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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfilment of the requirement for the degree of Master of Science

FORCED CONVECTION BOUNDARY LAYER SLIP FLOW OVER
A PLATE IN DARCY-FORCHHEIMER POROUS MEDIUM

By

SHAHIRAH BINTI ABU BAKAR

December 2014

Chair: Norihan Md Arifin, Ph.D.

Faculty: Institute of Mathematical Research

The boundary layer flows play a central role in many aspects of fluid dynamics
since they describe the motion of a viscous fluid close to the surface. The forced
convection can be enhanced passively by changing flow geometry, boundary con-
ditions or by enhancing thermal conductivity of the fluid. A mathematical mod-
eling of forced convection boundary layer flow over a plate in Darcy-Forchheimer
porous medium is performed in this thesis. The aim of this thesis is to analyze
the effects of velocity and thermal slips, chemical reaction with MHD (magneto-
hydrodynamics) and stagnation-point flow over shrinking sheet. The governing
partial differential equations are transformed into ordinary differential equations
by similarity transformation, which is then solved numerically using shooting
method in MAPLE 15 software. The characteristics of the flow and heat trans-
fer features for various of parameters are discussed and analyzed in detail. We
found that the heat transfer increases with increasing permeability and velocity
slip parameters but it decreases with increasing thermal slip parameter whereas
the skin friction decreases with increasing velocity slip. Our analysis also reveals
that the increase of the velocity slip parameter reduces the momentum boundary
layer thickness and also enhances the heat transfer from the plate.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk Ijazah Sarjana Sains

ALIRAN OLAKAN PAKSA PADA SLIP LAPISAN SEMPADAN
YANG MELINTASI PLAT DI MEDIUM BERLIANG

DARCY-FORCHHEIMER

Oleh

SHAHIRAH BINTI ABU BAKAR

Disember 2014

Pengerusi: Norihan Md Arifin, Ph.D.

Fakulti: Institut Penyelidikan Matematik

Aliran lapisan sempadan memainkan peranan yang penting di dalam bidang di-
namik bendalir kerana gerakan bendalir likat yang berdekatan dengan permukaan.
Olakan paksa boleh dipertingkatkan dengan mengubah aliran geometri, syarat
sempadan atau meningkatkan kekonduksian terma di dalam bendalir. Sebuah
model matematik bagi aliran lapisan sempadan olakan paksa yang melintasi plat
di dalam medium berliang Darcy-Forchheimer telah ditunjukkan di dalam tesis
ini. Tujuan utama tesis ini adalah untuk menganalisa kesan-kesan gelincir ha-
laju dan terma, tindak balas bahan kimia dengan MHD (Magnet-Hidrodinamik)
dan aliran titik genangan pada lapisan mengecut. Persamaan menakluk pem-
bezaan separa kemudian dijelmakan kepada persamaan pembezaan biasa dengan
menggunakan penjelmaan keserupaan yang kemudiannya diselesaikan secara be-
rangka dengan kaedah tembakan dengan perisian MAPLE 15. Ciri-ciri aliran dan
sifat-sifat pemindahan haba untuk pelbagai parameter telah dianalisa dan dibin-
cangkan secara terperinci. Kami mendapati bahawa pemindahan haba meningkat
dengan peningkatan parameter kebolehtelapan dan gelinciran halaju tetapi ia
berkurang apabila parameter gelinciran terma meningkat manakala geseran kulit
berkurang apabila gelinciran halaju meningkat. Analisis kami juga menunjukkan
bahawa peningkatan parameter gelinciran halaju akan mengurangkan ketebalan
lapisan sempadan dan juga meningkatkan pemindahan haba daripada plat.
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CHAPTER 1

INTRODUCTION

1.1 Convection

Convective is the movement caused within a fluid by the tendency of hotter and
therefore less dense material to rise, and colder, and denser material to sink under
the gravity influence which results in heat transfer. In regular concept, convec-
tion is the concerted movement of collections of molecules within fluids, gases or
rheids. Convection is usually known as the heat transfer form of dominant in
liquids and gases. A good model of convection is when a Bunsen burner produces
a heat source and placed it at any side of a glass full of a liquid, thus it will
resulting a different levels of heat in the glass.

