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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 

fulfilment of the requirement for the degree of Doctor of Philosophy 

 

PREPARATION AND CHARACTERISATION OF LAYERED METAL 

HYDROXIDES INTERCALATED WITH CIPROFLOXACIN AND 

ETHACRYNIC ACID FOR SLOW DRUG RELEASE  

 

By 

 

AHMAD FAIZ BIN ABDUL LATIP 

 

May 2014 

 

Chair: Professor Mohd. Zobir bin Hussein, PhD 

Faculty: Institut Teknologi Maju 

 

In this study, two model drugs, ciprofloxacin (CFX) and ethacrynic acid 

(ECA) are intercalated in layered zinc hydroxides (LZH) and layered 

double hydroxides (LDH) host materials via either anion exchange or co-

precipitation methods. Four intercalation compounds are obtained, 

designated as Z–CFX, AEZ–ECA, CPZ–ECA and MAL–ECA according to 

their materials and method of synthesis. Powder X-ray diffraction 

suggests that CFX and ECA were successfully intercalated in the 

interlayer region of their respective hosts, as indicated by the interlayer 

spacing expansion. The co-precipitation method gives a larger interlayer 

spacing value for CPZ–ECA compared to that of the anion exchange 

value in AEZ–ECA. This suggests the advantage of employing the former 

method over the latter in the intercalation of large organic molecule in 

the LMH hosts. Fourier transform infrared spectroscopy further 

confirms the intercalation of the CFX and ECA in the host interlayers 

when the absorption bands of carboxylate groups of the drugs emerge in 

the FTIR spectra, indicating both drugs were intercalated in an anionic 

form. The wavenumber differences of the carboxylate absorption bands 

reveal that the intercalated drugs were bonded to the metal cations of 

the host lattices via a unidentate coordination mode. Thermal analysis 

exhibits that the thermal properties of all the intercalated drugs were 

enhanced compared to that of the non-intercalated ones, possibly due to 

chemical interactions between the intercalated anionic drugs and the 

host lattices. A faster release behavior was demonstrated in phosphate-

buffered saline (PBS) solution at pH 6.0 compared to that of pH 7.4. The 
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release mechanisms are varied amongst the intercalation compounds, 

indicating different processes were involved during the release of the 

intercalated anions. The cytotoxicity was evaluated against VERO and 

A549 cell lines for 72 hours. The ECA–intercalated LMH compounds 

(AEZ–ECA, CPZ–ECA and MAL–ECA) were not toxic to both cell lines, 

whereas Z–CFX showed enhanced toxicity compared to that of the free 

CFX molecule. This study demonstrates the potentials of LMH materials 

as drug carriers based on the slow release behavior and the reduced 

toxicity profile of the intercalation compounds toward the VERO and 

A549 cell lines, especially concerning the ECA–intercalated LMH 

compounds. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra 

Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

 

PENYEDIAAN DAN PENCIRIAN BAHAN LOGAM HIDROKSIDA 

BERLAPIS TERSISIP DENGAN CIPROFLOXACIN DAN ASID 

ETHACRYNIC BAGI TUJUAN PELEPASAN UBAT SECARA  

PERLAHAN-LAHAN 

 

Oleh 

 

AHMAD FAIZ BIN ABDUL LATIP 

 

Mei 2014 

 

Pengerusi: Professor Mohd. Zobir bin Hussein, PhD 

Fakulti: Institut Teknologi Maju 

 

