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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the degree of Doctor of Philosophy 

 

DEVELOPMENT OF CONCENTRIC SEMI-AUTOMATED  MANIPULATOR 
FOR ASSEMBLY PROCESS 

By 

TAN KAI JIN 

August 2018 

Chair  : Tang Sai Hong, PhD  
Faculty  : Engineering 
 
 
This thesis is about the design, modelling and comparison studies on the 
concentric loading design used in a pneumatic manipulator. Pneumatic 
manipulator is one of the material handling system widely used in industries. 
Applications of pneumatic manipulator enable flexible facilities reconfiguration 
and tool sharing among various products. Existing design requires many 
components due to the mechanism design concept, which makes the size of 
the mechanism bulky and heavy. Several designs of powered assisted 
manipulator were studied. The working principle of the pneumatic manipulator 
complies with the equilibrium of the moment. Force to balance the lifted weight 
must be maintained constantly. Piston rod of the cylinder to apply force must 
be guided precisely in vertical and the relevant parts of the guide connected 
must be flexible. Concentric loading was designed with different mechanism 
concept required less components and fabrication parts but enabled the force 
from the cylinder to balance the working load and was applied vertically and 
constantly on a specified spot. Two nos. of ball rollers replaced 8 nos. of 
existing ball bearing side roller mechanism to reduce the cost and maintain the 
same functionalities. The integration of different parts into one part was studied 
and applied. Side plates were used as the guide for the side roller mechanism 
and as a support to the mechanism body.  Reduction of purchasing 
components and fabrication parts aim to reduce the maintenance cost and 
components inventory cost in a long run. Since some of the concepts of the 
mechanism were changed, some ball bearing rollers and fabrication parts to 
cover existing mechanism were not further required. An actual model of a 
pneumatic manipulator in industry which has a combination of a few 
manipulator design characteristics and available in the market was used as a 
case study. Comparison studies between this selected model of the pneumatic 
manipulator and a concentric loading design pneumatic manipulator were 
carried out.  Simulation on the concentric loading mechanism was done to 
avoid potential problem before the prototype was built. 
 



© C
OPYRIG

HT U
PM

ii 
 

Overall, the results showed a 28% reduction in weight of the manipulator 
mechanism body, 8.9% to 32% reduction of size in width, length and height of 
the manipulator mechanism body and a 39% reduction in cost of the manipulator 
mechanism body. Fabrication parts of manipulator mechanism body were 
reduced from 48 pieces to 20 pieces. A prototype was built to test on the 
functionality of the concentric loading mechanism. Detail drawings of the 
prototype were then created and send for fabrication. Standard components 
were purchased. A pneumatic controlled circuit was developed to operate the 
prototype. Several observations on the concentric loading mechanism were done 
during the prototype mechanism testing. The working condition of the concentric 
loading mechanism was recorded and discussed. It showed that the mechanism 
of the prototype working well and proved that concentric loading mechanism 
meet the requirement of moment concept and able to lift and balance the lifted 
load. The transition of the balancing mechanism was smooth. Other observations 
were discussed for future studies. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

 