Two types of convections that are most commonly known are convective mass
transfer and convective heat transfer. Convection of mass transfer cannot take
place in solid directly since neither bulk current flows nor significant diffusion
can take place in solids; however, diffusion of heat can take place in solids but is
referred to separately in certain case as heat transfer. The dominant contribution
for convection is due to the bulk, or gross, motion of fluid particles.

Convective heat transfer may be distinguished into two types: i) free or natural
convection; and ii) forced convection. The combination of natural convection and
forced convection known as mixed convection. The general concept of natural
convection is a mechanism in which the fluid motion is not generated by any
external sources but only by density differences in the fluid occurring due to tem-
perature gradients. The heated fluid (at the bottom boundary) that received heat
becomes less dense and rises. Forced convection occurred when a fluid is forced
to flow over a surface by an external source and creating an artificially induced
convection current. External sources may be classified as by using pump, suction
device, fan, etc. These uses of external sources will provide high-velocity fluid
(gas or liquid). The high-velocity fluid results in a decreased thermal resistance
across the boundary layer from the fluid to the heated surface.

Forced convection is generally used to increase the rate of exchange heat. Many
types of mixing utilized forced convection to distribute one substance within an-
other. Forced convection also occurs as a by-product to other processes such
as the action of propeller in a fluid or in aerodynamic heating. Other familiar
examples of forced convection are fluid radiator systems and blood circulation in
the body system which took an effect in heating and cooling of certain parts.
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Forced convection also can exist in natural meaning that when the fire heat causes
bulk air flow and air expansion. In microgravity, the heat rate along with diffu-
sions is able to generate and draw in fresh oxygens to maintain them. However,
some types of forced convection are more efficiency than natural convection as
they are not limited by natural mechanisms. For example, a convection oven gen-
erates by forced convection will rapidly circulate forces heat of hot air into food.
This process is faster than natural convection due to simple heating without the
fan.

In addition, internal and external flow can also be classified as convection. In-
ternal flow occurs when a fluid is close to a solid boundary layer such as when
flowing through a pipe while external flow occurs when a fluid extends indefinitely
without encountering a solid surface. Both of forced and natural convections can
be external and internal because they are generally independent of each other.

1.2 Boundary Layer

The boundary layer concept was introduced by Prandtl (1904) to describe the
shallow fluid domain that adjoins the solid wall bathed by the flow, as mentioned
by Anderson Jr (2005). His study simplifies the fluid flow equations by divid-
ing the flow field into two areas: one dominated by viscosity and creating the
majority of drag experienced by the boundary body inside the boundary layer;
and another one where viscosity can be neglected without significant effects on
the solution at outside the boundary layer. In physics and fluid dynamics study,
a boundary layer is the layer of fluid in the immediate vicinity of a bounding
surface where the effects of viscosity are significant. The existence of the heat
transfer from and to a body also takes place within the boundary layer, again
allowing the equations to be simplified in the flow field outside the boundary layer.

The analysis of convection heat transfer consists of recognizing the boundary
layer regime which is identified to three types: i) laminar; ii) transition; or iii)
turbulent. Generally starting as a laminar flow, the boundary layer will thick,
and undergoes transition to turbulent and then continues to develop along the
body surface.

The velocity of the boundary layer thickness can be explained as the distance
from the solid body at which the viscous flow velocity is closed to the inviscid
flow of the surface velocity. In addition, displacement thickness is an alternative
definition stating that the boundary layer occurs a deficit in mass flow compared
to inviscid flow with slip at the wall. It is the distance and gap where the wall
should have to be displaced in the case of inviscid to give the same total mass
flow as the viscous case. However, boundary condition without slip requires the
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velocity flow at the solid object surface to be total zero and the fluid temperature
can be equalize to the boundary surface temperature. The flow velocity will then
enhance rapidly towards the boundary layer.

