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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 

of the requirement for the degree of Master of Science  

COMPUTATIONAL ANALYSIS OF DOUBLE ROTATING CYLINDERS 
FOR CONCEPTUAL DESIGN OF AN ESTOL, FIXED WING UAV 

By 

MOHD SHAHIDI BIN ALIAS 

May 2017 

Chairman :  Associate Professor Azmin Shakrine Bin Mohd Rafie, PhD 
Faculty :  Engineering 

Many efforts in Unmanned Aerial Vehicle (UAV) aerodynamic design 
technology led to a broad of additional applications. Magnus effect is the effect 
of moving airstream to the spinning ball or cylinder. Previous studies revealed 
the feasibility of Magnus effect on rotating cylinder producing lift which 
impacted an improvement of coefficient of forces. The studies have discovered 
the limitation of implementation caused by induced and parasite drag 
occurrences. These challenges addressed in this study to achieve the effect 
for lifting the body by mean of thinning the boundary layer of the air flow at the 
upper separation region of rotated cylinder. Accordingly, spin ratio, α and 
Reynold number, Re are the considerations in this study for optimization. The 
previous experimental and numerical data were used as a basis to 
conceptually design of an optimum rotating cylinder aerodynamic 
characteristics. 2D numerical is simulated using ANSYS FLUENT R15.0 to 
carefully examine for the coefficient of lift and drag while understanding the 
aerodynamic characteristics and flow field of the rotating cylinder surface 
body. Following the methodological approach as the evidences of the Magnus 
effect, Finite Volume Numerical Analysis method is used in this parametric 
study. Present work studied on Reynold number, 1 x 103 ≤ Re ≤ 5 x 105 and 
spin ratio ranging from 0 ≤ α ≤ 4.32 whereby the air velocity range within 3.65 

ms-1 ≤ U∞ ≤ 29.208 ms-1. Lift Coefficient, CL and Drag Coefficient, CD
determined in every stage analysis. The optimum CL based on the parametric 
study lead to the vital conclusion of concept design of ESTOL UAV fix wing 
application where the operating cylinders system are embedded inside the 
NACA airfoil. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Master Sains 

ANALISIS BERKOMPUTER SILINDER BERPUTAR UNTUK 
REKABENTUK KONSEP BAGI OPERASI UAV SAYAP TETAP 

Oleh 

MOHD SHAHIDI BIN ALIAS 

Mei 2017 

Pengerusi :   Profesor Madya Azmin Shakrine Bin Mohd Rafie, PhD 
Fakulti :   Kejuruteraan 

Banyak usaha dalam teknologi reka bentuk aerodinamik kenderaan udara 
tanpa pemandu (UAV) membawa kepada aplikasi tambahan yang luas. Kesan 
Magnus adalah kesan mengalir aliran udara ke bola berputar atau silinder. 
Kajian terdahulu mendedahkan kemungkinan kesan Magnus pada silinder 
menghasilkan daya angkat yang memberi kesan kepada penambahbaikan 
pekali daya. Kajian-kajian telah menemui batasan pelaksanaan yang 
disebabkan oleh seret teraruh dan seret parasit. Cabaran-cabaran ini 
ditangani dalam kajian ini untuk mencapai kesan untuk mengangkat badan 
dengan cara menipis lapisan sempadan aliran udara di kawasan pemisah atas 
silinder berputar. Oleh itu, nisbah putaran, α dan nombor Reynold, Re adalah 
pertimbangan dalam kajian ini untuk pengoptimuman. Data percubaan dan 
berangka terdahulu telah digunakan sebagai asas kepada reka bentuk secara 
konseptual bagi ciri-ciri aerodinamik silinder berputar yang optimum. 2D 
berangka disimulasikan menggunakan ANSYS FLUENT R15.0 untuk 
memeriksa dengan teliti pekali angkat dan seret sambil memahami ciri-ciri 
aerodinamik dan medan aliran badan permukaan silinder berputar. Berikutan 
pendekatan metodologi sebagai bukti kesan Magnus, kaedah analisis angka 
berangka terhingga (Finite Volume Numerical Analysis) digunakan dalam 
kajian parametrik ini. Oleh itu, kerja semasa yang dikaji pada nombor Reynold, 
1 x 103 ≤ Re ≤ 5 x 105 dan nisbah spin antara 0 ≤ α ≤ 4.32 di mana julat 
kelajuan udara dalam lingkungan 3.65 ms-1 ≤ U_∞ ≤ 29.208 ms-1. Pekali 
Angkat, CL dan Pekali Seret, CD telah ditentukan dalam setiap tahap analisis. 
CL optimum berdasarkan kajian parametrik membawa kepada kesimpulan 
penting reka bentuk konsep aplikasi sayap tetap ESTOL UAV di mana sistem 
silinder operasi dipasang di dalam lelayang NACA. 
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CHAPTER 1 

