
 
 

UNIVERSITI PUTRA MALAYSIA 
 

MODELING SOLUTE TRANSPORT FOR IMPROVED FERTILISER 
USE IN RICE PRODUCTION SYSTEM 

 

 
 
 

   
 
 
 
 
 

ABDIKANI ABDULLAHI MO’ALLIM 
 
 
 
 
 
 
 
 
 
 
  

                    
     
      FK 2018 169 
 

  
 
 

   



© C
OP

UPMMODELING SOLUTE TRANSPORT FOR IMPROVED FERTILISER 
USE IN RICE PRODUCTION SYSTEM

By

ABDIKANI ABDULLAHI MO’ALLIM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, 
in Fulfillment of the Requirements for the Degree of Doctor of Philosophy  

June 2018 



© C
OP

UPM

COPYRIGHT 

All material contained within the thesis, including without limitation text, logos, 
icons, photographs, and all other artwork, is copyright material of Universiti Putra 
Malaysia unless otherwise stated. Use may be made of any material contained within 
the thesis for non-commercial purposes from the copyright holder. Commercial use 
of material may only be made with the express, prior, written permission of 
Universiti Putra Malaysia. 

Copyright © Universiti Putra Malaysia  



© C
OP

UPM

DEDICATION 

This thesis is dedicated to; 

My parents for their endless love and wishes for their son to achieve this higher 
dream, 

My two elder sisters, Naima and Hamdi Abdullahi, who has been supportive during 
my study, 

My sibilings, Decca, Abdikarim, and Abdiaziz Abdullahi, who have been a source of 
inspiration to me throughout my study. 



© C
OP

UPM

i 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 
of the requirement for the degree of Doctor of Philosophy 

MODELING SOLUTE TRANSPORT FOR IMPROVED FERTILISER 
USE IN RICE PRODUCTION SYSTEM

By

ABDIKANI ABDULLAHI MO’ALLIM

June 2018 

Chairman : Md Rowshon Kamal, PhD 
Faculty :   Engineering 

Quantification of water and nutrients and their interactions of a paddy field 
environment are crucial for the improved utilization of fertilizers for the sustainable 
rice production. Solutes runoff and leaching are two direct pathways of nutrient 
pollution from paddy fields to water resources systems. Due to the dynamic nature of 
paddy fields, solute transport and transformation process are complex and difficult to 
understand. The past investigation on the water balance components using 
multifarious parameters did not reflect the true condition of paddy field 
environments. Quantification of agrochemical losses from paddy fields are generally 
related to the amount of inflow and outflow water in the paddy field environment 
which yet to be measured accurately. In order to overcome the challenges, the 
modern monitoring devices together with sensors and data logging system were 
installed for intensive field observations in a paddy and developed empirical models 
to quantify the solute losses through the surface and sub-surface water leaving from 
a paddy field system for the better utilization of fertilizers (N, P, K). The intensive 
field investigation was carried out in a paddy plot at Sawah Sempadan compartment 
of the Tanjung Karang Rice Irrigation Scheme (TAKRIS) for two rice growing 
seasons (January-April and July-October) in 2017.   

Firstly, the water balance components in a paddy plot was analysed from the 
intensive field observations with 1-10 minutes interval of a paddy field. Water 
balance analysis results revealed that irrigation water accounted 59.6 % of the total 
water input (irrigation and rainfall) during the January to April (Off Season). 
However, about 76.2% of total water input during the July to October (Main season).
The amount of rainfall contributed to 23.8% and 40.4% of total water input in the 
main season and off-season, respectively. Drainage flow accounted 37.3% and 
43.7% of the total water input during off season and main season, respectively. The 
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daily evapotranspiration accounted 41.7% and 61% of total water input during off-
season and main season, respectively. Observed seepage and percolation of 17.1% to 
19.2% of total water input accounted during both seasons respectively. The yield of 
the experimental plot was obtained 2.5 t/ha and 2.7 t/ha for the off season and main 
season, respectively. Finally, the water productivity index was analyzed 0.72 kg m-3

during off-season and 0.78 kg m-3 during main season, respectively. 