The thickness of thermal boundary layer can be identified as the distance and
gap from the body where the temperature is near to the temperature found from
an inviscid solution. For a simple explanation, the ratio of the two thicknesses
is governed by the Prandtl number, Pr, which is explained in detail in Chapter
3. If the Prandtl number is 1, thus the two boundary layers are having the
same thickness. If the Prandtl number is less than 1, which is the case for air
at standard conditions, the thermal boundary layer is thicker than the velocity
boundary layer and if the Prandtl number is greater than 1, thus the thermal
boundary layer is thinner than the velocity boundary layer.

1.3 Darcy-Forchheimer Porous Media

A porous medium, or also known as porous material, is a metal containing pores or
voids, and basically the pores are filled with fluid. The skeletal material is usually
a solid, but structures like foams are often also usefully analyzed using concept
of porous media. Extremely small voids are called molecular interstices and large
voids are called vugs or caverns. Pores, e.g. intergranular and intercrystalline,
are intermediate sizes between caverns and molecular interstices. Nowadays, fluid
flow in porous media is of considerable interest in many areas such as petroleum,
environmental and groundwater hydrology, reservoir engineering in connection
with thermal recovery process, etc. Accurate description of fluid flow behavior in
the porous media is essential to the successful operation and design of projects
in these areas.

Generally, Darcy’s law is used to depicts the fluid flow behavior in a porous me-
dia due to pressure gradients as mentioned by Rajagopal (2007). According to
Darcy’s law, the pressure gradient is linearly proportional to the fluid velocity
in a porous media as stated by Zeng and Grigg (2006). In most porous medium
study, the pores are typically very small and the changes of velocity across the
pores throat are mostly negligible, thus the term non-Darcy is used in place of
inertial effects parameter.

Inherent in the development of the Darcy flow model can be made as following
assumptions:

1. Darcy’s law assumes laminar or viscous flow, where it does not involve in
inertia term. This implies that the acceleration forces or inertia in the fluid
are being neglected when compared to the Navier-Stokes equations.
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2. Darcy’s law assumes a large surface area is exposed to fluid flow in porous
medium, hence the viscous resistance will greatly exceed acceleration forces
in the fluid, unless if turbulence is set in.

The Darcy equation is an empirical relationship based on experimental observa-
tions of one-dimensional water flow through packed sands at low velocity. By
this, the limitation of Darcy’s law have longer been recognized and an accepted
approach has been to use Forchheimer’s equation, and it’s inertial flow parameter
had been used as an extension of Darcy’s law beyond the region of linear flow. It
is well known that when the velocity increases, the flow enters a non-linear lami-
nar regime and the porous inertial effects are no longer negligible as explained by
Shenoy (1993). Due to many researchers attempt have been made to correct the
Darcy equation, Forchheimer (1901) introduced a square velocity term in addition
to the Darcian velocity term for this effect which then Muskat (1946) called the
theory as Forchheimer term. Forchheimer term can be explained as inertial term
that added to Darcy’s equation. This term is able to account for the pressure
difference non-linear behavior and velocity data. Hence, in this preceding study,
the focus is on the important and relevant Darcy-Forchheimer flow model.

1.4 Permeable Surface (Suction and Injection)

Suction or injection (blowing) of a fluid through the bounding surfaces can signif-
icantly change the flow field and hence, affects the rate of heat transfer from the
surface. For a better concept, suction tends to enhance the heat transfer and skin
friction coefficients while injection acts to decrease both coefficients (Al-Sanea,
2004). The flows with the presence of suction and injection have some interesting
features; for example, when suction is large, the breaking of the secondary flow
into loops is obliterated. While when suction is small, every streamline will start
at the inner sphere and ends up at the outer sphere.

