TROPICAL PEAT SUBSIDENCE, NUTRIENT LOSSES AND OIL PALM SEEDLING GROWTH DUE TO DIFFERENT WATER TABLE DEPTHS

SAFIYANU HASHIM ABUBAKAR

FP 2018 50
TROPICAL PEAT SUBSIDENCE, NUTRIENT LOSSES AND OIL PALM SEEDLING GROWTH DUE TO DIFFERENT WATER TABLE DEPTHS

By

SAFIYANU HASHIM ABUBAKAR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

March 2018
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

TROPICAL PEAT SUBSIDENCE, NUTRIENT LOSSES AND OIL PALM SEEDLING GROWTH DUE TO DIFFERENT WATER TABLE DEPTHS

By

SAFIYANU HASHIM ABUBAKAR

March 2018

Chairman : Christopher Teh Boon Sung, PhD
Faculty : Agriculture

Agricultural development on tropical peat land, which is characterized by highly acidic in nature, low nutrients status and high water table depths has been strongly criticized by the international community. Peat soils are unsuitable for cultivation in their natural states, but upon proper soil management and amendments, they can be converted for plantation crops such as oil palm, sago and pineapple with yield performances, at times, matching those on mineral soils. High water table and low nutrients availability are identified as the common problem in peat soils. Rapid changes of water table results in leaching losses of applied nutrients, making them unavailable for crops growth and development. As such, frequent monitoring of water table has become necessary. The objectives of this study were to determine the effects of several water table depths on the (1) Nutrient losses (N, P, K, Mg, Ca, Cu, and Zn), ammonia volatilization following application of urea, and tropical peat subsidence. (2) Oil palm seedlings vegetative growth using a high-density polyethylene containers.

Fifteen cylindrical lysimeters were constructed from a high-density polyethylene (HDPE) material, measuring 0.50 m in diameter and 1 m in height. They were set up to mimic the natural conditions of drained peats. The experiment was carried out in a randomized completely block design. The experiment consisted of five different water table depths (25, 40, 55, 70, and 85 cm) from the soil surface with three replication each. The water tables in the experiment were controlled based on the oil palm root zone depths according to the water table management that was used in tropical peat soil grown with oil palm. The water table depth were adjusted after rainfall events based on the actual water table depths. Leachate samples were collected after every rainfall event and analysed for N, P, K, Mg, Ca, Cu, and Zn contents. A total of 46 days rainfall events were recorded during the study period. A
closed dynamic air flow system method was used to measure the daily ammonia loss from urea applied. The amount of urea applied to the peat soil were scale down according to the volume of the lysimeter in the field and volume of the plastic container used where 2 g of urea was surface applied to each of the plastic container containing 1533.02 g peat soil. The system was made of exchange chamber of air pump with the flow rate ranges between 1 and 3.5 L min⁻¹, exchange chamber of (2670 mL plastic container) and a trap (250 mL Erlenmeyer flask). Ammonia loss from the soil was collected using a boric acid by air flow circulation that was passed through the exchange chamber into a trapping flask containing 75 mL boric acid mixed with bromocresol green and methyl red indicator. Based on rainfall events high water table depths (25 cm) showed higher nutrient leaching losses where they accounted for 22.3 N, 27.3 P, 22.3 K, 26.6 Mg, 24.4 Ca, 28.3 Cu, and 27.2 % Zn. The presence of high amount of water may had a major role in leaching losses which made the peat soil always moist and rendered the nutrients more soluble such that their loss from the soil were rapid. Tropical peat subsidence was higher for lower water table depths, where the water table depths 25, 40, 55, 70 and 85 cm (from the soil surface) subsided by 1.9, 2.2, 4.2, 4.6 and 5.6%, respectively. The total plant biomass weight for different water table depths, 25, 40, 55, 70, and 85 cm were 118, 211, 792, 250 and 189 g, respectively. There was a significant difference among the treatment. Fifty-five cm gave the highest biomass growth. High ammonia loss was recorded from high water table (3 cm) accounting for 35.5 % of total ammonia loss with regards to low water table (15 cm) that account only 7.7 %. Water table depth significantly affects nutrients leaching loss, subsidence, oil palm growth and ammonia loss on tropical peat soil cultivated with oil palm.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PEMENDAPAN GAMBUT TROPIKA, KEHILANGAN NUTRIEN DAN PERTUMBUHAN ANAK POKOK KELAPA SAWIT DISEBABKAN OLEH PERBEZAAN PARAS KEDALAMAN AIR

