UNIVERSITI PUTRA MALAYSIA

PREPARATION AND CHARACTERIZATION OF MAGNETITE FERROFLUID FOR GENERATING OF INDUCED CURRENT

CHE SULAIMAN BIN AHMAD

ITMA 2014 5
PREPARATION AND CHARACTERIZATION OF MAGNETITE FERROFLUID FOR GENERATING OF INDUCED CURRENT

By

CHE SULAIMAN BIN AHMAD

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

November 2014
COPYRIGHT

All material contained within the thesis, including without limitation, text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
In this research, morphology, average particle size and magnetic properties of magnetite (Fe$_3$O$_4$) particles were studied and mixed with a carrier liquid to obtain a ferrofluid. Further, an attempt to use the ferrofluid to generate induced electric current was to be carried out. Magnetite (Fe$_3$O$_4$) nanoparticles were prepared by wet milling using mechanical alloying in a hardened steel vial using a SPEX8000D mill with different milling times of 10 hours, 20 hours, 30 hours and 40 hours to obtain magnetite nanoparticles in bigger quantities compared with other method. Firstly, micron-size magnetite was milled with water using different milling times of 10 hours, 20 hours, 30 hours and 40 hours. After that, the powder was dried for a day. The material was crushed with mortar and pestle and sieved to obtain a fine powder. Next, the magnetite milled with oleic acid with different times of 10 hours, 20 hours, 30 hours and 40 hours. After that, the powder was washed with hexane mixed with ethanol. Finally the powder must be dried for a day. For the next sample, the sample was milled with water and mixed with hydrochloric acid, HCl, diluted with 100 ml water in a beaker at 70°C. Besides, 0.1ml oleic acid as surfactant was mixed with 10 ml acetone and a co-surfactant in another beaker. This solution had to be put slowly into a beaker contains magnetite and was slowly stirred. Then, 10 ml ammonia solution was put into this beaker to give a colloidal suspension. The top layer of this suspension was centrifuged by using methanol mixed with acetone. This wet powder mass was then extracted and dried for 3 hours. The magnetic nanoparticles were analyzed by XRD, TEM, FTIR and VSM analysis. The result showed that superparamagnetic magnetite nanoparticles were obtained, suggesting that the top–layer suspension was suitable to be used as ferrofluid particles. The phase of magnetite was confirmed by X-ray diffraction (XRD) using a Philips X-ray diffractometer. The average particle size of magnetite was studied using a Transmission Electron Microscope (TEM). The magnetic properties studies were carried out by using a Vibrating Sample Magnetometer (VSM). The XRD patterns showed an improvement of crystallinity with increasing milling time. The XRD patterns also showed the all samples as magnetite nanoparticle and no impurities coming from this sample. FTIR analysis showed peaks of pure magnetite and oleic acid. Hysteresis analysis from VSM shows that when milling time increased, the saturation magnetization increased but the coercivity decreased parallel with average particle size decrease. TEM micrographs show that with increase milling time, average particle size becomes decreased. The magnetite nanoparticles from the 40 hours milling
time were mixed with silicon oil to yield a ferrofluid. This ferrofluid was used to
generate induced current by passing it in a plastic tube through a magnetic field. The
experiment on induced current showed that the induced current generally increased
when the weight of magnetite increased.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

PENYEDIAAN DAN PENCIRIAN DARIPADA MAGNETITE FERROFLUID UNTUK MENGHASILKAN ARUS TERARUH

Oleh

CHE SULAIMAN BIN AHMAD

November 2014

Pengerusi : Profesor Madya Mansor Hashim, PhD
Fakulti : Institut Teknologi Maju

ACKNOWLEDGEMENTS

In the name of Allah, the Most Beneficent, the Most Merciful

I would mark the first time thanks Allah Almighty for giving me the opportunity to complete this thesis. By His grace, I was added to successfully this work completed this work. I also would express my sincere appreciation and thanks go to my supervisor Assoc. Prof. Dr. Mansor Hashim for his constant guidance, advice and support. With large contributions have helped me in completing my project, I expressed my sincere appreciation to help in any way I could have been asked and be instructed. I also would like to thank my co-supervisor, Dr. Norlaily Mohd Saiden and Dr. Ismayadi Ismail and also to all my lecturers for their support throughout this project.