Suction also can cause a fluid or solid to be drawn into an interior space or to
adhere a surface because of the difference between the internal and external pres-
sures. A force acting on a fluid caused by the difference in the pressure of internal
and external regions and tends to make the fluid flow from the higher pressure
region to lower pressure region. The pressure gradient between this region and
the ambient pressure will propel towards the lower pressure area, and produce a
partial vacuum by the removal of air in order to force fluid into a vacant space
of procure adhesion. One application of suction in technology nowadays is the
usage of suction in pump or fan where the act of reducing pressure is to create
such a force.

Injection can be explained when the pressure energy of a fluid is converted to
velocity energy which creates a low pressure zone that draws in and entrains a
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suction fluid. When an injection passed by the injector, the mixed fluid expands
and reduced the velocity which then resulting in recompressing the mixed fluids
by converting back the velocity energy to pressure energy. Instead, fluid under
higher pressure is converted into a high velocity gradient which then creates a low
pressure at that point. In other words, the pressure energy is converted to kinetic
energy in the form of velocity head which then the kinetic energy is converted
back to pressure energy at the diffuser outlet when the mixed fluid expands in the
divergent diffuser. The use of injections in various industrial applications has be-
come quite importance due to the their relative simplicity and adaptability such
as in thermal power stations, steam jet cooling systems, enhanced oil recovery,
boiling water nuclear reactors and water eductors.

1.5 Slip Surface

Generally, the no-slip boundary condition, or can be assumed as the liquid ad-
heres to a solid boundary, is one of the central tenets in most study. However,
there are situations where the condition does not hold perfectly. In this case,
partial velocity slip may occur on the stretching boundary when the fluid is par-
ticulate. The first experiment about slip conditions was analyzed by Beavers and
Joseph (1967), in connection with the investigations of viscous flow past perme-
able surfaces and that is when viscous fluid flows past the permeable surface body
and the viscous shear stress effects can penetrate into porous media to form a
boundary layer region adjacent to the interface. However, the problem arising
when Darcy’s law is incompatible with the existence of such boundary layer re-
gion and yet no shear stress tensor associated with it due to the nature of Darcy’s
equation. To incorporate this, they considered slip boundary condition for plane
boundaries since the usage of no-slip condition at the permeable surface was not
satisfactory.

Velocity slip is commonly known as the non-adherence of the fluid to a solid
boundary. This phenomenon has been observed under certain circumstances be-
cause of its importance in radial impellers and is useful in determining the ac-
curate estimation of work input or energy transfer between the impeller and the
fluid. The advantage of slip factor is it can accommodate for a slip loss which
affects the developed net power and increases the flow-rate. Instead, slip velocity
can be described as the relative motion between large particles and a turbulent
flow. This definition is essential because the slip velocity used in the standard
drag model fails when particle size falls within the ambient turbulence inertial
subrange.
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1.6 Application in Industry

Major developments have been made in modeling transport phenomena in porous
media, including several important conceptual breakthroughs in the past couple
decades. The physics of fluid flow in different media and conduits is a well re-
searched area in engineering field. Equations describing flows in media such as
cylindrical pipes, rectangular conduits, chemical industry and other forms and
shapes of conduits have been developed analytically over the years.

Instead, the boundary layer flow and heat transfer phenomenon in porous media
is of considerable interest due to its ever increasing industrial applications and a
myriad of technological processes since they describe the motion of a viscous fluid
close to the surface. Processes involving heat and mass transfer in porous media
are frequently encountered in geophysics, petroleum engineering and chemical in-
dustry.

A better understanding of forced convection through porous medium with the
presence of slip condition can benefit several areas such as insulation design, heat
exchangers, aerodynamic extrusion, filtering devices, underground nuclear waste
storage sites, metal processing and others. In a general concept, forced convection
is typically used to increase the exchange heat rate. Many types of mixing utilized
forced convection to distribute one substance within another. Forced convection
also occurs as a by-product to other processes such as the action of propeller in
a fluid or in aerodynamics heating. Other familiar examples of forced convection
are fluid radiator systems or blood circulation in the body system which took an
effect in heating and cooling of certain parts.