Based on solute transport analysis, the accumulated total nitrogen (T-N) of 50.3% to 
49.7% estimated in the top 40 cm soil layer while 49.7 % to 53 % T-N as leachate 
obtained below 40 cm soil layer (40-100 cm) during off season and main season,
respectively. About 85% of N leaching losses were in the form of NO3-, however 
there was still a large quantity of NO3- remained below root zone that contributes the 
groundwater. The total leaching loss of T-N was 34.9 and 27.9 kg/ha during off and 
main seasons respectively. The estimated loss of total phosphorous during the two 
rice growing seasons were 3 and 1.7 kg/ha, respectively. The total amount of T-N, T-
P and K loss through drainage were 27.7 and 18.5, 2.2 and 1.1, 5.9 and 3.5 kg/ha 
during off-season and main season, respectively.  

The Hydrus-1D was applied to simulate water and solute movement under different 
soil depths of 20, 40, 60, 80 and 100 cm in real paddy environment experiments. The 
simulated and observed water flow and nutrient leaching were in good agreement 
(R2= 0.98, RMSE = 0.24). Hydrus-1D simulation showed the similar patterns of the 
water and solute movement under different soil depths during the study period. The 
observed and simulated N, P and K concentration in paddy was high due to 
fertilization and other climatic factors. Therefore, reduction of excessive fertilizer 
rate especially during early rice growing period and adaptation of water saving 
techniques can reduce the pollutant risks from paddy soil.  

Regression analyses were performed for the development of the improved fertilizer 
use models. Multiple linear regression analysis was performed to know the 
relationships between EC versus solutes (N, P and K) during the both seasons. The 
polynomial regression analysis was fitted to evaluate whether EC changes has an 
impact on N, P and K concentrations in paddy field. Finally, empirical models were 
established to estimate the concentrations of N, P and K using two rice growing 
season data. MS Excel solver program were used to develop the empirical models. 
The results obtained a strong agreement between observed and predicted N, P, and K 
with the determination coefficients (R2) of 0.91 and 0.95 during the both seasons. 
Therefore, the models could be useful in predicting the solute concentration changes 
within root zone and below root zone during entire rice growing season for better 
utilization of fertilizers. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah 

PERMODELAN PENGANGKUTAN BAHAN LARUT BAGI 
PENGGUNAAN BAJA YANG LEBIH BAIK DALAM SISTEM 

PENGELUARAN BERAS  
  

Oleh 

ABDIKANI ABDULLAHI MO’ALLIM

Jun 2018 

Pengerusi : Md Rowshon Kamal, PhD 
Fakulti : Kejuruteraan 

Kuantifikasi air dan nutrien serta interaksi mereka di dalam persekitaran padi adalah 
penting untuk penggunaan baja yang lebih baik bagi pengeluaran beras yang 
berkekalan. Bahan larut larian dan pengusaran adalah dua laluan langsung 
pencemaran nutrien dari sawah padi kepada sistem sumber air. Oleh kerana sifat padi 
yang dinamik, proses pengangkutan dan transformasi bahan larut menjadi kompleks 
dan sukar difahami. Penyiasatan lepas berkenaan komponen-komponen 
keseimbangan air menggunakan parameter yang pelbagai tidak mencerminkan 
keadaan sebenar persekitaran sawah padi. Kuantifikasi kerugian agrokimia dari 
sawah secara umumnya berkait dengan jumlah aliran masuk dan keluar air dalam 
persekitaran sawah padi yang belum diukur dengan tepat. Untuk mengatasi cabaran-
cabaran ini, alat pemantauan moden bersama-sama dengan sensor dan sistem 
pengelogan data dipasang untuk pemerhatian lapangan yang intensif di dalam padi 
dan model empirikal yang dibangunkan bagi mengira kerugian bahan larut melalui 
permukaan dan sub-permukaan air yang meninggalkan sistem sawah padi untuk 
penggunaan baja yang lebih baik (N, P, K). Penyiasatan lapangan intensif dilakukan 
di plot padi di kompartmen Sawah Sempadan, Skim Pengairan Padi Tanjung Karang 
(TAKRIS) untuk dua musim penanaman padi (Januari-April dan Julai-Oktober) pada
tahun 2017. 