Oleh

SAFIYANU HASHIM ABUBAKAR

Mac 2018

Pengerusi : Christopher Teh Boon Sung, PhD
Fakulti : Pertanian

Pembangunan pertanian di tanah gambut tropika, yang dicirikan dengan keasidan tinggi di alam semulajadi, status nutrien rendah dan paras kedalaman air yang tinggi telah dikritik dengan hebat oleh komuniti antarabangsa. Tanah gambut tidak sesuai untuk penanaman berdasarkan keadaan semulajadinya, namun pengurusan dan pemulihan tanah yang betul, mereka boleh ditukarkan untuk penanaman tumbuhan seperti kelapa sawit, sagu dan nanas dengan prestasi hasil, yang sesekali, berpadanan dengan di tanah mineral. Paras air yang tinggi dan ketersediaan nutrien yang rendah dikenal pasti sebagai masalah umum dalam tanah gambut. Perubahan cepat paras air menyebabkan kehilangan larut lesap pada nutrien yang diberi, menjadikan mereka tidak tersedia untuk pertumbuhan dan perkembangan tanaman. Oleh itu, pemantauan paras air yang kerap telah menjadi keperluan. Objektif kajian ini adalah untuk menentukan kesan paras kedalaman air pada: (1) Kehilangan nutrien (N, P, K, Mg, Ca, Cu dan Zn), penyempitan ammonia berikutan aplikasi urea, dan pemendapan gambut tropika. (2) Pertumbuhan vegetatif anak pokok kelapa sawit menggunakan bekas polietilena berketumpatan tinggi.

Lima belas silinder lisimeter telah dibina daripada bahan polietilena berketumpatan tinggi (HDPE), berukuran 0.50 m diameter dan 1 m tinggi. Alat ini disusun untuk menyerupai keadaan semulajadi gambut bersaliran. Eksperimen telah dijalankan dalam rekabentuk blok rawak penuh. Eksperimen terdiri daripada lima paras kedalaman air yang berbeza (25, 40, 55, 70 dan 85 cm) daripada permukaan tanah dengan tiga replikasi setiap satu. Paras air di dalam eksperimen dikawal berdasarkan kedalaman zon akar pokok kelapa sawit mengikut pengurusan paras air yang digunakan pada tanah gambut tropika yang ditanam dengan kelapa sawit. Paras kedalaman air diubah selepas kejadian hujan berdasarkan paras kedalaman air yang
sebenar. Sampel larut lesap diambil setiap kali selepas hujan dan dianalisa untuk kandungan N, P, K, Mg, Ca, Cu dan Zn. Sejumlah 46 hari kejadian hujan telah direkodkan semasa tempoh kajian. Kaedah sistem aliran udara tertutup yang dinamik telah digunakan untuk mengukur kehilangan ammonia setiap hari dari urea yang diaplikasikan. Jumlah urea yang diaplikasikan kepada tanah gambut telah dikurangkan mengikut isipadu lisimeter di ladang dan isipadu bekas plastik yang digunakan di mana 2 g urea diaplikasikan di permukaan setiap bekas plastik yang mengandungi 1533.02 g tanah gambut. Sistem ini dibuat daripada pertukaran ruang pam udara dengan kadar aliran 1 hingga 3.5 L min⁻¹, antara ruang pertukaran (2670 mL bekas plastik) dan perangkap (250 mL kelalang Erlenmeyer). Kehilangan ammonia dari tanah diambil dengan menggunakan asid borik dari kitaran aliran udara yang melalui ruang pertukaran ke dalam kelalang perangkap yang mengandungi 75 ml asid borik dicampur dengan bromokresol hijau dan penunjuk metil merah. Berdasarkan kejadian hujan kedalaman parasa air tinggi (25 cm) menunjukkan kehilangan larut lesap nutrien yang tinggi sebanyak 22.3 N, 27.3 P, 22.3 K, 26.6 Mg, 24.4 Ca, 28.3 Cu dan 27.3% Zn. Kehadiran jumlah air yang tinggi mungkin berperanan besar dalam kehilangan larut lesap nutrien yang menjadikan tanah gambut sentiasa lembap dan menjadikan nutrien lebih larut justeru itu kehilangannya dari tanah adalah cepat. Pemendapan gambut tropika lebih tinggi pada paras kedalaman air yang rendah, di mana pada paras kedalaman air 25, 40, 55, 70 dan 85 cm (dari permukaan tanah) masing-masing menyusut sebanyak 1.9, 2.2, 4.2, 4.6 dan 5.6%. Jumlah berat biojisim pokok untuk kedalaman paras air berbeza, 25, 40, 55, 70 dan 85 cm masing-masing adalah 118, 211, 792, 250 dan 189 g. Terdapat perbezaan signifikan di kalangan rawatan. Lima puluh lima cm memberikan pertumbuhan biojisim paling tinggi. Kehilangan ammonia yang tinggi telah direkodkan daripada paras air tinggi (3 cm) sebanyak 35.5% daripada jumlah kehilangan ammonia berbanding paras air rendah (15 cm) dengan hanya 7.7%. Paras kedalaman air memberi kesan secara signifikan pada kehilangan larut lesap nutrien, pemendapan, pertumbuhan kelapa sawit dan kehilangan ammonia pada tanah gambut tropika yang ditanam dengan kelapa sawit.

