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BASED CRYPTOSYSTEMS 

 

By 

 

ZAHARI BIN MAHAD 

 

February 2014 

 

 

Supervisor : Muhammad Rezal Bin Kamel Ariffin, PhD 

Department : Institute for Mathematical Research 

 

In this study, we analyze the performance of a new cryptosystem called ��� Public Key 

Cryptosystem. The encryption process for the ���  cryptosystem is easy and fast as 

operations involved only add and multiply operations. While in the decryption process, 

it involves the mathematical solution method using Chinese Remainder Theorem that 

produces four different answers where only one correct answer need to be determined by 

user. 

 

The ��� cryptosystem is constructed based on the mathematical problem of solving the 

Square Root Modulo and Integer Factorization problem. Results from the study and 

analysis found that ���  cryptosystem have speeds exceeding RSA and ECC 

cryptosystem encryption process. While the decryption process, ���  have speeds 

exceeding RSA and ECC. But when the sizes of prime number increase to 2048-bits, 

ECC is faster than ���. 

 

Through research and analysis, we have found a new feature in ��� cryptosystem can 

be enhanced which can result in increased speed on the decryption process. Therefore, in 

this study, we will define an amended structure of the ��� cryptosystem by improving 

existing features resulting in increased speed in the decryption process. With this new 

definition, we still maintain safety features available on ���  cryptosystem to avoid 

being attacked by enemies. 

 

Finally, we amend the Rabin cryptosystem utilizing the encryption strategy of the ��� 

algorithm and run experiments to gauge its efficiency. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 

sebagai memenuhi keperluan untuk ijazah Master Sains 

 

ANALISIS PENCAPAIAN DAN PENAMBAHBAIKAN SISTEMKRIPTO 

BERASASKAN PRIMTIF RABIN 

 

Oleh 

 

ZAHARI BIN MAHAD 

 

Februari 2014 

 

 

Penyelia : Muhammad Rezal Bin Kamel Ariffin, PhD 

Institut : Institut Penyelidikan Matematik 

 

Penyelidikan ini mengkaji dan menganalisis prestasi satu sistemkripto baru yang diberi 

nama Sistemkripto Kekunci Awam ��� . Proses penyulitan bagi sistemkripto-��� 

adalah mudah dan laju memandangkan operasi-operasi yang terlibat hanyalah operasi 

tambah dan darab. Manakala bagi operasi penyahsulitan pula, ianya melibatkan kaedah 

penyelesaian bermatematik menggunakan Chinese Remainder Theorem yang 

menghasilkan empat jawapan yang berlainan dan hanya satu sahaja jawapan yang betul. 

 

Sistemkripto-��� yang dibangun berasaskan kepada permasalahan bermatematik payah 

kepada Punca Kuasa Dua Bermodulo dan Pemfaktoran Integer. Hasil daripada kajian 

dan analisis yang dijalankan mendapati bahawa sistemkripto-��� mempunyai kelajuan 

melebihi sistemkripto RSA dan ECC dalam proses penyulitan. Manakala bagi proses 

penyahsulitan pula, ���  mempunyai kelajuan yang melebihi RSA dan ECC. Apabila 

saiz nombor perdana meningkat kepada 2048-bit, ECC adalah lebih laju berbanding ���. 

 

Melalui kajian dan analisis yang dijalankan, kami telah menemui ciri baru pada 

sistemkripto-��� yang boleh diperbaiki yang mana mengakibatkan kelajuan pada proses 

penyahsulitan bertambah. Justeru dalam kajian ini, kami akan menakrifkan semula 

struktur sistemkripto- ���  dengan menambahbaik ciri yang sedia ada sehingga 

mengakibatkan meningkatnya kelajuan dalam proses penyahsulitan. Berdasarkan 

penakrifan baru ini, kami masih mengekalkan lagi ciri-ciri keselamatan sedia ada pada 

sistemkripto-��� bagi mengelak daripada diserang oleh musuh. 

 

Akhirnya, kami membuat penambahbaikan terhadap sistem-kripto Rabin menggunakan 

strategi penyulitan daripada ���  algoritma dan seterusnya menjalankan eksperimen 

untuk mengukur tahap kecekapannya. 
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CHAPTER 1 

 

INTRODUCTION 

 

In this modern era of the internet and telecommunication, security and privacy are the 

most common and essential words that we came across daily. It is because 

confidentiality has become one of the necessities of social life. Hence, this has created a 

need for a more secure communication channel for data transfers. In this context, several 

questions need to be considered. How can we transmit a message secretly without an 

unauthorized person obtaining knowledge about the message? How can the sender 

ensure that the message is transmitted to the intended receiver? How can the receiver 

ensure that the message is coming from the intended sender? The answer to the above 

questions is to ensure the communication channel is secure against adversary. One of the 

practical methods for performing information security is by utilizing cryptography. 