Pertama, komponen-komponen keseimbangan air dalam plot padi dianalisis dari 
pemerhatian lapangan intensif dengan jarak masa 1-10 minit pada sawah padi. Hasil 
analisa keseimbangan air menunjukkan bahawa air pengairan menyumbang 59.6% 
daripada jumlah input air (pengairan dan hujan) dari Januari hingga April (luar 
musim). Walau bagaimanapun, kira-kira 76.2% daripada jumlah input air 
diperhatikan dari bulan Julai hingga Oktober (musim utama). Jumlah air hujan 
menyumbang kepada 23.8% dan 40.4% daripada jumlah input air pada musim utama 
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dan luar musim. Manakala air saliran menyumbang 37.3% dan 43.7% daripada 
jumlah input air semasa luar musim dan musim utama. Evapotranspirasi harian 
menyumbang 41.7% dan 61% daripada jumlah input air pada luar musim dan musim 
utama. Rembesan dan perkolasi sebanyak 17.1% kepada 19.2% diperhatikan 
daripada jumlah input air yang diambil kira dalam kedua-dua musim. Hasil dari plot 
eksperimentasi menunjukkan 2.5 t / ha dan 2.7 t / ha bagi luar musim dan musim 
utama. Akhirnya, indeks produktiviti air dianalisis sebanyak 0.72 kg m-3 semasa 
luar musim dan 0.78 kgm-3 semasa musim utama. 

Berdasarkan analisis pengangkutan bahan larut, jumlah nitrogen (TN) yang 
terkumpul sebanyak 50.3% hingga 49.7% dianggarkan dalam lapisan tanah sedalam 
40 cm manakala 49.7% hingga 53% TN bahan larut lesap diperoleh di bawah lapisan 
tanah sedalam 40 cm (40-100 cm) semasa luar musim dan musim utama. Kira-kira 
85% daripada kehilangan pengurasan N adalah dalam bentuk NO3-; namun, masih 
ada sejumlah besar NO3- yang kekal di bawah zon akar yang menyumbang air 
bawah tanah. Jumlah kehilangan pengurasan T-N adalah 34.9 dan 27.9 kg / ha 
masing-masing pada luar musim dan musim utama. Anggaran kehilangan jumlah 
fosforus selama dua musim penanaman padi masing-masing adalah 3 dan 1.7 kg / ha. 
Jumlah kerugian T-N, T-P dan K melalui saliran ialah 27.7 dan 18.5, 2.2 dan 1.1, 5.9 
dan 3.5 kg / ha semasa  luar musim dan musim utama. 

Hidrus-1D digunakan untuk mensimulasikan pergerakan air dan bahan larut di 
bawah kedalaman tanah yang berbeza dari 20, 40, 60, 80 dan 100 cm dalam 
eksperimen persekitaran padi sebenar. Aliran air yang disimulasi dan diperhatikan 
dan pengusaran nutrien adalah sepadan (R2 = 0.98, RMSE = 0.24). Simulasi Hydrus-
1D menunjukkan corak pergerakan air dan bahan larut yang sama di bawah 
kedalaman tanah yang berbeza semasa tempoh kajian. Kepekatan N, P dan K yang 
diperhatikan dan disimulasikan dalam padi adalah tinggi disebabkan faktor 
persenyawaan dan iklim lain. Oleh itu, pengurangan kadar baja yang berlebihan 
terutamanya semasa tempoh awal penanaman padi dan penyesuaian teknik 
penjimatan air dapat mengurangkan risiko pencemaran sawah padi. 

Analisis regresi dilakukan bagi pembangunan model penggunaan baja yang lebih 
baik. Analisis regresi linier berganda dilakukan untuk mengetahui hubungan antara 
EC dan bahan larut (N, P dan K) semasa kedua-dua musim. Analisis regresi 
polinomial dipasang untuk menilai sama ada atau tidak perubahan EC mempunyai 
kesan terhadap kepekatan N, P dan K dalam sawah padi. Akhirnya, model empirikal 
ditubuhkan bagi menganggar kepekatan N, P dan K menggunakan dua data musim 
penanaman padi. Program penyelesaian MS Excel digunakan untuk membangunkan 
model empirikal. Hasil kajian memperoleh persefahaman yang kuat antara N, P, dan 
K yang diperhatikan dan yang dianggarkan dengan koefisien penentuan (R2) 0.91 
dan 0.95 semasa kedua-dua musim. Oleh itu, model-model ini boleh dikatakan 
berguna dalam meramal perubahan konsentrasi bahan larut dalam zon akar dan di 
bawah zon akar sepanjang musim penanaman padi untuk penggunaan baja yang 
lebih baik. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background of the Research