I am very grateful to earn your love, prayers and support from the most important people in my life, my mother, Che Khabsah Binti Che Daud and my father, Ahmad Bin Mat Yusof. I also like to thank my brother, Zulkifli Bin Mohd Hanapiyah and Ismail Bin Ahmad for their support throughout this project. Thank also to my friends in Magnetic and Nanostructured Polycrystals Evolution Group (MNPEG), Aizat, Mutia, Dayang, Misbah, Rodziah, Ismayadi, Shamsul, Idza, Ghazalleh, Nora, Hapishah, Faz, Masni, Dr. Kanageshan and others. I appreciate the discussion, ideas, memorable and interesting interaction time used throughout. Finally, I also would like to thank all the staffs of the Faculty of Science and Materials Synthesis and Characterization Laboratory staff, Pn. Norhaslinda, Pn. Hani Azlin, Pn. Wani, En. Kadri, Pn. Lin and many others for their great help and advice.
I certify that a Thesis Examination Committee has met on 7 November 2014 to conduct the final examination of Che Sulaiman bin Ahmad on his thesis entitled "Preparation and Characterization of Magnetite Ferrofluid for Generating Induced Current" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Mohd Nizar bin Hamidon, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Zulkifly bin Abbas, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Azmi bin Zakaria, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Mohamad Deraman, PhD
Professor
Universiti Kebangsaan Malaysia
Malaysia
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 13 May 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mansor Hashim, PhD
Associate Professor
Institute of Advanced Technology
Universiti Putra Malaysia
(Chairman)

Norlaily Mohd Saiden, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Member)

Ismayadi Ismail, PhD
Senior Lecturer
Institute of Advanced Technology
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- This thesis is my original work;
- Quotations, illustrations and citations have been duly referenced;
- This thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- Intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to Universiti Putra Malaysia (Research) Rules 2012;
- Written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- There is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ___________________________ Date: ___________________________

Name and Matric No.: Che Sulaiman Bin Ahmad, GS32931
Declaration by Members of Supervisory Committee

This is to confirm that:

- The research conducted and the writing of this thesis was under our supervision;
- Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __________________________
Name of Chairman of Supervisory Committee: Mansor Hashim, PhD

Signature: __________________________
Name of Member of Supervisory Committee: Ismayadi Ismail, PhD

Signature: __________________________
Name of Member of Supervisory Committee: Norlaily Mohd Saiden, PhD
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS AND SYMBOLS</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
1.1 Background of the study
1.2 History of Ferrofluid
1.3 Historical Overview of magnetite
1.4 Magnetite nanoparticle
1.5 Significant of study
1.6 Problem Statement
1.7 Objective
1.8 Thesis Outline

2 LITERATURE REVIEW
2.1 Introduction
2.2 Field Responsive Fluids
2.2.1 Ferrofluid
2.2.2 Magnetorheological fluids
2.2.3 Electroheological
2.3 Colloid
2.4 Magnetic colloid
2.5 Background magnetic nanoparticle
2.6 Critical size of iron oxide nanoparticles
2.7 Preparation of magnetite nanoparticle
2.7.1 Milling method
2.7.1.1 Wet milling
2.7.1.2 Dry milling
2.7.2 Co-precipitation method
2.7.3 Sun’s method
2.7.4 Sol gel method
2.7.5 Solvothermal method
2.7.6 Chemical precursor method
2.8 Ferrofluid
2.8.1 Ferrofluid properties
2.9 Application of Ferrofluid
2.9.1 Magnetic fluids tackle tough sealing jobs
2.9.2 D’Arsoval galvanometer in ferrofluid technology
2.9.3 Ferrofluid Sensor
2.10 Mechanical alloying
2.10.1 History of mechanical alloying 14
2.10.2 Types of mill 14
2.10.3 Milling container 15
2.10.4 Milling speed 15
2.10.5 Milling time 15
2.10.6 Type, size, size distribution of grinding medium 16
2.10.7 Ball to powder weight ratio 16
2.10.8 Advantages of mechanical milling 17

2.11 Characterization of magnetite nanoparticles 18
2.11.1 Magnetic properties 18
2.11.2 XRD patterns 18
2.11.3 Size and morphology 19