1. INTRODUCTION 

1.1 General Overview  

Era of World War 1, the Unmanned Aerial Vehicles (UAVs) or Drones have 
been developed up to this date and it was and is well proven that the UAVs 
capabilities to transmit the data to the real-time intelligence in battlefield and 
processing data information such surveillance and reconnaissance. While the 
combat type UAVs can perform communication relays, assets neutralized 
target designation, attacking by its inboard munition as well overviews battle 
information without risking any aircrew [1]. In 2003, the number of UAV used 
in military did not give so much impact in terms of quantity. However, it 
increased rapidly for reconnaissance operation with 32% unmanned aerial 
vehicles compare to 68% manned aircraft [2]. 

Irizarry, Javier in his research mentioned that Unmanned Aerial System (UAS) 
which is the center control of a few UAVs operation can perform tasks similar 
to those that can be done by manned vehicles, often faster and safer at lower 
cost. These systems are currently employed in border patrol, search and 
rescue, damage investigations during or after natural disasters (e.g. 
hurricanes, earthquakes, and tsunamis), locating forest fires or farmland frost 
conditions, monitoring criminal activities, mining activities, advertising, 
scientific surveys, and securing pipelines and offshore oil platforms [3]. This 
lead to frontline operation activities on utilizing UAVs for most organization and 
industry to enhance the efficiency, safety and reduce cost. Several countries 
under the purview of Department of Transportation are implementing the UAV 

for tracking highway construction projects and performing structure inventories 
to road maintenance, monitoring roadside environmental conditions as well as 
many other surveillance, traffic management or safety issues which justify the 
need of short take off distance UAVs.  

Helicopter as its name implies using rotor blades for vertically take off but have 
low efficiency for cruising in high speed and unable to fly in high altitude. Back 
in 2006, the Coast Guard acquired Bell Helicopter Textron’s Eagle Eye UAV 
as part of Deepwater Modernization program [1]. The cost of about 3 million 
USD, Eagle Eye takes off like a helicopter which is categorized as VTOL, but 
then tilts up its rotor to fly like a plane. Main task of extending the surveillance 
capability of cutters, the UAV can fly up to 113.178 ms-1 and 482.803 km 
operate radius. It is capable to patrol the U.S. coastline for drug smugglers, 
refugees and ships in distress, also transmit video and infrared images to the 
cutter and command centres ashore but yet costly in this era of economic crisis 
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for most country to be implemented. Furthermore, invented VTOL which is 
helicopter as an example rotary-wing configuration of interest its auto-gyro, 
which attempts to dispense with the transmission system of the helicopter in 
the interest of reducing complexity, but it suffers in that it cannot hover. 
However, it is able to fly considerably more slowly than can fixed wing aircraft.  

UAV now seeks the use of small, unprepared field even no field for the aircraft 
to take off and landing. Therefore, improvements have been made which 
concerning a few major factors affecting lift such thrust loading, wing loading 
and lift coefficient at take-off state that can be concluded as primary 
components of climb out are the function of thrust to weight ratio and lift-drag 
ratio. Therefore, the aircraft designed with short field take-off and landing 
capabilities required to have the ability to fly slowly [2].  