iv
ACKNOWLEDGEMENTS

All praise and thanks are due to Allah, the omnipotent, omniscient and almighty who has seen me through until the completion of this work. If not for the health, strength and wherewithal from Him, this thesis would not have been a reality.

Although, my name appeared as the author of the work, however, without the contributions from many individuals, it would not have been a success. I want my express my gratitude to my supervisor and co-supervisor Dr. Christopher Teh Boon Sung and Professor Dr. Ahmed Osumanu Haruna, respectively who were helpful and offered invaluable assistance, patience, understanding, support and guidance. Their scientific intuition, idea for my work and passion for science has inspired me and enriched my knowledge as a student and a researcher.

I am very glad to the Taan Oil Palm Plantation Bhd. I would also like to show my appreciation to Mr Siaw, the agronomist at Taan Oil Palm Plantation Bhd and the staff field particularly Mr Tiang for support, permission, and assistance to the conduct of this research. I would like to thank Mr Hann.

My appreciation also goes the Taraba State University who made it possible for my coming to Malaysia by proving me with financial and logistic support needed during the course of my study.

I am greatly indebted without acknowledging my family for their inseparable support and prayers. Their dedication, love and persistent confidence in me have taken the load off my shoulder. My appreciation also goes to my late parent Alhaji Musa Abubakar and Malama Hadiza Musa, as well as to my lovely wife, Hafsat Hassan and my child Usman Safiyanu. My appreciation also goes to my brothers and sisters especially my elder brother His Excellency Alh. Armaya’u D. Abubakar, the former Taraba State Deputy Governor and the members of his family for their support and word of advice, Alh. Awal, Marwanu, Usman, Harisu, and Masud to mention but few. My sisters includes Rashidat, Sadiqat, and Waseelat and so on. I will also like express my appreciation to my cousins such as Dr. Mohammad Adda’u Nayaya, Abuhurairah Nayaya, Hayatu Abubakar for their prayers and word of encouragement.

Finally, thanks to all who contributed to the successful completion of this thesis.
I certify that a Thesis Examination Committee has met on 9 March 2018 to conduct the final examination of Safiyanu Hashim Abubakar on his thesis entitled "Tropical Peat Subsidence, Nutrient Losses and Oil Palm Seedling Growth Due to Different Water Table Depths" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Samsuri bin Abd. Wahid, PhD
Senior Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Susilawati binti Kasim, PhD
Senior Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Md Sarwar Jahan, PhD
Associate Professor
Universiti Sultan Zainal Abidin
Malaysia
(External Examiner)

![Signature]

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 24 May 2018
This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Christopher Teh Boon Sung, PhD
Senior Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Ahmed Osumanu Haruna, PhD
Professor
Faculty of Agriculture and Food Sciences
Universiti Putra Malaysia Bintulu Campus
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature: _____________________ Date: ________________________

Name and Matric No: Safiyanu Hashim Abubakar, GS45017
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: ____________________________
Name of Chairman of Supervisory Committee: Dr. Christopher Teh Boon Sung

Signature: ____________________________
Name of Member of Supervisory Committee: Professor Dr. Ahmed Osumanu Haruna
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background and problem statement 1