3 THEORY
3.1 Introduction 20
3.2 Mechanical alloying 20
3.3 Theory of magnetism 20
3.4 Fundamentals of Magnetism 21
 3.4.1 Diamagnetism 21
 3.4.2 Paramagnetism 21
 3.4.3 Ferromagnetism 22
 3.4.4 Antiferromagnetism 22
 3.4.5 Ferrimagnetism 22
 3.4.6 Superparamagnetism 23
3.5 Hysteresis loops 23
3.6 Domain theory of ferromagnetism 23
 3.6.1 Multi domain particles 24
 3.6.2 Single domain particles 25
 3.6.3 Superparamagnetism 25
 3.6.4 Size effect and properties of nanoparticles 26
 3.6.5 Intrinsic and extrinsic properties of advanced magnetics materials 26
 3.6.6 Intrinsic properties 27
 3.6.7 Magnetic moment 27
 3.6.8 Exchange 27
 3.6.9 Magnetization and magnetic order 27
3.7 Magnetic anisotropy 28
 3.7.1 Magnetocrystalline anisotropy 28
 3.7.2 Shape anisotropy 29
 3.7.3 Stress anisotropy 29
 3.7.4 Exchange anisotropy 30
 3.7.5 Surface anisotropy 30
3.8 Classification of surfactants 30
 3.8.1 Importance of oleic acid surfactant 31
 3.8.2 Influence of reducing agent 31
3.9 Theory of induction current 31
 3.9.1 Faraday Law 31

4 METHODOLOGY
4.1 Introduction 32
4.2 Sample preparation 32

xi
4.2.1 Raw Materials 32
4.2.2 Preparation of magnetic nanoparticle 33
 4.2.2.1 Preparation of magnetite with water 33
 4.2.2.2 Preparation of magnetite with oleic acid 34
 4.2.2.3 Preparation of magnetite with other solutions 35
 4.2.2.4 Preparation of Ferrofluid 36
4.3 Sample procedure 37
 4.3.1 Chemical formula of desired material 37
 4.3.2 Weighing of the powders 37
 4.3.3 Mixing 37
 4.3.4 High-energy ball milling 37
 4.3.5 Grinding 37
 4.3.6 Sieve 38
 4.3.7 Dissolved 38
 4.3.8 Coating 38
 4.3.9 Reduction 38
 4.3.10 Centrifuged 38
4.4 Sample measurement and characterization 38
4.5 Material Characteristic Measurements 39
 4.5.1 Physical /Structural Measurement 39
 4.5.1.1 X-Ray Diffraction 39
 4.5.1.2 Transmission Electron Microscope 40
 4.5.1.3 Fourier Transform Infrared 40
 4.5.1.4 Vibrating Sample Magnetometer 40
4.6 Induce current experiment using ferrofluid 41

5 RESULTS AND DISCUSSION
 5.1 Introduction 43
 5.2 Phase analysis 43
 5.2.1 Milling time effect (water medium) 44
 5.2.2 Milling time effect (oleic acid medium) 47
 5.2.3 Milling time effect (water and other solution medium) 50
 5.3 Fourier Transform Infrared (FTIR) analysis 53
 5.3.1 Milling time effect (water medium) 53
 5.3.2 Milling time effect (oleic acid medium) 54
 5.3.3 Milling time effect (water and other solution medium) 55
 5.4 Magnetic properties(Vibrating Sample Magnetometer) 56
 5.4.1 Milling time effect (water medium) 57
 5.4.2 Milling time effect (oleic acid medium) 60
 5.4.3 Milling time effect (water and other solution medium) 62
 5.5 Particle size analysis 65
 5.5.1 Milling time effect (water medium) 65
 5.5.2 Milling time effect (oleic acid medium) 67
 5.5.3 Milling time effect (water and other solution medium) 69
 5.6 Experiment induce current 72