 

Cryptography is a study of secret writing by altering the readable information into a 

different representation that unreadable [Samuel and Wagstaff, 2003]. Cryptography can 

be used to provide security for sensitive and confidential data from unauthorized user. It 

is about securing communication through insecure channel. An example of an insecure 

channel communication is the internet. Internet is the worldwide network channel used 

by the international community to share information with different interests and 

intentions. Based on Merkle, communication over the internet can be considered as 

communication over an insecure channel since an adversary may compromise it 

[Merkle, 1978]. Hence, there is a need to communicate securely over an insecure 

channel like the internet. The answer lies in cryptography. 

 

Cryptography can be divided into symmetric-key cryptography and asymmetric-key 

cryptography. In symmetric-key cryptography, only one key is used to encrypt and 

decrypt data. To implement this type of cryptography, the key should be distributed and 

agree on the secret key before transmission between entities. The goal of the symmetric-

key cryptography is to provide privacy between two parties that wish to communicate 

privately and on the same time an adversary knows nothing about the contents of the 

communication. The symmetric-key cryptography also called as private-key 

cryptography. The security of the symmetric-key cryptography is relies on the secret 

key. As long as the key remains secret means the communication remains secret. 

Examples of symmetric-key cryptography algorithms are RC2, DES, 3DES, RC5, 

Blowfish and AES, which use certain size of keys. The advantages of the symmetric-key 

cryptography are the key size for symmetric-key cryptosystem is smaller than the key 

size of asymmetric-key cryptography and in terms of the practical computational speed 

of its underlying operations, the symmetric-key cryptography is faster than asymmetric-

key cryptography. However, the disadvantage of the symmetric-key cryptography is the 

key distribution problem between entities and authentication issues which the identity of 

both entities cannot be verified. 

 

Another type of cryptography is called as asymmetric-key cryptography. In asymmetric-

key cryptography, a pair of keys which are a public key and a private key is used for 

each entity. The public key is used for encryption process and the private key is used for 
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decryption process. Asymmetric-key cryptography is also known the public-key 

cryptography. The security of the asymmetric-key cryptography is relies on the hard 

mathematical problem of the algorithm. Examples of well known hard mathematical 

problem are Integer Factorization Problem (IFP), Discrete Logarithm Problem (DLP) 

and Elliptic Curve Discrete Logarithm Problem (ECDLP).Examples of asymmetric-key 

cryptography algorithms are RSA, Rabin, El-Gamal and ECC, which use certain size of 

keys. As an advantage, the disadvantages of the symmetric-key cryptosystem 

aresolvable by using the asymmetric-key cryptography. However, the disadvantage of 

the asymmetric-key cryptography is the practical computational speed is relative slow 

when compared to symmetric-key cryptosystem. 

 

1.1 RSA Cryptosystem 

 

The RSA algorithm is named after its inventors Ron Rivest, Adi Shamir and Len 

Adlemen [Rivest, Shamir and Adlemen, 1978]. It can be used for both public key 

encryption and digital signatures. As for the world renowned RSA cryptosystem, the 

inability to find �-th root of the ciphertext � modulo � from the congruence relation � � ���mod �� coupled with the inability to factor � 
 �� for large primes � and � is 

its fundamental source of security [Rivest et al., 1978]. Up to now, the most efficient 

algorithm for determining the proper factors of a given large number is the Quadratic 

Sieve with running time of �������� ��·���� ��� ��� where the running time is depends on 

the size of the integer �. In the RSA, case of the size of the product of two prime 

numbers � and � should be of at least 1024 bits where the size of two prime numbers � 

and � is 512 bits respectively. The RSA cryptosystem has a textbook complexity order 

of ����� or via Fast Fourier Transform ��� log �� for encryption and decryption 

operation. We denote � as the minimum security parameter of RSA algorithm. 

 

The RSA cryptosystem uses computations in ��, where � is the product of two distinct 

odd primes� and �, of roughly equal size, � bits, and thegeneration of random exponent, �. It holds that �� � 1 �mod  ����, where  ��� 
 �� ! 1��� ! 1�. The pair��, �� 

become public keys and � become a private key. This is illustrated in Algorithm 1.1.1. 

