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Chairman: Associate Professor Zulkifly Abbas, PhD 
Institute: Mathematical Research 
The convergence and variation of error of numerical methods depends on the 
implementation of different types of basis and testing functions. This thesis describes 
a comparative analysis of different basis and testing functions used in the MoM for 
two dimensional dielectric objects. The basis and testing functions namely the 
sinusoid/pulse (SP), sinusoid/sinusoid (SS), sinusoid/triangle (ST), triangle/pulse 
(TP), triangle/sinusoid (TS) and triangle/triangle (TT) methods are considered in this 
work. These basis and testing functions used in conjunction with MoM integral 
equations which include the electric field integral equation (EFIE), magnetic field 
integral equation (MFIE), Poggio-Muller-Chu-Harrington-Wu (PMCHW) integral 
equation and the Muller integral equation. All the computations in this study are 
carried out using MATLAB on dielectric objects using personal computer with 2GB 
DDR3 RAM. The variation of mean relative error with samples per wavelength is 
calculated for different dielectric objects with outer and inner radii of 0.0521 m and 
0.0313 m respectively. Using Gauss quadrature technique, the SP and TP methods 
give faster convergence than the SS, ST, TS and TT methods for a higher number of 
integral equations at 915 MHz. When the EFIE and MFIE are used in both TE and 
TM cases of the hollow dielectric cylinder with relative permittivity of 77.3-j37.2, 
the SS,ST,TS and TT methods require at least 1.5 and 1.75 times the samples per 
wavelength required by the SP and TP methods to achieve magnetic current error 
less than 0.01 respectively. For the dielectric coated conducting cylinder with 
relative permittivity of 33.2-j124.17, the SS, ST, TS and TT methods require 2 times 
the samples per wavelength required by the SP and TP methods for the surface 
magnetic current calculated using Gauss quadrature technique to be more accurate 
than the staircase approximation technique. The difference in the convergence due to 
different basis and testing function under the impedance boundary condition (IBC) is 
not as significant as under the exact boundary condition (EBC) for the dielectric 
coated impedance cylinder. The difference in the number of matrix elements 
between the SS, ST and SP methods and also between the TS, TT and TP methods to 
achieve magnetic current error less than 0.01 for the Muller integral equation is 
higher than the EFIE and MFIE when the EBC is utilised. The SP and TP methods 
provide faster convergence than the SS, ST, TS and TT methods with a higher  
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difference in the number of matrix elements between the SS, ST and SP methods and 
also between the TS, TT and TP methods to achieve an error less than 0.01 for the 
high permittivity hollow dielectric cylinder with large size compared to the one with 
small size. 
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Pengerusi: ProfesorMadya DrZulkifly Abbas, PhD 
Institut: PenyelidikanMatematik 
Penumpuan dan perubahan ralat kaedah berangka bergantung kepada implementasi 
fungsi asas dan pemberat yang berbeza. Tesis ini menerangkan analisis perbandingan 
fungsi asas dan pemberat berbeza dalam kaedah momen (MoM) untuk objek dua 
