramics in relation to microstructural-ferroelectric and 
dielectric properties. Recommendations for further work are also given. The author’s 
biography, appendices and references/bibliographies are on the last part of this thesis. 
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