Rice is the main food crop in Malaysia. Rice production of the country has achieved 
72% self-sufficiency level (SSL) with an annual production of 3.5 million tonnes a 
year (MOA, 2017). The Agriculture and Agro-based Industry Ministry targets the 
country to achieve a 100 percent self-sufficiency level (SSL) in paddy production by 
2020.  Irrigation is crucial to the world’s food grain production because 40% of all 
crops and close to 60% of cereal production comes from irrigated agriculture 
(Phogat et al. 2010), even though irrigated lands comprise only 20% of the arable 
land (FAO, 2004). In Asia, irrigated agriculture uses 90% of the total freshwater, and 
more than half of this irrigates rice. About 75% of the global rice volume is 
produced in the irrigated low lands (Cantrell 2004). There are an estimated 150 
million hectares of rice lands worldwide, 50% of which are irrigated, usually with 
continuous flooding for most of the crop season (Ghosh and Bhat 1998). In many 
irrigated areas, rice is grown as a monoculture with two rice crops every year. Global 
water and food security are one of the most important challenges in the 21st century 
to supply sufficient food for the increasing population while sustaining the stressed 
environment threatened by climate change. One of the main causes of land 
degradation is intensifying chemical fertilizer and pesticide usage (Bagheri et al. 
2008; Bala et al. 2014 and Jean et al. 2015). In addition, a policy implemented by the 
government in term of subsidies is one of the encouragement factors for paddy 
farmers to adopt chemical substance in paddy cultivation techniques. 

Rice production is one of the major non-point sources of fertilizers and pesticide 
pollution in Malaysia. Monitoring of these fertilizers and pesticide concentrations in 
river systems detected a number of chemicals commonly used in paddy fields, and 
these concentrations may appear to have adverse effects on the aquatic ecosystem. 
Most of the paddy fields are treated with fertilizers, herbicides, fungicides and 
insecticides which are applied during the crop season accordingly. Therefore, rice 
production is one of the major nonpoint sources of pollution. The typical paddy field 
in Malaysia is susceptible to fertilizers, pesticides and herbicides runoff since the 
chemicals are applied directly onto paddy water. Due to excessive use of chemicals 
in rice production in Malaysia compared to other Asian countries, it may presume 
that a significant amount of runoff along with fertilizers losses is occurring from 
paddy fields. Pesticides runoff losses from paddy fields range from a few percent to 
more than 50% of the applied amount depending on the water management (Maru, 
1991 and Sudo et al., 2002). Inao et. al. (2008) highlighted that it is important to 
develop and validate mathematical models adapted to paddies in the Asian region in 
order to establish a realistic assessment and management procedure for 
environmentally-friendly rice production. Therefore, water quantity and distribution 
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during the growing season is one of the key factors controlling crop growth and 
nutrients uptake in rice production. 

There is increasing pressure on primary producers to reduce the environmental 
impacts of agricultural production. However, agricultural crop production systems 
are inherently sprinkling with respect to nutrients. Therefore, the challenge to 
producers is to manage their crop production systems in order to minimize 
environmental losses of nutrients, while achieving crop yield and quality targets. 
Many strategies have been developed in recent years to meet this challenge (Zebarth 
et al., 2009). These include: development of new tools to measure crop N status in 
order to refine in-season fertilizer N management, development of new soil N tests 
to improve prediction of soil N supply, development of new fertilizer N products 
with release patterns more closely matched to crop N uptake patterns, and 
development of site-specific N management strategies. A number of studies 
highlighted that water contaminated by nitrate is not potable and at high 
concentrations can be a serious risk for human health (Al-Redhaiman 2000; Anjana 
and Iqbal, 2007). Moreover, the water industry must bear additional costs to remove 
nitrates from groundwater sources (Harris et al. 1992; Cameron and Schipper 2010). 
The detrimental impacts of nitrate loss from the soil have toxicological implications 
for animals and humans (Camargo and Alonso, 2006), and also on the environment 
leading to the eutrophication of freshwater (London, 2005), and marine ecosystems 
(Beman et al. 2005). In rice production, the mineral commercial fertilizers anhydrous 
ammonia, urea, ammonium sulfate and ammonium nitrate are commonly applied. 
They are particularly soluble for easy assimilation by crops. Both urea and ammonia 
are converted to nitrate at different rates depending on the nature of the soil and of 
the climatic conditions, thus leading to various loss mechanisms either by 
volatilization for ammonia or runoff for nitrate or urea after heavy rainfall and 
leaching into groundwater (Vitosh et al. 1995; Jarvis et al. 2011). The most effective 
ways of improving the efficiency of fertilizers (N, P and K) use in agricultural crop 
production is the matching the supply of fertilizers to the crop demand in both space 
and time. This can be achieved by supplementing the supply of fertilizers from the 
soil with the appropriate rate and form of fertilizers, at the right time, and at the right 
location. While the concept is simple, this is difficult to achieve in practice due to 
substantial variation in both crop demand and in soil supply of fertilizers across 
years and among and within fields. 