dimensi. Fungsi asas dan pemberat iaitu kaedah sinusoid/segiempat (SP), 
sinusoid/sinusoid (SS), sinusoid/segitiga (ST), segitiga/segiempat (TP), 
segitiga/sinusoid (TS) dan segitiga/segitiga (TT) telah dipertimbangkan. Fungsi asas 
dan pemberat ini digunakan sempena persamaan kamiran MoM iaitu persamaan 
kamiran medan elektrik (EFIE), persamaan kamiran medan magnet (MFIE), 
persamaan kamiran Poggio-Muller-Chu-Harrington-Wu (PMCHW) dan persamaan 
kamiran Muller. Komputasi dalam kajian ini telah dilaksanakan menggunakan 
MATLAB pada objek dielektrik menggunakan komputer peribadi 2GB DDR3 
RAM. Perubahan purata ralat relatif terhadap sampel per panjang gelombang 
dihitung untuk objek dielektrik berbeza dengan jejari luaran and dalaman 0.0521 m 
dan 0.0313 m masing-masing. Dengan menggunakan kaedah Gauss kuadratur, 
kaedah SP dan TP memberikan penumpuan yang lebih cepat daripada kaedah SS, 
ST, TS dan TT untuk bilangan persamaan kamiran yang lebih tinggi pada 915 MHz. 
Apabila EFIE dan MFIE digunakan untuk silinder dielectric berongga dengan 
kebolehtelapan relatif  77.3-j37.2  dalam kes TE dan TM, kaedah SS, ST, TS dan TT 
memerlukan sekurang-kurangnya 1.5 dan 1.75 kali sample per panjang gelombang 
yang diperlukan oleh kaedah SP dan TP untuk mencapai ralat arus magnetik kurang 
daripada 0.01 masing-masing. Untuk silinder konduktor bersalut dielektrik dengan 
kebolehtelapan relatif 33.2-j124.17, kaedah SS, ST, TS and TT memerlukan 2 kali 
sampel per panjang gelombang yang diperlukan oleh kaedah SP and TP supaya arus 
magnetik yang dihitung menggunakan kaedah Gauss kuadratur lebih tepat 
berbanding kaedah anggaran tetangga. Perbezaan kadar penumpuan antara fungsi 
asas dan pemberat berbeza di bawah syarat sempadan impedans (IBC) adalah tidak 
seketara syarat sempadan tepat (EBC) untuk silinder impedans bersalut dielektrik. 
Perbezaan bilangan elemen matriks antara kaedah SS, ST dan SP dan juga antara 
kaedah TS, TT dan TP dalam mencapai ralat arus magnetik kurang daripada 0.01 
untuk persamaan Muller adalah lebih tinggi daripada EFIE dan MFIE apabila EBC 
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digunakan. Kaedah SP dan TP juga memberikan penumpuan lebih cepat berbanding 
kaedah SS, ST, TS dan TT untuk bilangan persamaan kamiran lebih tinggi dengan 
perbezaan bilangan elemen matriks yang lebih tinggi didapati antara kaedah SS, ST 
dan SP dan juga antara kaedah TS, TT dan TP untuk mencapai ralat kurang daripada 
0.01 apabila saiz silinder berongga dengan kebolehtelapan relatif yang tinggi adalah 
besar berbanding saiz silinder berongga yang kecil. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the study 
Electromagnetic problems can be solved using analytical and numerical methods. 
Among the analytical techniques available are separation of variables, series 
expansion and conformal mapping which allows solution of simple geometry to be 
constructed however, not many practical problems could be solved using analytical 
techniques due to the complex structure which defines the problem (Sadiku, 2000; 
Ishimaru, 1991). Numerical methods such as the method of moments (MoM), finite 
difference time domain (FDTD), finite element method (FEM) allows solution of 
complex electromagnetic problem where analytical solution does not exist, however 
numerical methods are not as accurate as the analytical techniques (Sadiku, 2000). 
 