6 CONCLUSIONS AND SUGGESTIONS
 6.1 Conclusions 73
 6.2 Suggestions 73
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCES</td>
<td>74</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>80</td>
</tr>
<tr>
<td>BIODATA OF STUDENT</td>
<td>83</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>84</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>List of crystallite size, lattice constant and XRD density for magnetite with milling time effect (water medium)</td>
</tr>
<tr>
<td>5.2</td>
<td>List of crystallite size, lattice constant and XRD density for magnetite with milling time effect (oleic acid medium)</td>
</tr>
<tr>
<td>5.3</td>
<td>List of crystallite size, lattice constant and XRD density for magnetite with milling time effect (water and other solution medium)</td>
</tr>
<tr>
<td>5.4</td>
<td>List of coercivity, average particle size, saturation magnetization, remanence magnetization and ratio remanence magnetization to saturation magnetization for magnetite with water medium</td>
</tr>
<tr>
<td>5.5</td>
<td>List of coercivity, average particle size, saturation magnetization, remanence magnetization and ratio remanence magnetization to saturation magnetization for magnetite with oleic acid medium</td>
</tr>
<tr>
<td>5.6</td>
<td>List of coercivity, average particle size, saturation magnetization, remanence magnetization and ratio remanence magnetization to saturation magnetization for magnetite with water and other solution medium</td>
</tr>
<tr>
<td>5.7</td>
<td>List of weight of magnetite value and induction resultant current</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Composition of magnetic fluids (Uhlmann, 2006).</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Vacuum-rotary feedthrough (Ochonski, 2005)</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>D'Arsonval galvanometer with ferrofluid (Raj et al, 1995).</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>Tilt sensor utilizing ferrofluid as variable induction core (Raj et al, 1995).</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>XRD pattern of CoFe$_2$O$_4$, 12 h milling as a function of BPR (Waje et al., 2010).</td>
<td>17</td>
</tr>
<tr>
<td>2.6</td>
<td>Room temperature M–H curves for the samples.</td>
<td>18</td>
</tr>
<tr>
<td>2.7</td>
<td>XRD patterns of neat Fe$_3$O$_4$ NPs (a) and the modified Fe$_3$O$_4$ NPs (b).</td>
<td>19</td>
</tr>
<tr>
<td>2.8</td>
<td>TEM images of neat Fe$_3$O$_4$ NPs (a) and the modified Fe$_3$O$_4$ NPs (b). The insets showed high resolution images</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>Aligned magnets in domains. (a) unmagnetized sample before applying magnetic field (b) aligned domains after applying magnetic field</td>
<td>24</td>
</tr>
<tr>
<td>3.2</td>
<td>Variation of intrinsic coercivity (Oe) with particle diameter D (nm)</td>
<td>25</td>
</tr>
<tr>
<td>3.3</td>
<td>Schematic diagram of a particle showing the easy axis, applied field H and resulting magnetization</td>
<td>26</td>
</tr>
<tr>
<td>3.4</td>
<td>Magnetic order: (a) ferromagnet at T=0, (b) antiferromagnet at T=0, (c) ferrimagnet at T=0, and (d) ferromagnet above TC (Spaldin, 2003)</td>
<td>28</td>
</tr>
<tr>
<td>3.5</td>
<td>Crystallographic directions for a cubic crystal</td>
<td>29</td>
</tr>
<tr>
<td>4.1</td>
<td>Flowchart for synthesis of magnetite with water as solvent</td>
<td>41</td>
</tr>
<tr>
<td>4.2</td>
<td>Flowchart for synthesis of magnetite with oleic acid as solvents</td>
<td>34</td>
</tr>
<tr>
<td>4.3</td>
<td>Flowchart for synthesis of magnetite with other solutions</td>
<td>35</td>
</tr>
<tr>
<td>4.4</td>
<td>Flowchart for preparation ferrofluid</td>
<td>36</td>
</tr>
<tr>
<td>4.5</td>
<td>Flowchart procedure of sample characterization</td>
<td>39</td>
</tr>
<tr>
<td>4.6</td>
<td>Induction current experiment</td>
<td>46</td>
</tr>
</tbody>
</table>
5.1 XRD patterns of milling time effect (water medium): a) before milling, b) 10 hour, c) 20 hours, d) 30 hours, e) 40 hours

5.2 Graph for milling time effect (water medium) a) crystallite size versus milling time, b) lattice constant versus milling time

5.3 XRD patterns of milling time effect (oleic acid medium): a) before milling, b) 10 hour, c) 20 hours, d) 30 hours, e) 40 hours

5.4 Graph for milling time effect (oleic acid medium) a) crystallite size versus milling time, b) lattice constant versus milling time

5.5 XRD patterns of milling time effect (water and other solution medium): a) before milling, b) 10 hour, c) 20 hours, d) 30 hours, e) 40 hours

5.6 Graph for milling time effect (water and other solution medium) a) crystallite size versus milling time, b) lattice constant versus milling time

5.7 FTIR patterns of milling time effect (water medium) a) 10 hours milling, b) 20 hours, c) 30 hours, d) 40 hours

5.8 FTIR patterns of milling time effect (oleic acid medium) a) 10 hours milling, b) 20 hours, c) 30 hours, d) 40 hours

5.9 FTIR patterns of milling time effect (water and other solution medium) a) 10 hours milling, b) 20 hours, c) 30 hours, d) 40 hours