Dalam kajian ini, dua molekul ubat ciprofloxacin (CFX) and ethacrynic 

acid (ECA) telah disisipkan ke dalam dua kelas perumah iaitu zink 

hidroksida berlapis (LZH) dan hidroksida berlapis ganda (LDH) samada 

melalui kaedah tindakbalas penukargantian anion atau tindakbalas 

pemendakan serentak. Sebanyak empat sebatian tersisip telah 

diperoleh, iaitu Z–CFX, AEZ–ECA,  CPZ–ECA and MAL–ECA, masing-

masing dinamakan mengikut bahan yang terkandung dan kaedah 

sintesis yang digunakan. Serakan sinar hablur X-ray (XRD) 

mencadangkan bahawa CFX and ECA telah berjaya disisipkan di 

ruangan antara lapisan-lapisan perumah masing-masing, seperti yang 

dibuktikan menerusi pertambahan jarak di antara lapisan-lapisan 

perumah tersebut. Kaedah pemendakan serentak menyebabkan 

kenaikan jarak yang lebih tinggi pada CPZ–ECA berbanding jarak yang 

dicatat oleh AEZ–ECA yang dicapai secara penukargantian anion. 

Dapatan ini mencadangkan kelebihan kaedah pemendakan serentak 

berbanding penukargantian anion bagi penyisipan molekul organik 

yang bersaiz besar ke dalam perumah-perumah LMH. Spektroskopi 

Fourier terubah inframerah (FTIR) mengukuhkan dapatan daripada 

XRD bahawa penyisipan CFX dan ECA telah berjaya apabila jalur-jalur 

serapan kumpulan karboksilat pada molekul ubat tersebut muncul 

dalam spektrum-spektrum FTIR. Kemunculan ini mencadangkan 

bahawa kedua-dua ubat telah tersisip dalam bentuk anion. Perbezaan 

pada angkagelombang (wavenumber) jalur-jalur serapan karboksilat 
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mendedahkan bahawa ubat-ubat yang tersisip adalah terikat dengan 

logam kation pada lattis (lattice) perumah secara koordinasi unidentat. 

Analisis termal menunjukkan bahawa sifat termal bagi semua ubat 

yang tersisip telah dipertingkat berbanding sifat termal yang dipunyai 

oleh ubat yang tidak tersisip. Hal ini mungkin disebabkan oleh interaksi 

kimia di antara ubat tersisip yang berbentuk anion dengan kekisi 

perumah. Tingkahlaku pelepasan dalam larutan PBS pada pH 6.0 

didapati lebih cepat daripada pelepasan pada pH 7.4. Mekanisme 

pelepasan yang tidak seragam di antara sebatian-sebatian tersisip 

dalam kedua-dua pH larutan mencadangkan kerencaman proses yang 

terlibat semasa pelepasan anion tersisip. Ujian sitotoksisiti dijalankan 

terhadap baris-baris sel VERO dan A549 selama 72 jam. Sebatian LMH 

tersisip ECA didapati tidak toksik terhadap kedua-dua baris sel 

manakala ketoksikan Z–CFX didapati meningkat berbanding ketoksikan 

molekul bebas CFX. Kajian ini menunjukkan bahan LMH berpotensi 

sebagai pengangkut ubat berasaskan kepada tingkahlaku pelepasan 

perlahan dan kadar ketoksikan yang turun terhadap baris-baris sel 

VERO dan A549, terutamanya yang membabitkan ketiga-tiga sebatian 

LMH yang tersisip dengan ECA.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Nanotechnology in Drug Delivery Systems 

 

There have been concerted efforts since the last few decades aiming to 

understand phenomena at atomic and molecular levels as the 

burgeoning interests swept across various segments of scientific 

community. Scientists were largely driven by the notion that there is 

“plenty of room at the bottom” (1). This phrase which had transpired 

during a lecture by Richard Feynman in 1959 laid out the vast 

possibilities that one could do or make for being able to manipulate or 

control individual atoms and molecules (2). Chronologically, the term 

nanotechnology first gained public attention when it was coined in 1974 

(3), followed by publication of arguably one of the most popular book on 

nanotechnology in 1986 (4). Furthermore, nanotechnology was very 

much embraced by mass media, which had helped popularized the 

notion throughout the globe via a myriad of channels, which include 

motion pictures, documentaries, news broadcast, interviews, electronic 

games and many more.  