1.2 Objectives 3

2 LITERATURE REVIEW

2.1 Tropical peatlands 4

2.1.1 Peat soil Classification 5

2.1.2 Physico-chemical characteristics of tropical peat 6

2.1.3 Water table depth in peatland 6

2.1.4 Drainage of peatlands 7

2.1.5 Relationship between water table depth and oil palm growth 8

2.1.6 Nutrients availability in peat soil 8

2.1.7 Mineral and peat soils planted with oil palm 9

2.1.8 Cultivation on peat soil 9

2.1.9 Constraints of cultivation on peat soil 10

2.2 Tropical peat subsidence 10

2.2.1 Effects of tropical peat soils subsidence 11

2.3 Nutrients Leaching losses of peat soil 12

2.3.1 Leaching of nitrogen 12

2.3.2 Leaching of Phosphorous 14

2.3.3 Leaching of Potassium 15

2.3.4 Leaching of Magnesium 16

2.3.5 Leaching of Calcium 16

2.3.6 Leaching of Copper 17

2.3.7 Leaching of Zinc 18

2.4 Ammonia Volatilization 19

2.4.1 Factors that controlled NH$_3$ Volatilization 19

2.4.2 pH 19

2.4.3 Moisture 20

2.5 Effects of water table depth on oil palm vegetative growth 20
3 GENERAL MATERIALS AND METHODS

3.1	Site Description and Sampling area of peat soil	21
3.2	Soil Samples Preparation and Analysis	21
3.2.1	Determination of Soil Bulk Density	22
3.2.2	Determination of Soil pH	22
3.2.3	Determination of Cation Exchange Capacity	22
3.2.4	Determination of total nitrogen in peat soil and the leachate	23
3.2.5	Determination of Soil Organic Matter and Total Carbon	24
3.2.6	Determination of Soil Exchangeable NH$_4^+$ and Available NO$_3^-$	24
3.2.7	Determination of Total P, K, Mg, Ca, Cu and Zn in Soil and leachate	25
3.2.8	Determination of Soil Available P	26
3.2.9	Determination of Soil Exchangeable Cations (K, Mg, Ca, Cu and Zn)	26
3.2.10	Determination of Tropical peat subsidence	27

4 EFFECTS OF WATER TABLE DEPTH ON AMMONIA LOSS FROM A TROPICAL PEAT SOIL

4.1	INTRODUCTION	28
4.2	Objectives of the study	29
4.3	Materials and Methods	29
4.4	Results and Discussion	31
4.4.1	Daily and cumulative ammonia loss	31
4.5	Conclusion	33

5 TROPICAL PEAT SUBSIDENCE, NUTRIENTS LEACHING LOSSES, AND OIL PALM SEEDLING GROWTH DUE TO DIFFERENT WATER TABLE DEPTHS

5.1	INTRODUCTION	34
5.2	Materials and Methods	35
5.2.1	Description of Lysimeter and set up	35
5.2.2	Oil palm seedlings planting and fertilizer application	38
5.2.3	Water table treatments and experimental design	38
5.2.4	Estimation of leachate volume based on rainfall amount	40
5.3	Results and Discussion	42
5.3.1	Tropical peat soil physico-chemical characteristics of the sampling site	42
5.3.2	Rainfall distribution pattern	43
5.3.3	Rainfall events pH of leachate	44
5.3.4	Average pH of leachate	45
5.3.5	Nutrients leaching losses	46
5.3.5.1	Nitrogen leaching losses	46
5.3.5.2	Cumulative nitrogen, ammonium and nitrates leaching loss	47
5.3.5.3	Phosphorous leaching losses at different rainfall events	50
5.3.5.4 Cumulative Phosphorous leaching losses 51
5.3.5.5 Potassium leaching losses at different rainfall events 53
5.3.5.6 Cumulative Potassium losses 54
5.3.5.7 Magnesium losses at different rainfall events 56
5.3.5.8 Cumulative Magnesium leaching losses 57
5.3.5.9 Calcium leaching losses at different rainfall events 58
5.3.5.10 Cumulative Calcium leaching losses 59
5.3.5.11 Copper leaching losses at different rainfall events 60
5.3.5.12 Cumulative Copper leaching losses 62
5.3.5.13 Zinc leaching loss at different rainfall events 63
5.3.5.14 Cumulative Zinc leaching losses 65

5.3.6 Soil properties 66
5.3.6.1 Soil pH at the initial, 102 and 204 DAP 66
5.3.6.2 Total N and exchangeable NH_4^+ and NO_3^- 67
5.3.6.3 Total and available P 68
5.3.6.4 Total and exchangeable K 69
5.3.6.5 Total and exchangeable Mg 71
5.3.6.6 Total and exchangeable Ca 71
5.3.6.7 Total and exchangeable Cu 72
5.3.6.8 Total and exchangeable Zn 73

5.3.7 Plant nutrients 74
5.3.7.1 Plant nutrients concentration 74
5.3.7.2 Plant biomass growth 76
5.3.7.3 Nutrient uptake 78
5.3.7.4 Tropical peat subsidence at two hundred and four days 79