The increase in rice production can be achieved by efficient and good agricultural 
management practices, water and nutrient inputs. However, the use of conventional 
practice with poor management of plant nutrients and excessive fertilizer application 
will have a major impact in efforts to increase rice production in Malaysia. The 
importance of fertilizers for achieving increase crop production must be emphasized. 
Many rice varieties, particularly the high-yielding improved varieties currently being 
introduced into many traditional farming systems throughout the world, respond 
markedly to fertilization. When used in conjunction with good management practices 
(thorough land preparation, controlled irrigation, timely weeding) fertilizers can 
increase yields many times over. On the other hand, if used improperly fertilizers can 
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damage crops, waste money, or possibly lead to a dependence on scarce chemical 
inputs. 

Fertilizers are usually applied in Malaysia by conventional means. In paddy fields, 
the applied fertilizers, after dissolution, not only transport over and infiltrate into the 
soil, but also diffuse out and channel in all possible directions due to the transverse 
variation of water velocity and depth (Strelkoff et al. 2003). Deterioration of water 
quality in streams and lakes continues to be a significant issue in many counties 
(ICID, 2013). Causative factors include not only pollutants from various point 
sources but also those from non-point sources. The intensive use of agrochemicals 
for rice cultivation has been responsible for making paddy fields as a significant 
contributor of non-point source pollution. One of the most important factors 
contributing to this problem is the large amount of nutrients from non-point sources, 
especially agricultural paddy fields in which excessive chemical fertilizer application 
increases the concentration chemical loads (e.g. Nitrate nitrogen) in groundwater, 
which in turn results in the eutrophication of public water areas (Feng et al. 2004). 
Our understanding of nutrients/fertilizers transformation in paddy fields is limited 
due to complex interactions between soil, water, and biomass (Nakasone et al. 2004) 
and it is behavior in relation to plant growth in paddy soils has been extensively 
studied (De Datta, 1986). Therefore, forecasting hydrological pathways and 
pollutants (nutrient and pesticides) behavior in paddy soil appear to be crucial in 
order to define the specific management practices controlling non-point source 
pollution and preserving water resources (Tournebize et al. 2006). 

Water management is a difficult task for a large rice irrigation system. Different sub-
systems, such as soil, water, climate, nutrients, plant, management systems and their 
complex dynamics work in the paddy field environment. Furthermore, an individual 
irrigation scheme has its physical and unique characteristics. The effects of climate 
change are significant on water demand for irrigation that is continuously being 
aggravated by unsustainable practices like over-use of chemical fertilizers and poor 
water management. Excessive irrigation deliveries generate a huge amount of return 
flows containing fertilizers, insecticides, and pesticides from paddy fields in 
Malaysia. Eventually, drainage water from paddy fields loses the essential 
agrochemicals and pollutes the surface water resources. Poor and uneven water 
distributions were often criticized as the major bottleneck in attaining efficient water 
use in rice irrigation systems in Malaysia (JICA and DID, 1998; Rowshon et al. 
2009). Ramli et al. (2012) reported that the removal of fertilizers’ subsidy reduced 
rice production and the self-sufficient level (SSL) in Malaysia and overuse of 
agrochemicals results in serve environmental problems. Therefore, optimum 
application of fertilizers is crucial to minimize their loss and reduce environmental 
pollution. In this regard, reuse of drainage water has a potential to play a vital role in 
profitable rice production.  