 

Algorithm 1.1.1: RSA key generation 

INPUT: The size � bits of the prime numbers. 

OUTPUT: A public key pair ��, �� and private key ���. 

1. Generate two random prime number �-bit size, � and � 

2. Compute � 
 � · �. 

3. Compute  ��� 
 �� ! 1��� ! 1�. 

4. repeat 

Pick random integer �, 

until gcd#�,  ���$ 
 1. 

5. Compute � � �%&mod� ����. 

6. Return public key ��, �� and private key ���. 
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Algorithm 1.1.2: RSA encryption 

INPUT: The public key ��, �� and the plaintext �. 

OUTPUT: The ciphertext �. 

1. Read plaintext, � ' �. 

2. Compute � � �� mod���. 

3. Return ciphertext, �. 

 

Algorithm 1.1.3: RSA decryption 

INPUT: The private key ��� and the ciphertext �. 

OUTPUT: The plaintext �. 

1. Read ciphertext, �. 

2. Compute � � �(  mod���. 

3. Return plaintext, �. 

 

The encryption and decryption operations are given in Algorithm 1.1.2 and Algorithm 

1.1.3 respectively. To show that encryption and decryption are inverse operations, 

since�� � 1 �mod ����, we have that 

 �� 
 1 )  * ��� 
 

for some integer * + 1. Suppose that � ' ��, then we have 

 ����( � �&, - ����mod�� ����( � �& · �- ����mod�� ����( � � · 1-�mod�� ����( � ��mod�� 
 

as desired. 

 

1.2 Rabin Cryptosystem 

 

The Rabin cryptosystem is named after its inventor, Micheal O. Rabin in 1979 [Rabin, 

1979]. It has been developed in an effort to improve the already existing RSA 

cryptosystem, by presenting a cryptographic solution whose security was 

mathematically proven to be based on the difficulty of the Integer Factorization Problem 

(IFP) coupled with the square root modulo problem. It is said to be an optimal 

implementation of RSA with the fix encryption exponent � 
 2. However, the situation 

of a 4-to-1 mapping during decryption has deterred it from being utilized. Mechanisms 

to overcome the problem to ensure its possible implementation have been proposed like 

redundancy in the message method by Menezes et al. in 1996, extra bits method by 

Kurosawa et al. in 2001 and Williams’s method by Williams in 1980. However these 

solutions either still have a possible decryption failure or lose their computational 

advantages. The Rabin cryptosystem has a textbook complexity order of ����� or via 

Fast Fourier Transform ��� log �� for encryption operation and complexity order of ����� or via Fast Fourier Transform ���� log �� for decryption operation. We denote � 

as the minimum security parameter of Rabin algorithm. 



© C
OPYRIG

HT U
PM

4 

 

The Rabin cryptosystem uses computations in ��, where � is the product of two distinct 

odd primes � and � that satisfy the condition �, � � 3 �mod 4�, of roughly equal size, � 

bits, and the exponent, � 
 2. The pair ��, �� become public keys and � and � become a 

private keys. This is illustrated in Algorithm 1.2.1. 

 

Algorithm 1.2.1: Rabin key generation 

INPUT: The size � bits of the prime numbers. 

OUTPUT: A public key pair ��, �� and private key pair ��, ��. 

1. Generate two random prime number �-bit size, � and �, that satisfy � � � �3 �mod 4�. 

2. Compute � 
 ��. 

3. Return public key ��, �� and private key pair ��, ��. 

 

Algorithm 1.2.2: Rabin encryption 

INPUT: The public key ��, �� and the plaintext �. 

OUTPUT: The ciphertext �. 

1. Read plaintext, � ' �. 

2. Compute � � �� mod���. 

3. Return ciphertext, �. 

 

Algorithm 1.2.3: Rabin decryption 

INPUT: The private key pair ��, �� and the ciphertext �. 

OUTPUT: The plaintext �. 

1. Read ciphertext, �. 

2. Computes the square roots of �modulo the primes �and �, 

 

1�2 � �345
6  �mod�� 

1�7 � �845
6  �mod�� 

 

3. By using the Chinese Remainder Theorem to compute the original message. 

 � � �2��%& ) �7��%& �mod�� 

� � !�2��%& ) �7��%& �mod�� 

� � �2��%& ! �7��%& �mod�� 

� � !�2��%& ! �7��%& �mod�� 

 

4. From 4 possibilities M, recipient somehow determines the correct message. 

5. Return plaintext, �. 

 

The encryption and decryption operations are given in Algorithm 1.2.2 and Algorithm 

1.2.3 respectively. The details of the Rabin cryptosystem and its improvement methods 

will be described in Chapter 6. 
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1.2.1 Security Reduction for Rabin 

 

We put forward here a known security reduction involving the Rabin cryptosystem. 