5.10 Comparism in saturation magnetization and milling time effect (water medium)

5.11 Hysteresis curve of milling time effect (water medium) a) 10 hours, b) 20 hours, c) 30 hours, d) 40 hours

5.12 Comparism in saturation magnetization and milling time effect (oleic acid medium)

5.13 Hysteresis curve of milling time effect (oleic acid medium) a) 10 hours, b) 20 hours, c) 30 hours, d) 40 hours

5.14 Comparism in saturation magnetization and milling time effect (water and other solution medium)

5.15 Hysteresis curve of milling time effect (water and other solution medium) a) 10 hours, b) 20 hours, c) 30 hours, d) 40 hours

5.16 TEM micrographs of milling time effect (water medium): a) 10 hours, b) 20 hours, c) 30 hours and d) 40 hours

5.17 Particle size distribution milling time effect (water medium): a) 10 hours, b) 20 hours, c) 30 hours, d) 40 hours
5.18 TEM micrographs of milling time effect (oleic acid medium): a) 10 hours, b) 20 hours, c) 30 hours and d) 40 hours

5.19 Particle size distribution milling time effect (oleic acid medium): a) 10 hours, b) 20 hours, c) 30 hours, d) 40 hours

5.20 TEM micrographs of milling time effect (water and other solution medium): a) 10 hours, b) 20 hours, c) 30 hours and d) 40 hours

5.21 Particle size distribution milling time effect (water and other solution medium): a) 10 hours, b) 20 hours, c) 30 hours, d) 40 hours

5.22 Average particle size as a function of milling time effect: a) water medium, b) oleic acid medium and c) water and other solution medium

5.23 Induction resultant current as a function of weight magnetite
List of Symbols and Abbreviations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
<td></td>
</tr>
<tr>
<td>VSM</td>
<td>Vibrating Sample Magnetometer</td>
<td></td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared Spectroscopy</td>
<td></td>
</tr>
<tr>
<td>EDX</td>
<td>Energy-dispersive X-ray</td>
<td></td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td>Mechanical Alloying</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Magnetic induction/Flux magnet</td>
<td></td>
</tr>
<tr>
<td>HEBM</td>
<td>High-energy ball milling</td>
<td></td>
</tr>
<tr>
<td>BPR</td>
<td>Ball to powder weight ratio</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Magnetic field strength</td>
<td></td>
</tr>
<tr>
<td>Eqn.</td>
<td>Equation</td>
<td></td>
</tr>
<tr>
<td>a.u.</td>
<td>Arbitrary unit</td>
<td></td>
</tr>
<tr>
<td>2θ</td>
<td>2 theta degree</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Molarity</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Volume</td>
<td></td>
</tr>
<tr>
<td>Fe$_3$O$_4$</td>
<td>Magnetite</td>
<td></td>
</tr>
<tr>
<td>H_c</td>
<td>Coercivity</td>
<td></td>
</tr>
<tr>
<td>B_s</td>
<td>Saturation induction/saturation flux magnet</td>
<td></td>
</tr>
<tr>
<td>ρ_{xrd}</td>
<td>X-ray diffraction density</td>
<td></td>
</tr>
<tr>
<td>M_s</td>
<td>Saturation magnetization</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Molecular weight</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Avogadro’s constant</td>
<td></td>
</tr>
<tr>
<td>M_r</td>
<td>Remanence magnetization</td>
<td></td>
</tr>
<tr>
<td>Λ</td>
<td>Wavelength</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Hours</td>
<td></td>
</tr>
</tbody>
</table>
HCl Hydrochloric acid
NH₄OH Ammonia solution
Hkl Miller indices
Nm Nanometer
G Gram
Φ Magnetic flux
E Electromotive force (emf)
Oe Orsted
A Lattice constant
D d spacing
S Electron spin moment
L Electron orbital moment
Tc Curie temperature
K Magnetocrystalline anisotropy
V Voltage
Mo Spontaneous magnetization
Dp Critical diameter
c Critical size
SP Superparamagnetic
SD Single domain
MD Multi domain
FMNPₘ Ferromagnetic Nanoparticles
NP Nanoparticles
HRTEM High resolution transmission electron microscopy
J Journal
CHAPTER 1

INTRODUCTION

1.1 Background of the study

A ferrofluid is a colloidal dispersion of finely separated magnetic particles in a carrier fluid generally referred to as magnetic fluid or magnetic liquid. It is a functional liquid material which exhibits normal liquid behavior coupled with magnetic properties. In the presence of magnetic field or other fields such as centrifugal or gravitational field, the particles remain uniformly dispersed throughout the carrier liquid due to the unique properties (Chen et al., 2011). Thereby a synthesis of a “black material attracting itself” and “oxide ferrosiferrique” from FeO and Fe$_2$O$_3$ with “HO” was described by Mandel (2011).