5.4 Conclusions 80

6 GENERAL CONCLUSIONS AND RECOMMENDATION 81

REFERENCES 82
BIODATA OF STUDENT 105
LIST OF PUBLICATIONS 106
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Division of peat area distinguished by countries</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Distribution of peat in Malaysia</td>
<td>5</td>
</tr>
<tr>
<td>2.3</td>
<td>Distribution of oil palm cultivated in Malaysia per hectare</td>
<td>7</td>
</tr>
<tr>
<td>4.1</td>
<td>Mean (± s.e) of exchangeable ammonium and available nitrate at 25 days of incubation of peat soil</td>
<td>33</td>
</tr>
<tr>
<td>5.1</td>
<td>Rainfall event volume of the leachate</td>
<td>41</td>
</tr>
<tr>
<td>5.2</td>
<td>Selected physico-chemical properties of sapric peat soil used for the study as compared to standard range</td>
<td>42</td>
</tr>
<tr>
<td>5.3</td>
<td>Mean (± s.e) of 25, 40, 55, 70 and 85 cm water table depths on soil pH at initial, 102 and 204 DAP</td>
<td>66</td>
</tr>
<tr>
<td>5.4</td>
<td>Mean (± s.e) of 25, 40, 55, 70 and 85 cm water table depths on soil total N and exchangeable NH₄⁺ and NO₃⁻ at initial, 102 and 204 DAP</td>
<td>67</td>
</tr>
<tr>
<td>5.5</td>
<td>Mean (± s.e) of 25, 40, 55, 70 and 85 cm water table depths on soil total and available P at initial, 102 and 204 DAP</td>
<td>69</td>
</tr>
<tr>
<td>5.6</td>
<td>Mean (± s.e) of 25, 40, 55, 70 and 85 cm water table depths on soil total and exchangeable K at initial, 102 and 204 DAP</td>
<td>70</td>
</tr>
<tr>
<td>5.7</td>
<td>The mean (± s.e) of 25, 40, 55, 70, and 85 cm water table depths on total and exchangeable Mg at the initial, 102 and 204 DAP</td>
<td>71</td>
</tr>
<tr>
<td>5.8</td>
<td>Mean (± s.e) of 25, 40, 55, 70, and 85 cm water table depths on tropical peat soil total and exchangeable Ca at the initial, 102 and 204 DAP</td>
<td>72</td>
</tr>
<tr>
<td>5.9</td>
<td>Mean (± s.e) of 25, 40, 55, 70, and 85 cm water table depths on tropical peat soil total and exchangeable Cu at the initial, 102 and 204 DAP</td>
<td>73</td>
</tr>
<tr>
<td>5.10</td>
<td>Mean (± s.e) of 25, 40, 55, 70, and 85 cm water table depths on tropical peat soil total and exchangeable Zn at the initial, 102 and 204 DAP</td>
<td>74</td>
</tr>
</tbody>
</table>
5.11 Mean (± s.e) of 25, 40, 55, 70, and 85 cm water table depths on N, P, K, Mg, Ca, Cu, and Zn concentration in plant at 204 DAP

5.12 Mean (± s.e) of 25, 40, 55, 70, and 85 cm on the uptake of N, P, K, Mg, Ca, Cu and Zn in plant after the study period
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Ammonia volatilization over 25 days of incubation of peat soil under different controlled water table depth</td>
<td>31</td>
</tr>
<tr>
<td>4.2</td>
<td>Cumulative ammonia loss of peat soil under different water table depths means with the same letters are not significantly different from one another at p ≤ 0.05</td>
<td>32</td>
</tr>
<tr>
<td>5.1</td>
<td>Rainfall pattern during the experimental period (May 2016 to October 2016)</td>
<td>43</td>
</tr>
<tr>
<td>5.2</td>
<td>pH of leachate of a tropical peat soil with different water table depths based on rainfall events</td>
<td>44</td>
</tr>
<tr>
<td>5.3</td>
<td>Average pH of leachate for treatments: 25, 40, 55, 70 and 85 cm at 204 Days of the study (error bars represent ± standard error) and means with different letters are significantly different from one another Tukey’s at p ≤ 0.05</td>
<td>45</td>
</tr>
<tr>
<td>5.4</td>
<td>Rainfall events loss of N for treatments 25, 40, 55, 70 and 85 cm for 46 days of rainfall events. A= First fertilizer application 1 DAP (N, P, K and Mg) B= Second fertilizer application 60 DAP (Cu and Zn) C= Third fertilizer application 90 DAP (N, P, K, and Mg)</td>
<td>46</td>
</tr>
<tr>
<td>5.5</td>
<td>Mean (± s.e) cumulative N losses at 204 Days of the study from the treatments: 25, 40, 55, 70 and 85 cm. Means with different letters are significantly different from one another by Tukey’s at p ≤ 0.05</td>
<td>48</td>
</tr>
<tr>
<td>5.6</td>
<td>(a and b) Mean (± s.e) cumulative NH₄⁺ and NO₃⁻ leaching losses at 204 Days of the study from the treatments: 25, 40, 55, 70 and 85 cm. Means with different letters are significantly different from one another by Tukey’s at p ≤ 0.05</td>
<td>49</td>
</tr>
<tr>
<td>5.7</td>
<td>Rainfall events loss of P for treatments 25, 40, 55, 70 and 85 cm from the soil surface for 46 days of rainfall events. A= First fertilizer application 1 DAP (N, P, K and Mg) B= Second fertilizer application 60 DAP (Cu and Zn) C= Third fertilizer application 90 DAP (N, P, K, and Mg)</td>
<td>51</td>
</tr>
<tr>
<td>5.8</td>
<td>Mean (± s.e) cumulative P losses at 204 Days of the study from the treatments: 25, 40, 55, 70 and 85 cm and means with different letters are significantly different from one another by Tukey’s at p ≤ 0.05</td>
<td>52</td>
</tr>
</tbody>
</table>
5.9 Rainfall events loss of K for treatments 25, 40, 55, 70 and 85 cm for 46 days of rainfall events. A= First fertilizer application 1 DAP (N, P, K and Mg) B= Second fertilizer application 60 DAP (Cu and Zn) C= Third fertilizer application 90 DAP (N, P, K, and Mg)