PEMBANGUNAN DAYA PEMUSATAN SEMI-AUTOMASI MANIPULATOR 
UNTUK PROSES PEMASANGAN 

Oleh 

TAN KAI JIN 

Ogos 2018 

Pengerusi : Tang Sai Hong, PhD 
Fakulti  : Kejuruteraan 
 
 
Tesis ini adalah mengenai reka bentuk, pemodelan dan kajian perbandingan 
mengenai reka bentuk daya pemusatan yang digunakan dalam manipulator 
pneumatik. Manipulator pneumatik adalah salah satu sistem pengurusan 
bahan yang digunakan secara meluas dalam industri. Aplikasi manipulator 
pneumatik membolehkan konfigurasi kemudahan dan perkongsian alat yang 
fleksibel di antara produk berbeza. Reka bentuk manipulator yang sedia ada 
memerlukan banyak komponen kerana konsep reka bentuk mekanisma 
menjadikan saiz mekanisma manipulator besar dan berat. Beberapa jenis reka 
bentuk manipulator berkuasa telah dikaji. Prinsip kerja manipulator pneumatik 
mesti mematuhi konsep keseimbangan momen. Daya untuk mengimbangi 
berat bahan yang diangkat mesti dikekalkan secara berterusan. Omboh piston 
silinder untuk memindah daya mesti dibimbing dengan tepat secara menegak 
dan bahagian panduan yang berkaitan mestilah fleksibel. Daya pemusatan 
adalah konsep mekanisma yang berbeza dimana ianya memerlukan kurang 
komponen dan bahagian fabrikasi tetapi membolehkan daya dari silinder kekal 
secara menegak dan sentiasa menuju di pusat titik tertentu untuk mengimbangi 
beban kerja. Dua biji bola penggelek digunakan untuk menggantikan lapan biji 
bebola mekanisma yang sedia ada untuk mengurangkan kos dan mengekalkan 
fungsi yang sama. Integrasi bahagian-bahagian yang berlainan ke dalam satu 
bahagian dikaji dan diterapkan, plat sisi digunakan sebagai panduan untuk 
mekanisma penggelek sisi dan sebagai sokongan kepada badan mekanisma.  
Pengurangan pembelian komponen dan bahagian fabrikasi bertujuan untuk 
mengurangkan kos penyelenggaraan dan kos inventori komponen dalam 
jangka panjang. Memandangkan beberapa konsep mekanisma telah berubah, 
beberapa penggelek galas bebola dan bahagian fabrikasi untuk menampung 
mekanisma sedia ada tidak diperlukan lagi. Model sebenar manipulator 
pneumatik dalam industri yang mempunyai kombinasi beberapa ciri reka 
bentuk manipulator dan sedia ada di pasaran digunakan sebagai kajian kes. 
Kajian perbandingan antara model manipulator pneumatik ini dan manipulator 
pneumatik reka bentuk daya pemusatan telah dijalankan. Simulasi pada 
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mekanisma daya pemusatan telah dilakukan untuk mengelakkan masalah 
yang mungkin berlaku sebelum prototaip dibina. 

Secara keseluruhannya, hasil kajian menunjukkan pengurangan sebanyak 
29% keatas berat badan mekanisma manipulator, 8.9% hingga 32% 
pengurangan saiz untuk lebar, panjang dan ketinggian badan mekanisma 
manipulator dan 39% pengurangan kos untuk badan mekanisma manipulator. 
Bahagian fabrikasi mekanisma manipulator dikurangkan dari 48 keping hingga 
20 keping. Sebuah prototaip telah dibina untuk menguji fungsi mekanisma 
daya pemusatan. Lukisan terperinci prototaip pembuatan telah dibuat dan 
dihantar untuk fabrikasi. Komponen standard manipulator yang diperlukan 
telah dibeli untuk pemasangan. Litar kawalan pneumatik telah dibangunkan 
untuk mengendalikan prototaip. Beberapa pemerhatian mengenai mekanisma 
daya pemusatan telah dilakukan semasa ujian ke atas mekanisma prototaip. 
Keadaan mekanisma daya pemusatan semasa ujian dijalankan telah 
direkodkan dan dibincangkan. Ia menunjukkan bahawa mekanisma prototaip 
berfungsi dengan baik dan membuktikan bahawa mekanisma daya pemusatan 
memenuhi keperluan konsep keseimbangan momen dan dapat mengangkat 
dan mengimbangi beban yang diangkat. Peralihan mekanisma pengimbangan 
adalah lancar. Kajian masa depan untuk lain-lain pemerhatian telah 
dibincangkan. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background of the Study 

In the next 10 or 20 years, there are five challenges that most industry will face 
especially those with low volume but high variety of product which are 
globalization, product differentiation, product development, supply chain 
restructuring and marketing & distribution (Booz and Hamilton, 1999).  

The changes of global, skilled labour, technologies (Sachin and Chaudhari, 
2010), individualization etc. challenge the manufacturers to meet the market 
expectations (Andreas et al., 2004). Higher demands of customer preference, 
implement of new act on the safety standard, environmental awareness (Stefan 
et al., 2008), competitiveness among competitors etc. are as a result of the 
existing automation facilities which may not flexible, cost effective or to be fully 
relied on (Nagabhushana, 2008).  