Numerical results computed are verified using exact solutions and solutions obtained 
from other techniques such as physical optics (PO) and geometrical theory of 
diffraction (GTD) providing the user confidence regarding the accuracy of the 
numerical solution (Davis and Warnick, 2005). Numerical methods are required to 
solve electromagnetic problems that do not have exact solutions (Sadiku, 2000). 
Hence, the efficiency of numerical EM solutions has to be investigated. In this 
thesis, a particular method known as the method of moments (MoM) is utilised to 
solve electromagnetic scattering problems. 

The purpose of this work is to perform investigation on the convergence and 
variation of error using the method of moments due to different basis and testing 
functions on dielectric objects. The basis function is the function that represents the 
source current in the MoM whilst the testing function is the function used to match 
the observation points on the scatterer using an integral equation (Balanis, 1989). 
The analysis is valuable because it provides a quantitative understanding of how 
different basis and testing functions can affect the convergence and variation of error 
of the numerical solution. Therefore, with the appropriate selection of basis and 
testing functions, the uncertainties in the numerical solution can be minimised, and 
therefore this allows faster convergence of numerical solutions using a smaller 
impedance matrix size. 
 
1.2 Dielectric properties of materials 
To understand the physical processes associated with various radio frequency and 
microwave devices, it is necessary to know the dielectric properties of media that 
interact with EM waves (Ishimaru, 1991). The dielectric properties are intrinsic 
properties that are expressed in a complex form as the relative complex permittivity  
휀 = 휀′ − 푗휀′′  (Balanis, 1989). The real part (the dielectric constant) is associated 
with the capability of a material to store energy whereas the imaginary part (the loss 
factor) is associated with loss of electric field energy in the material, which is usually 
dissipated as heat (Nyfors and Vainikainen, 1989). One of the most important 
parameters that is used to describe dielectrics is the ratio 휀′   to  휀′′ , the loss tangent, 
tan	 휀′′/휀′  . 
 
Lossy materials have high loss factor or loss tangent values where high loss factor is 
due to material absorption (Balanis, 1989). Good examples of lossy material are 
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ferrites due to its ability to absorb microwave signals and microwave signals are 
strongly absorbed by the water molecules (Nyfors and Vainikainen, 1989). The 
dielectric properties in liquid are described by the single-relaxation Debye model and 
are useful for non-destructive determination of important characteristics such as 
scattering cross section and variations of complex dielectric permittivity over a wide 
frequency range are important for communication and radar devices (Nyfors and 
Vainikainen, 1989).   
 
1.3 Computational Electromagnetics 
Computational electromagnetics deals with the art and science of solving Maxwell’s 
equations using electronic computers and numerical methods (Umashankar and 
Taflove, 1991).  The MoM technique is based on the systematic functional space 
description and the FDTD solves Maxwell’s time dependent curl equations whilst 
the FEM approximates the solution of partial differential equations by converting 
them into a set of linear equations (Umashankar and Taflove, 1991). Geometrical 
optics is based on electromagnetic waves that propagate as optical rays (Jin, 2010).  
In the geometrical theory of diffraction, the solution obtained is added to the 
geometrical optics solution. The geometrical optic solution is found through an 
approximate asymptotic solution for the diffracted field using a straight edge at 
normal incidence that is then extended to oblique incidences and curved edges (Jin, 
2010).  
 
Using the uniform theory of diffraction (UTD), in the geometrical theory of 
diffraction, the discontinuous field is compensated by a transition function that is 
obtained using a more accurate evaluation of the diffracted field (Jin, 2010). In the 
physical optics, induced current is approximated to be equal to twice the magnetic 
field on the illuminated side of the surface and is approximated to be equal to zero 
on the dark side of the surface that is improved by the physical theory of diffraction 
by taking the effect of edges into account (Jin, 2010).   
 
Maxwell’s theory can predict the experimental outcomes if Maxwell’s equations are 
solved correctly (Jin, 2010). Therefore, there is always a quest to solve Maxwell’s 
equations accurately using numerical methods for increasingly complex problems. 
Early analyses were carried out for simple shapes such as spheres and cylinders after 
the establishment of Maxwell’s theory (Umashankar and Taflove, 1991). Solutions 
to more complex geometries were needed and as a result, approximate techniques 
were developed to solve Maxwell’s equations (Jin, 2010).   
 
1.4 Method of moments as applied to electromagnetic problems  
One of the numerical techniques to solve electromagnetic scattering problem, 
namely the method of moments (MoM) is reviewed in this section. The MoM is used 
for the analysis of electromagnetic radiation and scattering in antenna design, remote 
sensing, and other applications (Davis and Warnick, 2005). With increasing 
complexity of electromagnetic problems, computer simulation is needed to predict 
the behaviour of such systems by using sophisticated techniques developed to solve 
electromagnetic problems (Jin, 2010).  
 
With the development of computers and programming languages, electromagnetic 
problems that cannot be solved analytically has received attention as solutions to 
more complex geometries were needed (Gibson, 2007; Davidson, 2005; Sadiku, 
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2000). The equations must be discretised using an appropriate numerical technique 
so that the equations can be programmed on a computer and in the MoM, the integral 
equations are linearised by converting the integral operators into matrix equation 
(Harrington, 1968) where the equations then solved for the basis function 
coefficients. These are then used to calculate important parameters such as the radar 
cross section (Peterson et al., 1998). 
 