5.10 Mean (± s.e) cumulative K losses at 204 Days of the study from the treatments: 25, 40, 55, 70 and 85 cm and means with different letters are significantly different from one another by Tukey’s test at p ≤ 0.05

5.11 Rainfall events loss of Mg for treatments 25, 40, 55, 70 and 85 cm for 46 days of rainfall events. A= First fertilizer application 1 DAP (N, P, K and Mg) B= Second fertilizer application 60 DAP (Cu and Zn) C= Third fertilizer application 90 DAP (N, P, K, and Mg)

5.12 Mean (± s.e) cumulative Mg losses at 204 Days of the study from the treatments: 25, 40, 55, 70 and 85 cm and means with different letters are significantly different from one another by Tukey’s test at p ≤ 0.05)

5.13 Rainfall events loss of Ca for treatments 25, 40, 55, 70 and 85 cm for 46 days of rainfall events. A= First fertilizer application 1 DAP (N, P, K and Mg) B= Second fertilizer application 60 DAP (Cu and Zn) C= Third fertilizer application 90 DAP (N, P, K, and Mg)

5.14 Mean (± s.e) cumulative Ca losses at 204 Days of the study from the treatments: 25, 40, 55, 70 and 85 cm and means with different letters are significantly different from one another by Tukey’s test at p ≤ 0.05)

5.15 Rainfall events loss of Cu for treatments 25, 40, 55, 70 and 85 cm for 46 days of rainfall events. A= First fertilizer application 1 DAP (N, P, K and Mg) B= Second fertilizer application 60 DAP (Cu and Zn) C= Third fertilizer application 90 DAP (N, P, K, and Mg)

5.16 Mean (± s.e) cumulative Cu losses at 204 Days of the study from the treatments: 25, 40, 55, 70 and 85 cm and means with different letters are significantly different from one another by Tukey’s test at p ≤ 0.05)

5.17 Rainfall events loss of Zn for treatments 25, 40, 55, 70 and 85 cm for 46 days of rainfall events. A= First fertilizer application 1 DAP (N, P, K and Mg) B= Second fertilizer application 60 DAP (Cu and Zn) C= Third fertilizer application 90 DAP (N, P, K, and Mg)
5.18 Mean (± s.e) cumulative Zn losses at 204 Days of the study from the treatments: 25, 40, 55, 70 and 85 cm and means with different letters are significantly different from one another by Tukey’s test at p ≤ 0.05

5.19 Mean (± s.e) total plant biomass at Two hundred and Four Days of the study from the treatments: 25, 40, 55, 70 and 85 cm, and biomass mean with different letters significantly different by Tukey’s at p < 0.05