 

 

Nanotechnology can be defined as research and development (R&D) 

activities aimed at gaining understanding into materials and phenomena 

occurring at atomic and molecular levels, generally in the range of 1–100 

nm or the nanometer scale, in order to design or devise materials or 

systems that have novel properties and functions (5). One research field 

where nanotechnology is expected to make significant impact is drug 

delivery systems (DDS). This field which mainly deals with the R&D on 

drug carriers is a vibrant discipline and is making a rapid progress by 

virtue of nanotechnology (6–8). 
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A number of critical issues in DDS, which are largely centered on 

physico-chemical properties of host–drug systems (9), as well as 

cytotoxicity of the drug carrier (10), are being addressed by 

manipulating the atomic and molecular interactions through the state-

of-the-art instrumentations and analytical tools. The synergy of DDS 

and nanotechnology is attracting a large pool of scientists from a wide 

range of disciplines; chemistry, physics, material science, pharmacology, 

toxicology and a few more others to converge on ground-breaking 

researches toward providing solutions in critical areas such as cancer 

treatment, brain diseases and gene therapy (11–13). Emerging research 

fields such as biomaterials and nanotoxicology are inter-related and 

complementary to the DDS, which highlights the multidisciplinary 

nature of the field (14–15). On the other hand, the practice “from bench 

to bedside” is being implemented for translating highly potential 

research findings into clinical products (formulated drugs, medicinal 

devices, regenerative tissues) so they may benefit the whole society (16). 

 

 

DDS is defined by Jain as “a formulation or a device that enables the 

introduction of a therapeutic substance in the body and improves its 

efficacy and safety by controlling the rate, time, and place of release of 

drugs in the body” (17). Amongst commonly employed therapeutic 

substances for DDS include protein, drugs, vaccine or DNA molecules 

(18–21). These organic components are mixed or combined with a wide 

array of host materials to give rise to novel DDS-based carriers suited 

for various therapeutic purposes (22). Additionally, the new generation 

of DDS-based carriers holds several advantages over the conventional 

drug administration, which include enhanced efficacy for suboptimal 

drugs and minimized side effects following the drug administration into 

the human body (23–24).  

 

 

The history of modern DDS has its root in mid 1960s with the discovery 

of silicone rubber as a prolonged release drug carrier. This 

groundbreaking discovery had since then sparked great interests from 

the academics and the industry alike. Products of DDS were 

commercialized in early 1970s. Since its conception, the DDS field has 

undergone three major defining periods which underscore the dynamic 

nature of the field; (1) the “MACRO era”, (2) the “MICRO era” and (3) the 

“NANO era”. It has been four decades now for DDS with much more to 
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gain as the field being currently steered to the “BIO” era, capitalizing on 

the increased knowledge in molecular biology, as well as the abilities to 

design and control new generations of targeted nanosized drug carriers 

(25).  

 

 

Back in the MACRO era of DDS, drug carriers were mainly constituted 

of bulk devices and macroscopic polymer matrices such as the 

ophthalmic device, Ocusert™ and the PEVA hydrophobic polymer used 

to release protein drugs (25). Through nanotechnology, the size of the 

carriers has been reduced down to the nanometer scale, giving rise to a 

new generation of nanosized drug carriers, or known as nanocarriers 

(26). Additionally, the new generations of nanocarriers can be 

deliberately designed toward achieving cell-specific targeted drug 

delivery systems (27–28). Equally important are the abilities to minimize 

the inherent toxicity of either the drug or the host carrier (29); these 

properties are realized by virtue of the nanotechnology applications. 

Numerous examples of drug nanocarriers range from polymeric 

nanoparticles, dendrimers, lipids and inorganic nanomaterials such as 

silica and gold nanoparticles (30–34), including an emerging class of 

layered inorganic solids such as clays and clay minerals, 

montmorrilonite and layered metal hydroxides (35–36). 