Suppose � 
 �� is the product of 2 large primes and we know the 4 solutions 

 9 � 1:, 1; <= 9� � >�mod �� 
 

From this argument we can see that either 9 � ;�mod �� and 9 � !;�mod ��. This 

means, �|�: ! ;� but � @ �: ! ;�. This means, gcd�: ! ;, �� 
 � and we have factored �. Then finding any two solution : and ; such that : B 1;�mod �� is computationally 

equivalent to factoring �. 

 

Proposition 1.2.1 Suppose � 
 �� is the product of 2 large primes. The product � 
 �� is able to be factored if and only all 4 square roots of 9� � >�C<� �� are 

known. 

 

Proof. D 

If the product � 
 �� is factored then all 4 square roots of 9� � >�mod �� can be 

found via the Chinese Remainder Theorem. 

 E 

If any two solution : and ; such that : B 1;�mod �� are found, then we have either     gcd�: 1 ;, �� 
 � or gcd�: 1 ;, �� 
 �.F 

 

As such, any asymmetric scheme based upon the Rabin primitive would inherit the 

above characteristics. 

 

1.2.2 Rabin Primitive 

 

We classify any asymmetric scheme that utilizes the square root problem together with 

the difficulty to factor an integer � as a scheme that is built upon the Rabin primitive 

concept. 

 

1.3 GGH Cryptosystem[Ariffinet al, 2013] 

 

In 2013, Ariffin et al. introduced a new asymmetric cryptosystem based on the Rabin 

primitive that is it depended on the hardness of factoring integers of the shape � 
 ��� 

(instead of � 
 ��) and solving square roots modulo � 
 ���, known as IIβ. This 

cryptosystem uses a combination of modular linear and modular squaring in their 

scheme. The hardness of factoring � 
 ��� has been used in many systems such as the 

Okamoto-Uchiyama’s scheme [Okamoto, 1998] and the Schmidt-Samoa’ system 

[Schmidt, 2006]. However, both schemes use large encryption exponent. It will cause 

the complexity order for encryption operation to be �����. For example, the encryption 

operation for Okamoto-Uchiyama’s scheme is � � JKLM �mod �� and Schmidt-Samoa’ 

scheme is � 
 �� �mod ��. 
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In the work by Ariffin et al. in 2013, they managed to show how to efficiently design an 

asymmetric cryptosystem based on the hardness of factoring � 
 ��� where � and � are 

unknown parameters. They also show that in the IIβ scheme the situation of a 4-to-1 

mapping during decryption does not exist which a great advantage over Rabin’s 

cryptosystem. The IIβ cryptosystem has a complexity order faster than RSA and ECC 

for speed of encryption operation. However, for decryption operation, its speed is better 

than RSA and is marginally behind ECC. Due to its construction utilizing simple 

mathematical structure, the IIβ cryptosystem has low computational requirements and 

computing power to deploy secure communication procedures efficiently. It is also the 

reason why IIN cryptosystem had speeds faster than RSA and ECC. There are five 

reasons or motivation in designing IIN cryptosystem by Ariffin et al. in 2013: 

i. Shorter key length. If possible shorter than ECC 160-bits. 

ii. Speed. To have speed of complexity order ����� or by using FFT 

implementation of ��� log �� for both encryption and decryption operation. 

iii. Able to increase data size to be transmitted asymmetrically. That is, not to be 

restricted in size because of the mathematical structure. 

iv. To be IND-CCA2 secure in the standard model. 

v. Simple mathematical structure for easy implementation. 

 

We will now illustrate the key generation, encryption and decryption operation of IIN 

cryptosystem in Algorithm 1.3.1, Algorithm 1.3.2 and Algorithm 1.3.3 respectively. 

 

Algorithm 1.3.1: GGO key generation 

INPUT: The size P bits of the prime numbers. 

OUTPUT: A public key tuple�P, GQ, GR� and private key tuple�S, T, U�. 