5.20 Effects of treatments (25, 40, 55, 70 and 85 cm) after 204 days of the study (± s.e) and subsidence mean with different letters significantly different by Tukey’s test at p ≤ 0.05
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>(a) Aerial view of the location of the experimental site (b) Location for peat soil sampling area at Ta`an oil palm plantation</td>
<td>21</td>
</tr>
<tr>
<td>4.1</td>
<td>Layout of ammonia volatilization experiment. (a) Conical flask containing the boric acid (b) plastic containers filled with soil and the air pump chamber</td>
<td>30</td>
</tr>
<tr>
<td>5.1</td>
<td>Schematic diagram of lysimeter vessel made from high-density polyethylene (a) Mounted clear tubes with water spillage opening (b) water table depth control pipe</td>
<td>36</td>
</tr>
<tr>
<td>5.2</td>
<td>Tropical peat soil of sampling site (a) undisturbed tropical before sampling (b) tropical peat soil was filled in a lysimeter and (c) tropical peat soil in lysimeter about to transfer to the experimental site</td>
<td>38</td>
</tr>
<tr>
<td>5.3</td>
<td>Lysimeter arrangement (a) planted with oil seedling before and after fertilizer application (b) arrangement based on different treatments (c) seedlings after the fertilizer application (d) level of water in the clear mounted tubes</td>
<td>39</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>CRD</td>
<td>Complete Randomized Design</td>
</tr>
<tr>
<td>DAP</td>
<td>Days after planting</td>
</tr>
<tr>
<td>ERP</td>
<td>Egypt rock phosphate</td>
</tr>
<tr>
<td>FFB</td>
<td>Fresh Fruit Bunches</td>
</tr>
<tr>
<td>HDPE</td>
<td>High Density Polyethylene</td>
</tr>
<tr>
<td>MOP</td>
<td>Murate of potash</td>
</tr>
<tr>
<td>NH4OAc</td>
<td>Ammonium acetate</td>
</tr>
<tr>
<td>RCBD</td>
<td>Randomized Complete Block Design</td>
</tr>
<tr>
<td>rpm</td>
<td>Rounds per minute</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background and problem statement

Agricultural development on tropical peatlands is getting more attention because of the problems associated with it such as high water table depth, low nutrients contents, acidic in nature, and subsidence that leads to low yield. Approximately half (24.8 million hectares) of the tropical peatland area of the world are found in South-East Asia which constitutes 56% of world peat soil particularly in Indonesia and Malaysia (Hooijer et al., 2010). In Malaysia, peat soil occupies an area of about 2.5 million hectares of which 1.6 million hectares, are found in Sarawak (Mutalib et al., 1991). Peat in Malaysia can be categorized as a tropical peat with unique characteristics. Thus, makes it significantly different from other peat.

In its natural state, this soil is normally dark reddish brown to black and consists of partly decomposed leaves, branches, twigs and tree trunks, and with a low mineral content (Zainorabidin and Wijeyesekera, 2007). Peat soils are considered as poor soils for agriculture due to their inherent physical and chemical problems. One of the physical problems is high water table that needs to be drained before the commencement of planting (Yew et al., 2010). In addition, the waterlogged conditions of the peat soils hinder the use of heavy-duty tillage implements (Lim and Wahyudi, 2010). Despite the constraints posed by peat soils, some farmers continue to use peat soils for agriculture (Yew et al., 2010), which has occurred over time in different parts of the world (Oleszczuk et al., 2008). It is estimated that 30, 15, and less than 5 million hectares of total peat soil in the world is used for agriculture, forestry and mining activities respectively (Strack, 2008). As a result of low nutrient content, agricultural production on peat soil is often criticized for causing more problems to agronomists and farmers for finding difficulty in cropping on it (Gurmit et al., 1987; Tayeb, 2005). Also, contrary to true that peat soils have low nutrients, but still there has been increasing number of areas of peatlands being reclaimed for agricultural activities (Strack, 2008). This leads to the increasing consideration in nutrients management as to achieve optimum crops yield grown on it (Ameera et al., 2014).

Nutrients are essential for crop production. All plants require nutrients to grow and a significant portion of these nutrients are removed out of the field when the crop is harvested. The amount of nutrients in the fertilizer that are not utilized during growth and development by crops are subjected to loss from the field through a number of pathways such as through volatilization, surface runoff or leaching to groundwater. These losses are classify as economic losses and also resulted in negative impacts on the environment and human health (Drury et al., 1996). Water table depth is one of the most important factors that determine the water movement in peatlands with response to rainfall (Holden et al., 2011). Under natural condition, the water table
depth in undisturbed peatlands were found near to the peat surface for most of the year and the fluctuations were rather limited (Evans et al., 1999; Holden et al., 2011). Fluctuations of water table depths in peatlands were mostly found under shallow upper peat layer that is made up of poorly decomposed organic matter which resulted in relatively large pore structure and high hydraulic conductivity (Holden et al., 2011). During the period of rainfall, the peat soil might be flooded and thus, increase the losses of plant nutrients through drainage water, especially losses of C, N, and P (Martin et al., 1997). A strong relationship exists between the amounts of nutrient stored in the peat and the moisture content, where elements such N, S, and P have direct relation to moisture contents in peatlands (Adesiji et al., 2014). High water table depth and its associated condition in peat soil are the main issues in sustaining peatlands vegetation composition and productivity (Cao et al., 2017). However, the water table depth in a peat soil can be varies differently in the tropical region because of the changes in the rainfall pattern (Jauhiainen et al., 2005). The lowering of the water table depth increases the aeration in the surface of peat layers and increasing the aerobic decomposition of organic matter (Wright et al., 2013).