The conventional lifting surface of an aircraft, such as the wing of an airplane 
or the rotor of a helicopter are compulsory to have aerodynamically efficient 
shape that is called airfoil. An airfoil provides the lifting force when it interacts 
with a moving airstream or interaction of the airflow about it. The airfoils of 
some aircraft have more curvature on the top compare to its bottom and it 
depends on the speed that the aircraft can achieved; however most of the 
helicopter rotors and many high speed aircrafts use airfoil sections 
asymmetrically which provide greater pressure and velocity gradient. The 
movement of the air stream around the airfoil causes changes in the 
surrounding air pressure distribution to create lift. Another potential lift 
generator is Magnus effect of spinning cylinder with constant rotational rate 
while a turbulent flow moved through it [3]. It had been proven by several 
inventions of Magnus rotor wing aircraft in early 1920s but the developments 
has stopped in 1928 due to high cost [4]. However, researchers continues to 
develop fan wing aircraft which increase the lift coefficient but have difficulties 
of maneuvering in low speed and caused hard landing [5][6]. In 2012 to 2014, 
inventors have designed small sized aircraft named as rotor wing aircraft 
which used the concept of Magnus rotor wing in order to prove the flight 
feasibility by using the Magnus effect principle and the result were promising 
for take-off even landing in short distance (refer to Table 1.1), it can be 
concluded that there is still a gap of research to explained the used of spinning 
cylinder as good lift generator. The lacking can be recognized based on Table 
1.1 is the designs were not suitable for high altitude, high cruising speed, high 
endurance and stability. 
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Table 1.1 : Rotor Wing - Rotating Cylinder development activity from 
2012 to 2014  

 
Year Aircraft  Flight Prove / Result Descriptions 

2012 

  

Flettner – Rotoren 
Specification : 
1. Propeller driven 
2. No flight control 
3. Conventional 
airframe 

2013 

  

Rotorwing Flettner 
Monowing  
Specification : 
1.  Universal joint 
motor-propeller 
2. No flight control 
3. Y-frame 

2013 

  

Rotorwing Biconvex 
Savonius 
Specification : 
1.  Universal joint 
motor-propeller 
2. No flight control 
3. Y-frame 

2013 

  

Spinning Cylinder 
Wing (Rotor Wing - 
RC) 
Specification : 
1. Propeller driven 
2. With flight control 
3. Conventional 
airframe 

2014 

  

Magnus effect plane 
- Rotorwing 
Specification : 
1. Twin propeller 
driven 
2. No flight control 
3. Conventional 
airframe 

(Adapted from www.youtube.com) 
 
 
The research on rotating cylinder benefitted in many industries even country 
for the effect caused by the cylinder rotation through fluid, at specific spinning 
velocities with suitable Reynolds number, Re whereby achieving broader 
insight to maneuverability controllability and stability in lateral motion and 

http://www.youtube.com/
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longitudinal control for submarines and ships. As an inference, the rate of lifting 
is nearly independent due to angle of attack and angle of incidence, UAV 
maneuverability, controllability and stability which using rotating cylinder can 
be manipulated by the study of angular velocity, ω as well the involvement 
Reynold number, Re. In this work, the limitation of the current Magnus effect 
concept aircraft flight operation can be improved by analyses the optimum 
parameters focusing on incompressible airflow within suitable Reynolds 
number, Re, spin ratio, α and rotating cylinder speed. Therefore, the important 
of the gap in knowledge is the enhancement of the aerodynamic characteristic 
aligned with the needs of the UAVs to be able to operate for front-liner 
consumers. Therefore, the optimum parameters and significant variables 
which are in great concern is needed to be studied for improve current UAV 
operation to meet desired economical, efficient and safety compare to 
previous works and conventional type airfoils. 

1.2 Problem Statement 

Helicopter considered full prove for vertical take-off and landing operation 
however gave several disadvantages on its mechanical design simplicity, 
noise emission, stall potential whenever speed is concerned, lower cruising 
speed, unsafe for high altitude manure for power back operation and costly for 
production and maintenance [7]. UAV’s are designed with conventional airfoil 
section by its any surfaces to provide aerodynamic force when it interacts with 
a moving stream of air. Front-line UAV users currently demands on small 
airport, unprepared field or even un-field for having the technology [2]. 
Previous researchers had discovered the potential of S/VTOL for flight 
operation by introducing Magnus effect as lifting device. However, the 
technology limited with lower efficiency than existing propulsions and still at 
early stage [6]. Therefore, this work intended to fill the research gap by 
parametrically studied on the variables involve such as Reynolds number and 
spin ratio as well the effect of cylinder size, free air flow and focus air flow in 
order to suit and improve UAVs fixed wing application take-off and landing 
operation namely Extreme Short Take-Off / Landing (ESTOL) by using rotating 
cylinder as a main lifting devices and limited to fixed wing UAV. 