1.5   Problem statement  
The triangle basis pulse testing (TP), triangle basis triangle testing (TT), sinusoid 
basis pulse testing (SP), and sinusoid basis sinusoid testing (SS) have been used for 
scattering from conducting cylinder and wire antenna analysis (Davis and Warnick, 
2004; Peterson et al., 1998; Klein and Mittra, 1975).  Commonly used basis and 
testing functions in two dimensional scattering from conducting cylinder are the 
triangle basis pulse testing and triangle basis triangle testing (Davis and Warnick, 
2004; Peterson et al., 1998). The sinusoid basis pulse testing and sinusoid basis 
sinusoid testing functions are typically used in wire antenna analysis (Peterson et al., 
1998; Klein and Mittra, 1975).   However, to-date no intercomparison work has been 
done to test the actual performance of all the different basis and testing functions for 
dielectric object. Implementation of MoM demands detailed study on the variation of 
error, convergence and matrix size requirements when different basis and testing 
functions are utilised on dielectric object.   
 
Selection of appropriate basis and testing functions may result in faster convergence 
by using a smaller impedance matrix size (Alad and Chakrabarty, 2012). Therefore, 
a comparative study on the effect of different basis and testing functions towards the 
variation of error with samples per wavelength for dielectric scatterers is worthwhile 
because the basis and testing functions that give faster convergence can be selected 
to save memory requirements and computation time. In addition, different 
computing techniques can give different convergence rate and memory usage even 
though the numerical technique used is the same (Jin, 2010). This may depend on the 
basis and testing functions utilised where the effect of different numerical 
implementations has yet to be investigated.  
 
The efficiency in minimizing the error of the numerical solution affects the variation 
of error with samples per wavelength. Since different computing techniques can give 
different efficiencies in the minimizing the error even though the same basis and 
testing functions are utilised, the effect of different basis and testing functions on the 
difference in the variation of error between different computing techniques has yet to 
be examined. The effect of different boundary conditions may affect the 
convergence of numerical solutions and this has yet to be tested on different basis 
and testing functions. For high permittivity dielectric object, the total number of 
surface electric and magnetic current densities is high which will result in the use of 
large MoM impedance matrix size. The effect of object size on the convergence due 
to different basis and testing functions has yet to be investigated for high permittivity 
purely dielectric object. 
 
1.6 Research Objectives 
The comparative study of different basis and testing functions consists of several 
objectives. The main objectives are to evaluate the effect of different numerical 
implementations, different boundary conditions and size effect on the convergence 
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and variation of error of the surface current densities and the radar cross section 
when different basis and testing functions are used on different integral equations in 
the transverse electric (TE) and transverse magnetic (TM) scattering from dielectric 
objects. The objectives of this work are as follows 

1. To determine the effect of high permittivity dielectric objects on the 
convergence due to different basis and testing functions under different 
numerical implementations. 

2. To examine the effect of different basis and testing functions on the 
difference in the variation of error between different computing techniques. 

3. To evaluate the effect of different surface boundary conditions on the 
convergence due to different basis and testing functions for impedance 
coated objects. 

4. To analyze the effect of object size on the convergence due to different basis 
and testing functions for high permittivity purely dielectric objects. 
 

1.7 Thesis outline 
This thesis consists of five main components that are described separately in the 
following five chapters: Chapter 2 critically reviews and discusses some previous 
research and summarises the application of MoM in electromagnetic scattering 
problems. Chapter 3 discusses the theoretical computation of surface current 
densities and radar cross sections of different dielectric objects using different 
integral equations; namely the electric field integral equation (EFIE), magnetic field 
integral equation (MFIE), Poggio-Muller-Chu-Harrington-Wu (PMCHW) and 
Muller integral equation. Chapter 4 describes the evaluation of generic integrals 
using different basis and testing functions using different numerical implementations 
and boundary conditions as well as the construction of program structure using 
MATLAB for the MoM and exact eigenfunction.  Chapter 5 focuses on results and 
discussions of the objectives outlined in Section 1.6. Chapter 6 summarizes the 
contributions and the need for further studies. Appendices contain the details of the 
computer program for the understanding of Chapters 3 and 4. 
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