A ferrofluid is a stable colloidal homogenous suspension of magnetic nanoparticles which have a diameter around of 10 nm in an appropriate carrier (Maity et al., 2006). According to a report by Rheinlander (2000), nanoparticles in a magnetic fluid showed distribution of magnetic and non-magnetic parameters like particle size.

1.2 History of ferrofluid

A ferrofluid was found in early 1960. Ferrofluid technology is still new at this moment. The NASA Research Center first discovered a ferrofluid in 1960’s. The initial work from Papell (1965) of the NASA Lewis Research Center on dilute magnetic dispersion in hydrocarbon was published in 1963 (Papell, 1965).

1.3 Historical overview of magnetite

The earliest magnetic material discovered by humans is magnetite. Magnetite is a naturally occurring as a magnetic ceramic (ferrite). Pieces of the mineral when brought near each other, would show attractive or repulsive force effects (Goldman, 1999). The mineral is believed to have been discovered in ancient Greece around 800 BC. The first application of magnets was found and used by the Vikings in compasses, in the ninth century, or perhaps even earlier.

The first scientific study of magnetism in magnetite known as De Magnet by William Gilbert was published in the year of 1600. After 200 years later, the new science of electromagnetism was developed through the work of physicists such as H. C. Oersted, A. M. Ampere, W. E Weber, M. Faraday, P. Curie, J. C. Maxwell and many others. During this time, researchers were starting to study material of a system which is the basic related to the basic of electromagnetic theory in general and crystal structures of the materials (Buchanan, 2004).
1.4 Magnetic nanoparticle

Soft magnetic nanoparticles are important material and used widely for a variety of technological application. Magnetite (Fe₃O₄) in the format soft magnetic nanoparticles that have been of they are major interests to many researchers because of being effectively used in ferrofluids, having magnetoresistance, exhibiting strong magnet property and generating low toxicity in biological and medical applications (Can et al, 2010).

1.5 Significant of study

Magnetite is important for producing ferrofluids which have particle sizes between 10-65 nm. There are many applications in of ferrofluids such as liquid seals in computer hardisks, friction reduction, magnetic domain observation and numerous optical and medical applications and for heat transfer in loudspeakers. In this research, ferrofluid is used in experimental attempts to produce electricity. The importance of using a ferrofluid is that it has the ability to be magnetized and demagnetized rapidly when entering and leaving a magnetic field region, thus yielding a significant magnetic flux change for electric induction.

1.6 Problem statement

This work attempts to produce a ferrofluid containing non-agglomerated magnetite nanoparticles. The nanoparticles are to be prepared in quantities more readily obtained and much greater than those produced by chemical, biological and biochemical methods. Thus high energy ball milling is the chosen method. The significant amount of nanoparticles in the ferrofluids is needed to show a proof of concept that such a ferrofluid can be used to generate electric current by induction.

1.7 Objective

In this thesis, the main objective is to prepare a magnetite-based ferrofluid containing magnetite nanoparticles by using mechanical alloying followed by a simple carrier liquid and nanoparticles mixing. Further, it is to be demonstrated that such a ferrofluid can generate electric currents. The work-step objectives of this research work are:

a) To prepare mono-dispersed, uniform and size controllable magnetite using mechanical alloying method.

b) To study in detail the effect of surfactant on magnetite particle size.

c) To investigate magnetic properties of magnetite nanoparticle.

d) To demonstrate how superparamagnetic particles can produce induced current.
1.8 Outline of the thesis

The thesis attempts to provide a good understanding of the structural, morphology and magnetic properties of nanostructured materials for the applications described above. Chapter 1 will focus on the general introduction about the research background, scope, problem statement and objectives of the study. Chapter 2 concerns the background and synthesis of magnetic nanoparticles and ferrofluids. Preparation of nanomaterials with other methods and related literature in view of preparation techniques together with characterization of magnetic nanoparticles were discussed as well. Chapter 3 focuses on the theoretical background which includes brief introduction to magnetism and the underlying chemistry of metals and alloys. Chapter 4 highlights the methodology of the study including materials, sample preparation and characterization methods applied. Chapter 5 deals with the results and discussion of measurement data of as-prepared samples and those after oleic acid coating. Chapter 6 summarizes the results and gives some suggestions for future work.
REFERENCES