1. Generate two random and distinct P-bit strong primes S and T, such that S, T � V �WXY Z� where RP [ �, � [ RP,Q. 

2. Choose random U such that U \ �SRT�Z
]. 

3. Compute integer ^ such that ^U � Q �WXY ST� and add multiples of ST until RVP,Z [ � [ RVP,_ (if necessary). 

4. Set GQ 
 SRT. We have RVP [ GQ [ RVP,V. 

5. Set GQ 
 ^. 

6. Return public key tuple �P, GQ, GR� and private key tuple �S, T, U�. 

 

Algorithm 1.3.2: GGO encryption 

INPUT: The public key tuple �P, GQ, GR� and the message `. 

OUTPUT: The ciphertext a. 

1. Message is an integer ` 
 bQ · RRP%Q ) bR with the following condition for 

the pair  �bQ, bR�, RZP [ bQ [ RZP,Q and RRP%R [ bR [ RRP%Q. 

2. Compute a 
 GQbQ ) GRbRR. 

3. Return ciphertext a. 
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Algorithm 1.3.3: GGO decryption 

INPUT: The private key tuple �S, T, U� and the ciphertext a. 

OUTPUT: The message `. 

1. Compute c � aU �WXY ST�. 

2. Proceed to solve c as in Chapter 2, Lemma 2.2.12 to obtain a list bRdfor 

d 
 Q, R, V, Z. 

3. For d 
 Q, R, V, Z compute bQd 
 a%bRdRGR
GQ . 

4. Sort the pair �bQd, bRd� for integer bQd. 
5. Return the message ` 
 bQ · RRP%Q ) bR. 

 

The IIN cryptosystem has a complexity order of ����� or via Fast Fourier Transform 

��� log �� for encryption operation and complexity order of ����� or via Fast Fourier 

Transform ���� log �� for decryption operation. We denote � as the minimum security 

parameter of IIN algorithm. The details of mathematical structure proof of  IIN 

cryptosystem will be described in Chapter 2. 

 

1.4 Asymptotic Notation – Running times of algorithm  

 

Efficiency of the algorithm can be measured in terms of the complexity of algorithm. 

But, the whole idea of complexity is to measure the behavior of the algorithm when �, 

the number of bits input is very large. Let us review some standard notation for relating 

the rate of growth of functions [Shoup, 2005]. This notation will be useful in discussing 

the running time of algorithms. 

 

Definition 1.4.1 Suppose x is a variable taking positive integer and let g denote a real-

valued function in x that is positive for all sufficiently large x. Let f denote any real-

valued function in x. Then: 

• = 
 ��J� means that |=�9�| e fJ�9� for some positive constant c as 9 g ∞ 

(read, “f is big-O of g”). 

• = 
 i�J� means that =�9� + fJ�9� for some positive constant c as 9 g ∞ 

(read, “f is big-Omega of g”). 

• = 
 j�J� means that fJ�9� e =�9� e �J�9� for some positive constant c and d 

as 9 g ∞ (read, “f is big-Theta of g”). 

• = 
 <�J� means that =/J g 0 as 9 g ∞ (read, “f is little-o of g”). 

• =~J means that =/J g 1 as 9 g ∞ (read, “f is asymptotically equal to g”). 

 

For the following definitions, let I, n ' � and : is the number of bit length of I in base 2, while ; is the number of bit length of n in base 2. 

 

Definition 1.4.2 Computing I ) n or I ! n where I \ n has time complexity ��:� or ��log �I��  where : is the number of digits of I in base two. 

 

Definition 1.4.3 Computing I · n or I/n has time complexity ��: · ;� or ��log �I� ·log �n��. When ; 
 ��:�, the time complexity is ��:�� or ��log �I���.  
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Definition 1.4.4 Computing Euclidean and Extended Euclidean I 
 n� ) o has time 

complexity identical to that for computing I · n, that is ��: · ;� or ��log �I� ·log �n��. When ; 
 ��:�, the time complexity is ��:�� or ��log �I���. 

 

Definition 1.4.5 Computing modular multiplication I · n �mod �� it is typical and 

assumed unless otherwise stated that : 
 ���� and ; 
 ����. It follows that the time 

complexity is ����� or ��log �����. 

 

Definition 1.4.6 Computing modular exponentiation Ip  �mod �� with n \ 0 requires 

at least log��n� modular multiplications and less than 
�
� · log��n� using square and 

multiply. It thus has time complexity ���� · ;� or ��log ���� · log �n��. When ; 
����, the time complexity is ����� or ��log �����. 