According to the study by Spencer Stuart’s consulting firm, maintaining a 
flexible production system could position an organization to respond quickly to 
shifts in global demand (Simonei et al., 2006). Flexible automation with minimal 
life cycle cost of manufacturing (Martin et al., 1999) increases variant of 
product and reduce time to market (Gudrun, 2010). Flexible assembly line 
becomes a key success factor for OEM to react quickly to customized 
customer demands (Andreas et al., 2004).  

Robots arms is one of the flexible solution but classification is only valid for 
large companies as reprogrammed and reconfigured robots are often relied on 
and performed by specialized technicians and automation experts (Germano, 
et al., 2012). The use of industrial robotics in the manufacturing industry 
enhance process efficiency (Behzad et al., 2016). More and more robots arm 
applications are implemented in manufacturing plant. However, investing in 
industrial robots always involved a huge amount of cost and skilled worker 
training (Martin et al., 2005). The percentages of adopters and the automation 
intensity ratios are much higher in the group of high technology manufacturing 
industries (Angel, 1995). The lifecycle of a product is getting shorter, rapid 
changes of model in order to compete in the market cause the changes of 
customer preferences (Neil, 2011). Thus, investing in industrial robot system 
may not be a cost effective solution. 
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Machines possess high accuracy, consistency in job repeatability but limited 
intelligence mental capability. Human consistencies are low but human 
possess high degree of intelligence and are capable to solve sudden problem 
(Craig, 1993). Besides, human can be affected by hazardous environment and 
subjected to fatigue (Dianne et al., 2006). 

The reasons for high degree of manual assembly operations which can be 
found in industries are high demands on the availability, flexibility of assembly 
systems and complex assembly operations (Feldmann et al., 1999). There are 
still many jobs which involves visual inspection and repetitive jobs where 
manual assembly is more preferred. The advantages are hand tools required is 
simple, less costly, and has higher toleration on the variation of part 
dimensions (Hugo et al., 2010).  

Automation becomes a more expensive proposition as the volume of the 
products produced decreases and increase in the product variety (Vijay et al., 
2006). A balanced combination of manual and automated processes as shown 
in Figure 1.1 is more practical to increase flexibility, reduces manufacturing 
costs, provides high quality and throughout (Igor and Oliver, 2008). One of the 
design processes in successful flexible manufacturing system implementation 
is material handling system design (Michael et al., 1993). Material handling 
system plays an important role in enhancing the flexibility of manufacturing 
system (Behzad et al., 2016). Powered assisted manipulator combines concept 
of amplifying operator’s capacity of lifting load and prevent operator suffering 
from accidents and injuries (Pablo Gonzalez et al., 2010) due to repetitive job 
while maintaining the flexibility of various product handling. 

 

 
 
Figure 1.1: Graph of Cost Versus Level of Automation 
(Source: Igor and Oliver, 2008)
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1.2 Problem Statements 

Pneumatic manipulators have been widely used in industry nowadays to assist 
human in handling and transferring products. It helps reduce manpower for 
moving products and material; handling of heavy products without requiring 
strong physical and working in an ergonomic way for repeated task. 

Due to the mechanism design concept of pneumatic manipulator, the existing 
designs of the pneumatic manipulator mechanism require components for the 
mechanism to be working which may be unnecessary. An integral construction 
of one part is preferable (Wolf gang and Karl-H., 1994). By consolidating few 
parts of an existing assembly into one part eliminates the assembly time and 
reduce the inventory costs (Thompson et al., 2016). The design of load 
engaging mechanism coupling applied in electronic air regulation controlled 
pantographic linkage manipulator by Cary and Stephen (1995) was complex 
whilst Bronislav Vatel (1993) had a relatively simple design. However, more 
than double in space is required in vertical for the cylinder for a specified stroke 
and higher stiffness beam was required for the structure for the cylinder’s 
weight to sit on the end of the manipulator arm. 