1.3 Research Objectives 

The objectives of this study is to assess practicality of using rotating cylinder 
for lifting purpose. Therefore a number of objectives need to be addressed 
which presented in the following: 
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1. To specify the design requirements for an ESTOL fixed wing UAV using 
rotating cylinders. 

2. To parametrically investigate the variables affecting the performance of 
rotating cylinders. 

3. To analyze the performance of the proposed design of double rotating 
cylinder for ESTOL fixed wing UAV. 

 
 
1.4 Scope of Study 

Study on the practicality in this research begins with the coefficient of forces 
either lift or drag created by Magnus effect using rotating cylinder with 
incompressible condition air velocity flown through the cylinder body. The key 
for achieving this are within the use of Reynold number, Re = 2.2 x 104, spin 

ratio, α = 1.54, rotational speed, Uθ = 718.67 rads-1 and the air velocity, U∞ = 
7 ms-1 where the air ideal gas at 1 ATM pressure with 15° temperature 

constitutes following properties with specific heat, CP of 1.005 x 103 JKg-1K-1, 

adiabatic coefficient, γ of 1.404, Prandtl number of 0.717, kinematic viscosity, 
ν of 1.466 x 10-5 kgm-1s-1 and Dynamic Viscosity, 𝜇 of 1.789 x 10-5 kgm-1s-1 and 

air density, 𝜌 of 1.225 kgm-3 are defined at constant in this work. NACA16015 
is considered have the advantages such as high pressure peaks with low drag 
at high speed but relatively low lift and relevant constant to carry out this study.   

The models validations were carried out by 2D numerical simulation using 
ANSYS FLUENT R15.0 and analyzed for the highest and lowest coefficient of 
lift produced throughout the significant variables using SPSS. Optimization of 
coefficient of forces were carried out numerically by several approaches on 
the effect of cylinder size as the concept will introduced a small scale cylinder 
size compared to experimental, free air flow where a wall block functioned as 
air flow restrictor for the rotated cylinder and focus flow whereby the air velocity 
flown focused closely to the rotated cylinder. Several potential configurations 
for enhancing approaches were identified which resulted the concept design 
of two rotating cylinders system inside airfoil.  

1.5 Thesis Outline 

Chapter 1 of the study begin with the general overviewing the aerodynamic 
characteristic for current UAV development. The overviews narrowed to the 
need of front line UAV users for short/vertical takeoff and landing. Magnus 
effect of rotating or spinning cylinder is an alternative to improve lift force. This 
chapter comprises with problem statement, research objectives and scope of 
study. 
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Chapter 2 presents a comprehensive literature review, starting with Airfoil 
Aerodynamic Characteristics and Configuration for aerospace and aeronautic 
application, Unmanned Aerial Vehicles (UAVs) developments, current 
technology and method for Short / Vertical Take Off and Landing (STOL/VTOL) 
aircraft, Magnus effect together with supported Kutta-Joukowski Lift Theorem. 
The need of popular tool for numerical analysis is also discussed in this 
chapter.  

Chapter 3 is the methodological approach for this study on the evidences of 
the effect of rotating cylinder as lifting device.  In this chapter, a process flow 
chart for this work is introduced. Besides that, a few significant parameters 
and variables are crucially studied whereby numerical model of validations and 
several approaches are important in order to optimize and enhance the result. 
Therefore, a step of developing the work is revealed in such way explaining 
the procedure and parametric study of carrying out the research to meet the 
objectives.  

Chapter 4 is the discussion on the obtained results. In this chapter, the initial 
discussion as to compare between previous work and present work carried 
out numerically. Results gained due the effect of several approaches carried 
in order to optimize the coefficient of forces. Furthermore, the final approaches 
as well the concept design of ESTOL for UAV fixed wing application also being 
discussed in this chapter.   

Chapter 5 provides the conclusion of this study by discussing the outcome of 
the research. Results gained in chapter 4 are summarized with further 
explanations for concluding this work. A conceptual design has been designed 
for meeting the objectives. Finally, a few of recommendations and 
improvements were suggested as a basis for future studies. 
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