 

 

1.2 Problem Statements 

 

Layered materials are intriguing structures that are generally built from 

stacks of nanolayers (37). These materials are increasingly studied due 

to their abilities to incorporate a large number of molecules in their 

structures, prompting wide spread applications such as biopolymer 

composite (36), catalysis (38) and biomolecule reservoir (39).  

 

 

A family of layered materials, commonly known as layered metal 

hydroxides (LMH) material, is established for its negatively charged 

layers that can intercalate various molecules in its interlayer space (40–

41). Many studies on LMH materials are currently channeled toward 

synthesizing drug carriers based on the LMH compounds (39, 42–43). 

This is partly due to the relatively ease of synthesis and versatility of the 

material (40). A wide variety of drug molecules has been intercalated in 
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the LMH interlayers, ranging from non steroidal anti inflammatory drugs 

(NSAIDS) (45–46), anticancer agents (47–48), antihypercholestrolemia 

drug (49), antibiotics (50–51) and antihypertensive drug (52).  

Ethacrynic acid (ECA) is a major diuretic drug that is used to treat 

edema, a condition where intake of sodium and water is not balanced by 

their excretion by the kidney (53). Basically, the drug inhibits sodium 

transport in the ascending thick segment of the loop of Henly (54). The 

pharmacological action of ECA is exerted by the phenoxyacetic acid 

group, which contributes to the diuretic and uricosuric activities of the 

drug (55). The diuretic agent is also a potential glaucoma drug in which 

it can reduce elevated intraocular pressure of the eye (56). Interestingly, 

ECA demonstrates potential therapeutic activities in cancer treatment, 

where the drug causes death to human colon cancer cell line DLD-1 

(57), and it enhances toxicity of antineoplastic agents such as 

chlorambucil and melphalan against drug-resistant cell lines (58). The 

above features indicate the pleiotropic effects of ECA, the unique 

characteristics that may exert other pharmacological actions not limited 

only to the kidney (59).  

 

 

ECA, however, suffers from first pass elimination (55), thus reducing its 

bioavailability where only a small fraction of the drug dosage reaches the 

systemic circulation. This effect is undesirable since the 

pharmacological actions of the drug are greatly reduced. It may also 

cause acute hearing loss, possibly due to the formation of cysteine 

conjugate that affects the cochlea (55). Long term administration of ECA 

may cause potassium depletion in cardiac patient or hepatic coma in the 

cirrhotic with ascites (54). Hyperuricemia and diminished uric acid 

excretion are also observed in some patients following prolonged 

administration of the diuretic agent (60). Co-administration of ECA with 

heparin has slightly raised the issue of toxicity since the former drug 

can cause the gastrointestinal bleeding (61).  

 

 

The strategies of DDS provide indispensable opportunities for further 

enhancing the efficacy of ECA (62, 63, 64). Despite being one of the 

leading agents in diuretic therapy, however, report on the ECA 

application in DDS is considerably rare. To our knowledge, there are 

only two reports available, with the first report emerged in 1997 

contributed by the group of Kalish where they studied the potential of 
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ECA as a counter-sensitizing agent for transdermal drug delivery (65). In 

this study, ECA was mixed into hydroxypropyl methylcellulose as a drug 

carrier and the group had found that the mixture inhibited sensitization 

to the skin when it was administered with various topically applied 

drugs. This paper, however, contains a very brief discussion on the 

synthesis method whereas the characterization aspect of the ECA-

containing drug carrier was not included.  

The second report was published in 2004 by Yuan and colleagues where 

they prepared poly(lactic-co-glycolide) (PLGA) copolymer film containing 

ECA for glaucoma treatment in ocular drug delivery (66). In this work, 

ECA was added into the PLGA film using a solvent casting technique 

whereas the release of ECA from the polymer film was studied in a 

phosphate-buffered saline (PBS) solution at pH 6.9. The cumulative 

release of ECA from the PLGA film was exhibited over a seven day 

period. However, the release kinetics of the ECA were not performed.  