The design should be made to be mechanism parts integrated with support to 
itself to reduce support structure build up (Hällgrena et al., 2016). An integrated 
product design aims for potential lightweight design in realized product (Ross et 
al., 2016). These additional components lead to the design of the manipulator 
body large space occupied and heavy. A reduction of 54% in parts count 
shows a reduction of 22% in weight in general (Robert, 2012). 

These indirectly increase the cost and time of manufacturing and difficulties of 
assembly. When parts count increase, more operations, fabrication and 
assembly steps are involved (Selvaraj et al., 2009). 

Maintenance plays an important role in keeping product availability, reliability 
and quality at appropriate level (Mahmood and Stefanka, 2013). Design and 
manufacturing decisions must be made by considering the costs of operation 
and support for the system (Amit and Ming, 1998). Unnecessary moving parts 
and expensive spare parts should be avoided (Vaneker and Diapen, 2016). 
Pablo Gonzalez de Santos (2010) used AC motors controlled joint actuator, 
PID controlling boards; PCI bus based I/O boards and controllers in 
manipulator controlled instead of pneumatic which resulted in higher 
development cost. In long term, the cost of maintenance will increase as well 
due to high number of parts and components to be maintained and availability 
of spare parts inventory (Helio Fiori and Katia, 2006).  

In conclusion, the mechanisms of most of the existing manipulator are too 
complex and consist of many parts and components. There is potential to 
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reduce approximately up to 54% of this parts count that will further lead to 
optimize the layout space of the manipulator mechanism body. Reduction of 
standard purchased components further reduce the manufacturing cost of the 
manipulator and the inventory cost to keep these spare parts. The aims of the 
end study are to reduce 22% of the mechanism body weight, average of 20% 
to 30% reduce in size of the mechanism body and 54% reduce of the 
components and parts of the manipulator mechanism body. 

 
1.3 Objectives 

The aim of this project is to improve market available manipulator by 
developing a concentric loading semi-automated manipulator system for 
assembly process, simulate the model, build and test a scaled down prototype 
of the pneumatic manipulator system. The aim can be achieved by fulfilling few 
objectives below to reduce the cost, size and weight of the pneumatic 
manipulator: 

(1.) To design a force transmission mechanism applied in pneumatic 
manipulator, 

(2.) To analyse the force transmission mechanism of manipulator, 
(3.) To fabricate and build a scaled down prototype, and 
(4.) To verify the lifting mechanism using the prototype. 

1.4 Scopes 

Design and develop semi-automated pneumatic manipulator for tools handling, 
lifting and transferring in manufacturing industry. The manipulator should be 
operated at the limit of maximum 60kg lifting force under minimum 0.5MPa to 
maximum of 1.0MPa of pneumatic air pressure supply. The horizontal reach 
from the centre of the manipulator column to end effector should be 
approximately 2600mm and the maximum lifting stroke is at 1200mm 
(Karmegam et al., 2011). 

The design of the manipulator mechanism focuses on the alternative 
mechanism design with fewer components to replace the existing mechanism. 
Feasibility study was carried out on the layout of the new mechanism design in 
order to minimize the mechanism body. Functional parts integration study was 
carried out in order to achieve reduction in manufacturing cost, assembly time 
and procedure by reducing the number of parts in the existing mechanism. 
Identified and reduce purchased of components in existing mechanism to 
reduce the maintenance cost and components inventory in future.  

Develop a scaled down prototype of pneumatic manipulator for physical lifting 
and operation testing. The prototype structure was designed to carry a 
maximum of 6kg lifting. Most of the parts were formed by standard sizes of 
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plate, sheet metal, round bar and structural steel. Air pressure of a maximum 
0.45 MPa was considered so that pneumatic system should not be able to 
perform lifting of more than 6kg work piece loading before manipulator 
structure come to a failure. A simple pneumatic circuit was designed in order to 
run the prototype for testing.  

 
1.5 Thesis Organization 

The first part of this chapter is the study of the background, history and 
applications of powered assisted manipulator. Chapter 2 introduces the types 
of manufacturing flexibility and various design of the powered assisted 
manipulator. Chapter 3 describes the steps of methodology. Chapter 4 explains 
the design of the concentric loading, development of the prototype and lifting 
test on the prototype. Chapter 5 discusses the results and summary. 
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