Many endeavors have been made to define nutrient rates as ideas of economic 
advantages, including mass-balance (Scarf et al. 2006), economically ideal fertilizer 
rate (Neeteson and Wadman, 1987; Sawyer et al. 2006), maximum return to N 
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(Sawyer et al. 206) and information based ideal N compost (Zhu and Chen, 2002). 
Regardless, the vast majority of these suggestions addresses just site-specific ideal N 
rate. Such measures would be hard to reach out to a vast zone having distinctive rice 
assortments, environments, and cropping strategies. In addition, less consideration 
has been given as the measure of naturally ideal N rates. Our utilization of N manure 
has ended up far-reaching, bringing about serve natural issues (Chen et al. 2011). 
Hafeez et al. (2007) reported that rice production remained profitable despite high 
pumping costs to extract water from shallow tube wells for supplementary irrigation 
during dry seasons. In addition, small irrigation pumps owned by farmers can play 
an important role in capturing excess water that is drained from paddy fields to be 
reused in irrigation.  

Excessive water and fertilizer inputs have led to a series of environmental problems 
in agricultural production areas around the world. Identifying the fates of water and 
nutrients is crucial to develop best management strategies in intensive agricultural 
production systems (Liang et al. 2018). Leon and Kohyama (2017) suggested that 
controlling and predicting nutrient losses into subsurface and surface water is vital 
for evaluating the environmental impacts of rice cultivation. Nutrient loss 
mechanism is complicated and shows remarkably regional differences due to spatial 
heterogeneities of underlying surface conditions, climate and agricultural practices 
(Zhang et al. 2016a). The regional heterogeneities of climate, underlying surface 
conditions and agricultural management practices also result in the remarkable 
regional differences of nutrient losses. A large number of applications also existed in 
the studies of hydrology and environmental observations or simulations, such as 
univariate analyses of extreme events and dam regulations (Zhang et al. 2016b). 

Quantification of the amount of water used is very crucial for understanding and 
finding water use efficiency to an irrigation system level. Irrigation return flow 
consists of surface and subsurface flows. Water balance models, considering both 
components, can predict the return flow for re-use in paddy fields (Chowdary et al. 
2004). Several mathematical models are available to describe water balance and 
behaviors of nutrients and pesticides in flooded rice fields. Some models describing 
the fate of nitrogen in rice fields focus on various processes taking place in flooded 
water: PADDY (Pesticide Paddy Field Model) (Inao and Kitamura 1999), PCPF-1
(Pesticide Concentration in Paddy Field, v.1) (Watanabe et al. 2007), RICEWQ 
(Rice Water Quality) (Williams et al. 1999; Karpouzas and Capri, 2006), and 
PADDIMOD (Jeon et al. 2005), while others describe mass transport in flooded 
water and the soil underneath. Chung et al. (2003) developed GLEAMS-PADDY 
model to describe nutrient loading in surface water and groundwater bodies. 
Chowdary et al. (2004), developed and applied a simple model for assessing the 
concentration of nitrates in water percolating out of the flooded rice fields. 
Tournebize et al. (2006), developed a coupled model (PCPF-SWMS) for simulating 
the fate and behavior of pollutants in water and soil of paddy fields. In GLEAMS-
PADDY model, (Chung et al. 2003), N balance is separated into NH4-N and NO3-N
balance and applied to ponding water and underlying soil. PADDIMOD (Jeon et al. 
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2005), describes N balance as the total inorganic N without focusing on NH4-N and 
NO3-N balance separately.   

Through the literature, no study has been done yet in Malaysia for modeling solute 
transport for better fertilizer utilization towards improving water productivity and 
surface water pollution control in paddy fields. After application of fertilizers to the 
field, it dissolves, transports over the land surface and infiltrates into the soil by 
irrigation water. In deep soil layer, the HYDRUS-1D model can demonstrate 
appropriately the distribution of fertilizers through the gravitational one-dimensional 
flow (Tafteh and Sepaskhah, 2012). Numerical modeling has an important 
significance for improving fertilization methods (Abbasi et al. 2003) and reducing 
agricultural non-point source pollution attributable to improper fertilization 
(Bradford and Katopodes, 1998). Thus, it’s very important to establish an improved 
fertilizer use to the governmental authorities and farmers.  

1.2 Problem Statements

Food security is key global challenges. By 2050 the world will need to increase crop 
production to feed its projected 9 billion people (FAO, 2009). Climate change brings 
a serious impact on water resources, which affects the food security. Therfore, the 
rice production system must enable to respond to challenges posed by the effects of 
climate change on precious land and water resources. 