 

1.5 Research Motivation 

 

Since IIβ cryptosystem is a new cryptosystem, to determine whether it is on a par with 

well-known as RSA and ECC cryptosystem or not, we need to carry out a comparative 

analysis based on the performance of the RSA, ECC and IIβ. Then, from that we will 

know how good and efficient IIβ compared to RSA and ECC as claimed by Ariffin et 

al.. This comparative analysis is important to determine the practicality of IIβ 
cryptosystem that will be used in the future as one of the preferred public key systems. 

 

Currently, from Algorithm 1.3.3 IIN decryption operation, in the second step we need 

to find a solutions for square roots of q modulo the primes � and �, 

 

1�2 � q345
6  �mod �� 

1�7 � q845
6 �mod ��. 

 

Then, from four solutions )�2, !�2, )�7 and !�7 above, by using the Chinese 

Remainder Theorem we will have four solutions for equation s� � q �mod  ��� which 

are C�& � �2��%& ) �7��%&�mod ��� 

C�� � !�2��%& ) �7��%& �mod ��� 

C�� � �2��%& ! �7��%&�mod ��� 

C�t � !�2��%& ! �7��%& �mod ��� 

 

With four values of C�, we will find the value of C& by computing C&u 
 v%wxyxzx
z5  

from { 
 1,2,3,4. Finally, we need to determine which pair of C&u and C�u are an 

integer. From that, we will get back the original plaintext. As we can see, in order to find 

the value of C&, we need to compute C&u 
 v%wxyxzx
z5  for four time. Therefore, it is 

essential if we can reduce the number of step to find the value of C& by computing 
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C&u 
 v%wxyxzx
z5  from four times to three, two or just once if possible. By doing that, the 

time to complete the decryption operation can be decreased and automatically the speed 

can be increased. 

 

According to Ariffin et al., the IIN cryptosystem is a redesign of Rabin cryptosystem 

which overcome the decryption failure problem. Therefore, we conjecture that the 

methods utilized by Ariffin et al. to efficiently designing IIN, can also be utilized for 

the Rabin cryptosystem to overcome its decryption failure.  

 

1.6 Problem Statements 

 

Four main questions lead us to the research objectives: 

i. Is the IIβ public key cryptosystem practically implementable or not?  

ii. How fast is IIβ public key cryptosystem compared to RSA and ECC 

cryptosystem?  

iii. How do we enhance the IIβ? That is, to reduce the complexity time of IIβ 
encryption/decryption time? 

iv. Can we overcome Rabin cryptosystem decryption failure using mechanisms from 

the IIβ cryptosystem? 

 

1.7 Research Objectives 

 

This research is conducted to achieve the following objectives: 

i. To justify whether the IIβ public key cryptosystem is practically implementable 

or not, 

ii. To provide a comparative performance analysis of the II| public key 

cryptosystem against well known asymmetric cryptosystem like RSA and ECC,  

iii. To enhance the performance of running time of the II| decryption process with 

the mathematical proof and 

iv. To overcome the Rabin cryptosystem decryption failure using similar mechanism 

from the II| cryptosystem. 

 

1.8 Scope and Limitation of the Study 

 

In our research, we are intending to cover two scopes. Firstly, the practical 

implementation and comparative performance analysis of the II| public key 

cryptosystem against the most popular public key cryptosystem like RSA and ECC. We 

will provide the details about the designing and implementation protocol to conduct the 

experiment to achieve the purposes of the first scope. As the conclusion for the first 

scope worked, we will provide analysis of the results. The second scope of our research, 

we will enhance the running time performance of the II| decryption process and 

enhance the Rabin cryptosystem to overcome decryption failure. In this work, we will 

provide the mathematical proof on how the enhancement is going to work. 
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1.9 Overview of the Thesis 

 

We organize this thesis into seven chapters. In Chapter 2, we will present our literature 

review on the research study and mathematical background to construct the II| public 

key cryptosystem. In Chapter 3, we will describe the research methodology on the 

comparative analysis among II|, RSA and ECC has been conducted. Next, we will 

describe the comparative performance analysis of II| public-key cryptosystem with 

RSA and ECC cryptosystem in Chapter 4. In Chapter 5, we will describe an 

enhancement of the II| decryption procedure. In Chapter 6, we will introduce the new 

efficient method of Rabin cryptosystem. In Chapter 7, we conclude the thesis by 

summarizing all the works and results obtained and provide some suggestions for future 

works in the final chapter of this thesis. 
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