The importance of Darcy’s law through a porous media is one of considerable
interest in variety of different industrial applications, such as packed-bed chem-
ical reactors, petroleum reservoirs, geothermal operations and building thermal
insulation. Recently, the boundary layer flow due to a shrinking sheet has at-
tracted considerable interest where there are plenty of applications in shrinking
sheet problems in industries and engineering fields. The shrinking sheet occurs,
for example, on a rising shrinking balloon. At the same time, stagnation-point
flow is one of importance topic in fluid mechanics since stagnation-points appear
virtually in all flow fields of science and engineering.

1.7 Objective

The objectives of the present study are to construct and analyze mathematical
model for the following three problems:
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1. Forced convection boundary layer slip flow over a permeable porous plate
in Darcy-Forchheimer porous medium.

2. MHD forced convection boundary layer slip flow in Darcy-Forchheimer
porous medium with chemical reaction.

3. Forced convection boundary layer stagnation-point slip flow in Darcy-Forchheimer
porous medium towards a shrinking sheet.

1.8 Scope of Study

The aim of this study was to determine and investigate the problem of forced
convection boundary layer slip flow over a plate in Darcy-Forchheimer porous
medium. This study was extended to three different types of problems:

i. permeable porous plate;

ii. chemical reaction with MHD;

iii. stagnation-point flow over shrinking sheet.

The mathematical model was extended from Bhattacharrya et al. (2011b) which
is it was the best choice and one that fits the onset of this problem. The sources
of this study are from well-known journals and published papers.

This study identified a number of key findings including the effects of velocity and
thermal slip on the Darcy-Forchheimer model, and the effects of existing param-
eters on the model. Before continuing on examining the mathematical model, a
comparison has to be made with the other authors to identify the accuracy of the
results. Each of these problems has undergone the comparisons and the results
should be in excellent agreement. This study also highlighted the effect of several
parameters on skin friction coefficient, thermal gradient, concentration gradient,
velocity profile, temperature profile and concentration profile.

The scope of our study is for the research purposes. In addition, mathematical
model and analysis of Darcy-Forchheimer porous media flow model is becoming
a key to solving many challenging problems in engineering and applied sciences,
and instead, the knowledge and results gained from this thesis will be useful in
adequately evaluating production performance in several areas.
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1.9 Thesis Outline

This thesis is divided into seven chapters where Chapter 1 is the preliminary
chapter consisting of general introduction of convection, mechanism of convec-
tion heat transfer, introduction of Darcy-Forchheimer porous medium, boundary
layer with partial slip, objective of the study, scope of study and thesis outline.

Chapter 2 reviews the pioneering studies on the onset of boundary layer flow in
Darcy porous medium by experimentally and numerically. We also highlighted
the investigators who studied the onset of convection in Darcy-Forchheimer porous
medium and the boundary layer with the presence of slip flow in Darcy-Forchheimer
porous media.

Chapter 3 reviews the forced convection boundary layer slip flow over a perme-
able porous plate in Darcy-Forchheimer porous medium is investigated. In this
chapter, the figure for this problem is included and we will derived the problem
equations and the last equation obtained will be the subject to continue for eval-
uation in Chapter 4 and Chapter 5. Several investigations about this problem
are also referred and discussed in this chapter. This problem analyzed the effect
of suction and injection in both velocity and temperature profiles. The analytical
solutions are discussed. To verify the accuracy of this analysis, the results are
compared with the previous studies.

Later, MHD forced convection boundary layer slip flow in Darcy-Forchheimer
porous medium with chemical reaction effects is discussed in Chapter 4. The
review of this study is listed in this chapter. This problem discussed the dual
effects of chemical reaction and magnetic field in porous medium.

In Chapter 5, we discussed forced convection boundary layer stagnation-point
slip flow in Darcy-Forchheimer porous medium towards a shrinking sheet. We
included several researchers and authors who had studied within this problem
in this chapter. This problem discussed the effects of velocity ratio parameters
and slip parameters in both velocity and temperature profiles. We compared our
present work with previous studies to verify the accuracy of our analysis.

The final chapter, namely Chapter 6, contains the summary of present research
and also some possible further research.
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