It is well understood that over fertilization is a major problem in intensive 
agricultural production areas, resulting in the enrichment of air, soil, and water with 
reactive nitrogen leading to the impairment of ecosystem functions. The over-
fertilization entails unnecessary economic expenditure for farmers. Nitrogen loss 
from agricultural fields is the main cause of eutrophication. Few studies have 
determined the efficiency of N use and loss of paddy fields (Yang et al. 2014) and 
fewer studies have focused under flooded condition (Kiran et al. 2010). The 
excessive N and P fertilizer use with decreasing fertilizer use efficiencies in 
agriculture has resulted in large amounts of N and P elements entering ambient water 
bodies and the atmosphere through various means (Xing and Zhu 2000; Yoshinaga 
et al. 2007; Ni et al. 2007; Li et al. 2008). Meanwhile, the transport of agro-
chemicals from paddy fields pollutes the lakes and streams which lead to harm 
human health.  

Due to the dynamic nature of paddy fields, N transport and transformation process 
are complex and difficult to understand. Quantification of water flow and nutrient 
losses in rice field becomes a challenge as rice is highly water and nitrogen 
demanding crop, thus, play key role for contributing pollutants in both surface and 
subsurface waters. In addition, rice field can lead a considerable nutrient loss by 
leaching under irrigated conditions and excess use of fertilizers. Indeed, no study is 
reported yet on this important aspect in Malaysia. Thus, this study focused to 
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develop the better fertilizer utilization for improving water productivity and surface 
water pollutant control.  

1.3 Aim and Objectives

The main objective of this study is to develop the improved fertilizer use model for 
rice production through the investigation of intensive water and solutes balance 
model integrated with 1-D solute transport numerical model. The specific objectives 
are: 

1. To analyze water balance components in modeling solute transports in 
growing paddy field. 

2. To estimate nutrients (N, P, and K) loads and water quality parameters from 
paddy fields to surface and subsurface water systems. 

3. To characterize the spatio-temporal dynamics of nutrients using the 
HYDRUS-1D numerical model in paddy fields, and 

4. To develop empirical models for the better utilization of nutrients in a rice-
production system using EC and fertilizer application date. 

1.4 Scope of the Study

This study focused on the modeling and development of improved fertilizer use for 
rice production under real paddy environment at Tanjung Karang Rice Irrigation 
Scheme (TAKRIS). An intensive investigation of water and solutes losses from 
surface and subsurface water throughout two consecutive rice-growing seasons was
conducted. It was also within the scope of the study to utilize Hydrus-1D model, 
calibrate and validate it with the aim of using the model to predict water and solutes 
movement under different soil depths in the experimental plot. Multiple and 
polynomial regression analysis were performed, and different empirical equations
were developed to estimate EC, T-N, T-P and K in the experimental plot. The main 
focus of the field experiments was the development of empirical equations to predict 
nutrient (N, P and K) concentrations at the surface, subsurface and drainage water 
for the better use of fertilizers. 

1.5 Limitations on the Scope of the Study

Although the study has achieved its objectives as set out, the following limitations 
on the scope of the study are highlighted. First, the major limitation of the study is 
that the field investigation has been carried out in a specific paddy plot for two 
seasons in a year only. Secondly, the validation was not possible due to the climatic 
variations between two rice growing seasons. Thirdly, the mainitaining the standing 
water depth was not possible in a single plot. Finally, only one set porous cup with 
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tube installed at different depths in a paddy field. It could be better if they would be 
installed at three different locations in the paddy field. 

1.6 Organization of the Thesis 

Chapter one focuses on the general introduction to the work, gives the statement of 
the problem, the objectives of the study, scope and limitation of the study and the
thesis outlined. Chapter two contains literature review which discusses challenges of 
rice production in Malaysia, estimation of water balance component analysis from 
paddy field, solute transport from agricultural fields, methods of reducing fate and 
solute transport from agricultural fields, in particular, paddy fields. It also contains 
different surface and subsurface models such as LEACHM, SWAP, PCPF, VS2DT 
and HYDRUS-1D to simulate water flow and agrochemical (N, P and K). Chapter 
three discusses the location, soil and climate conditions within the study area. It 
further describes the description of the experimental setup, sample collection, lab 
tests, estimation of water balance components, solute transport analysis, 
development of statistical models, and utilization of Hydrus-1D procedures. Chapter 
four comprises of the results obtained and their discussions. Chapter five contains 
the conclusions drawn from the entire work, the major research findings and the 
recommendations of the further studies. At the end, a short bio-data of the candidate 
and a list of publications from the study are presented.
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