 

 

The present study seeks to employ the LMH materials as a drug host for 

ECA by exploiting its unique structure that can intercalate a wide array 

of drug molecules in its interlayers. The layered host offers a slight 

advantage over the use of the PLGA films in hosting the ECA molecules 

(66) due to its well-defined framework structures (40, 44).The drug 

efficacy can also be enhanced upon its intercalation in the LMH 

interlayers (67, 68, 69). Moreover, one can conveniently determine the 

mechanisms of drug release of this LMH-based carrier owing to the 

established anion exchange property of the host material (49, 52, 63, 

70). 

  

 

In addition to ECA, ciprofloxacin (CFX), one of the most well known 

antibiotics in the family of fluoroquinolone, which is widely used to treat 

various bacterial infections, is also selected for intercalation into the 

LMH hosts. It is by far the best effective fluoroquinolone antibiotic 

toward the Pseudomonas aeruginosa in vitro (71). Basically, the 

antibacterial activity of CFX is exerted through the chelating effects of 

the drug structure with the target DNA/DNA gyrase complex of the 

bacteria cells (72).  
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However, antibacterial treatment with fluoroquinolones especially 

concerning CFX poses several toxicity issues which deserve attentions. 

CFX may cause hepatic failure due to accumulation in the liver (73). The 

bioavailability of CFX is reduced when it is co-administered with oral 

iron and multivitamin-zinc complex due to the chelating effects between 

the antibiotic and the metallic cations (73). This effect is unwarranted 

because the reduced bioavailability may render the antibiotic efficacy 

less effective. More importantly, the issue of bacterial resistance toward 

the antibiotic raises great concerns as it can leads to more serious 

diseases amongst the patients (74). Generally, the fluoroquinolone 

resistance is caused by chromosomal mutations in the bacterial 

topoisomerase II and IV (74).  

 

 

The application of CFX in DDS is quite an active area, wherein the 

antibiotic has been incorporated into a number of different drug hosts. 

Amongst the previously reported drug hosts are cyclodextrin (75), 

chitosan/polyethylene glyocol (PEG) film (76), elastomeric device (77), 

PLGA microparticle (78) and polymeric nanoparticle (79).  

 

 

Reports on the LMH materials intercalated with CFX have been made 

available by Lion et al. (80) and Hesse et al (81). In the former report, the 

antibiotic was intercalated in layered double hydroxides (LDH), a family 

of the LMH materials, via co-precipitation and anion exchange methods. 

However, the release property of the obtained intercalation compounds 

was not determined (80). For the latter report, a prostheses coated with 

CFX-intercalated LDH was prepared for treatment of recurring chronic 

otitis media. Interestingly, the CFX–LDH-coated prostheses showed 

excellent antimicrobial activity against Pseudomonas aeruginosa in 

rabbit ears. This study demonstrates for the first time the application of 

the CFX–LDH intercalation compound in vivo. However, the cytotoxicity 

study of the obtained compound was not performed (81).  

 

 

As research in drug delivery systems continue to grow, there is a 

growing concern on the toxicity of the carrier candidates and the 

resulting host–drug complexes towards the human body (15, 82). 

Studies have shown that nanomaterials such as silicate (83), silver (84), 

lipid nanoparticle (85), metal oxide (86) and graphene (87), among 
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others, cause toxic effects via various cellular interactions. The toxicity 

of the LMH hosts has been studied by a few groups (88, 89) but similar 

work on the LMH–drug intercalation compounds are still lacking. It is 

worth to note that drug toxicity can be reduced when it is intercalated in 

the LMH hosts compared to when it is in the free from (90, 91, 92). Choy 

et al. has attributed the reduced toxicity to specific chemical 

interactions that occur between the intercalated drug and the hosts (93).  