Nutrients leaching losses should be less serious under a crop than under a non-crop area but will increase when fertilizers are applied (Wong et al., 1992). Proper measurement of cations leaching from a tropical peat soil is however limited. This is because of the variability in concentrations in soil and water samples that affects the measurement (Wong et al., 1992). Therefore, better measurements are important since the leaching of nutrients ions may be useful understanding the chemical deterioration of the soil during cultivation. Research on nutrients leaching losses is gaining more attention due to the movement of these nutrients below the root-zone which causes large loss to the plant, and an economic loss to the farmer (Heng et al., 1991).

Losses of plant nutrients as a result of percolation have been studied on various soils. (Bolton et al., 1970). Good maintenance of peat soils can also serve as a source and a reservoir of nutrients, based on the types of peat and drainage patterns (Heathwaite 1991). Well-managed peat soils are considered as a source of nutrients because the indigenous peat which contains large amounts of nutrients that are capable of leaching (Heathwaite 1990). Saffigna and Philips (2006) assumed leaching as the downward motion of chemical nutrients or waste materials in soils as the result of draining water. As such, when substances are leached beyond the root zone, is therefore, difficult for uptake by plant and is being lost from the soil-plant system (Ah et al., 2009). As a result of high amount of water draining from the plant root zone, the leached substances may be deposited at a certain depth in the soil which will, in turn, contaminate the underground water (Ah et al., 2009). Leaching losses, particularly of readily soluble forms of N and K, have been extensively reported to be more in an area of crop plant in the humid tropics due to the high amount of rainfall intensity (Henson, 1999). A high water table is one of the characteristics of tropical peat soil which affects the utilization of fertilizer applied by the plant.
High water table, which affects drainage are known to decrease crop yields. However, high water table can lead to death of young palms as well as reduce the yield of older ones (Henson et al., 2008). Leaching losses of nutrients as the results of drainage are difficult to quantify under the high water table, because of the import/export of nutrients as the result of lateral flow in drainage may become problem. Maintaining an optimum water table depth is thus important for getting high yield, although studies relating oil palm yield to water table depth are sadly limited. Lim (2005) reported the highest bunch yield when the water table was around 50-75 cm below the surface and the yield decrease when the water table fluctuate between ± 25 cm from the surface.

Ammonia loss is one the largest global gas emissions into the atmosphere from the applied nitrogen (Hayashi et al., 2006). Nitrogen applied as a fertilizer can be lost in the soil-crop system due to ammonia volatilization (Ahmed et al., 2010; Omar et al., 2010). Nitrogen applied that is not taken by plants or immobilized in soils are susceptible to lose through volatilization, denitrification, leaching, and runoff eventually cause detrimental problems to the environment (Canfield et al., 2010). After the fertilizer application, ammonia volatilization is rapid and strongly affected by the following factors such as NH$_4^+$ concentration, pH, temperature and wind velocity (Hayashi et al., 2006). The method of N fertilizer application influences NH$_4^+$ concentration in floodwater (Fillery et al., 1984) and therefore plays an important role in NH$_3$ volatilization (Jayaweera and Mikkelsen, 1991).

Rapid fluctuation of water level occurs mostly during the rainy or dry season. As such, it is of paramount importance for frequent monitoring of water level in peat soil for proper growth and development of the plant. Because of the increasing use of fertilizers in oil palm plantations on peat soil especially in Malaysia, and with the problem of high water table depth associated with, there is a need to look at the effect of water table depth on nutrients leaching losses. Consequently the effect of nutrient losses due to leaching in peat soils under different water table depth found to be greater practical importance. Losses of nutrients in peat under different water table depth conditions have been shown to be great. This has been due to the physical and chemical properties of peat. It was worried that losses of nutrients may be high due to the necessity of maintaining the peat at a constant depth. The study on the effect of water table depth on nutrients leaching losses from tropical peat was limited.

1.2 Objectives

The main objectives of this study were to determine the effects of several water table depths on the:

1. Nutrient losses (N, P, K, Mg, Ca, Cu, and Zn), ammonia volatilization following application of urea, and tropical peat subsidence.
2. Oil palm seedlings vegetative growth using a high-density polyethylene containers.
REFERENCES