 

 

As we present above the backgrounds of ECA and CFX in DDS, 

especially concerning their prior relations with the LMH layered hosts, it 

occurred to us that there are two areas where research has been 

hitherto relatively lack; the release mechanisms which govern the 

release process of the intercalated drug and the toxicity study of the 

intercalation compound. This is based on our literature survey which 

reveals that most studies on LMH are rather concentrated on the 

synthesis and characterization aspects of the LMH–drug intercalation 

compounds (94). Therefore, in this study, these two lacking areas were 

given emphasis as we prepared a series of LMH-based drug hosts 

intercalated with the two drug models, ECA and CFX, in order to better 

understand the release process of the intercalated drugs from the 

layered hosts (95), as well as to establish the effect of the intercalation 

compounds toward the cells.  

 

 

For the layered inorganic hosts, two prominent members of LMH, 

layered zinc hydroxides (LZH) and layered double hydroxides (LDH) are 

selected for hosting the model drugs, ECA and CFX. LZH and LDH, 

being the family members of LMH family share structural similarities 

with that of brucite, [Mg(OH)2] (40). However, their molecular structures 

differ in the chemical composition of the brucite-like lattice framework, 

where the LZH lattices consist of octahedral and tetrahedral zinc cations 

(Zn2+), whereas divalent (Me2+) and trivalent (Me3+) metal cations 

constitute its sibling LDH lattices (60). The structural differences may 

lead to distinct chemistry, such as the in vitro release behavior between 

the sibling materials with the intercalated drug (61).  

 

 

For the synthesis of intercalation compounds, co-precipitation is the 

preferred method over anion exchange due to the structural characters 
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of the host materials (41). It is proposed that any selected synthesis 

method may bestow a distinct orientation of guest molecules in the host 

interlayers and induce a different loading amount of the intercalated 

anion (62). In this work, the obtained results from anion exchange and 

co-precipitation methods are compared especially in terms of the guest 

molecules orientation and spectroscopic measurements.  

 

 

To complement our studies on the potentials of the LZH and LDH 

materials intercalated with CFX and ECA anions, cytotoxicity screenings 

are evaluated using African green monkey kidney (VERO) and human 

lung adenocarcinoma epithelial (A549) cell lines. Reports on drug–

intercalated LMH compounds are widely available (39, 42, 44, 63) but 

cytotoxicity studies of the intercalation compound are relatively lacking 

(64).  

 

 

1.3 Objective of Research 

 

The objectives of this research are as follow: 

 

1. To intercalate two relatively large drug molecules; namely 

ethacrynic acid (molecular weight 303.14 g/mol) and ciprofloxacin 

(molecular weight 331.34 g/mol) into the LZH and LDH host 

materials via anion exchange route and co-precipitation method. 

 

2. To characterize the physico-chemical properties of the host 

materials, as well as the intercalation compounds using a broad 

range of characterization techniques such as powder X-ray 

diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), 

inductively coupled plasma-atomic absorption spectrophotometry 

(ICP–AES), Carbon, Hydrogen and Nitrogen analyses (CHN), 

thermogravimetric/differential thermogravimetric analysis 

(TG/DTG), surface area and porosity analysis (ASAP), scanning 

electron microscopy (SEM), transmission electron microscopy 

(TEM) and dynamic light scattering measurement (DLS). 

 

3. To determine the release behavior of the intercalated drug 

molecules from their respective intercalation compounds upon 
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release in pH 6.0 and pH 7.4; being the pH of intestines and pH of 

blood, respectively.  

 

4. To propose release mechanisms for the intercalation compounds 

based on the fitting of the release data using six kinetic models 

commonly used for the drug release; namely zeroth-order model, 

first-order model, parabolic diffusion model, modified Freundlich 

model, Elovich model and Bhaskar model. 

 

5. To evaluate cytotoxicity profiles of the host materials and the 

intercalation compounds against VERO and A549 cell lines.  
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