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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 

of the requirement for the degree of Master of Science 

RECONSTRUCTING APPLICABLE CHAOTIC BAPTISTA-TYPE 

SYMMETRIC CRYPTOSYSTEM 

By 

MUHAMMAD AZLAN BIN DAUD 

September 2014 

 

Supervisor : Muhammad Rezal Bin Dato’ Kamel Ariffin, PhD 

Department : Institute for Mathematical Research 

This work, introduces a method to repair a cryptosystem based on a chaotic 

dynamical system. Baptista exploited the chaotic property of the logistic equation �ሺݔሻ = ሺͳݔܾ −  ሻ to develop a cryptosystem. This cryptosystem has the ability toݔ

produce various ciphers responding to the same message input. Alvarez through his 

one-time pad attack successfully attacked the Baptista cyptosystem. Ariffin 

attempted to modify the cryptosystem to enhance the security of the original 

Baptista’s cryptosystem. Rhouma identified a flaw in the method Ariffin put forward, 

specifically in step 4 of the encryption procedure, where it does not implement a one-

to-one operation resulting in failure to decrypt the ciphertext. The method is based on 

the Fractal and Iterated System (IFS), where an in-depth study on Fractal, Chaos and 

Cryptography is needed to assist in actualizing the research objectives. The algorithm 

is developed to counter the one-time pad attack. This recommended encryption 

algorithm also overcomes the flaw in Ariffin’s encryption procedure. The modified 

Baptista type cryptosystem suffers from message expansion that goes against the 

conventional methodology of a symmetric cryptosystem. As a result, we studied the 

idea of Huffman encoding. We then designed a new compression algorithm 

developed using ideas from the Huffman coding. Finally, the compression algorithm 

is applied onto the modified Baptista cryptosystem to show a possible practical 

deployment of the Baptista cryptosystem and to also produce better compression 

ratio.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Master Sains 

MEMBINA SEMULA SISTEM KRIPTO SIMETRIK KALUT JENIS 

BAPTISTA YANG BOLEH DIGUNAPAKAI 

Oleh 

MUHAMMAD AZLAN BIN DAUD 

September 2014 

 

Penyelia : Muhammad Rezal Bin Dato’ Kamel Ariffin, PhD 

Institut : Institut Penyelidikan Matematik 

Penyelidikan ini akan memperkenalkan satu kaedah untuk membaik pulih satu sistem 

kripto berasaskan kekalutan sistem dinamik. Baptista telah mengeksploitasi ciri 

kekalutan pemetaan logistik �ሺݔሻ = ሺͳݔܾ −  ሻ untuk membentuk suatu sistemݔ

kripto. Sistem kripto ini mempunyai kemampuan untuk menghasilkan sifer-sifer 

berlainan walaupun merujuk kepada teks asal yang sama. Alvarez melalui serangan 

lembaran sekali sahaja telah berjaya menyerang sistem krito Baptista tersebut. 

Ariffin mencuba untuk mengubahsuai sistem kripto untuk meningkatkan 

keselamatan asal sistem kripto Baptista. Rhouma mengenalpasti kelemahan pada 

sistem yang diubahsuai oleh Ariffin kemukakan dalam langkah 4 prosedur 

penyulitan. Ianya bukan operasi satu ke satu. Penyelidikan adalah berdasarkan 

kepada kajian Fraktal dan Sistem Terlelar (IFS), yang memerlukan kajian yang 

mendalam terhadap fraktal, kekalutan dan kriptografi untuk membantu dalam 

mencapai objektif kajian. Algoritma dibangunkan untuk mengatasi serangan 

lembaran sekali sahaja. Sistem kripto jenis Baptista yang diubah suai mengalami 

perkembangan mesej yang bertentangan dengan kaedah konvensional yang sistem 

kripto simetri. Untuk ini kami mengkaji idea pengekodan Huffman. Seterusnya, satu 

algoritma mampatan baru telah dibangunkan mengunakan idea yang diguna pakai 

dalam pengekodan Huffman. Akhir sekali, algoritma mampatan yang dibangunkan 

ini telah digunakan keatas sistem kripto Baptista yang telah diubahsuai sebagai 

memungkinkan sistem kripto Baptista diguna pakai dan disamping memberikan 

nisbah mampatan yang lebih baik. 
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CHAPTER 1 

INTRODUCTION 

1.1 Information Theory 

The father of information theory, Claude E. Shannon has developed the theoretical 

framework for the information theory, shortly after the end of Second World War in 

1948 in a seminar paper entitled “A Mathematical Theory of Communication”. He 

had presented all the main theoretical ingredients of modern information theory in 

this paper. In particular, as we will see later, Shannon formulated and provided 

proofs for the two main coding theorems. 

1.1.1 Shannon Paradigm 

Shannon theory of communication is based on the so-called Shannon Paradigm, 

illustrated below: 

 

 

 

 

 

 

Figure 1.1.1 Shannon Paradigm 

The source produces a message (chosen at random) which is sent to a receiver 

through an imperfect communication channel. Information can be generated by a 

sequence of symbols, from the source which may come from different medium, 

which may appear as random to another party or receiver. In other words, before the 

message is sent to the receiver, there is some “uncertainty” about what will next 

message be or sometimes known as the missing information. After the message has 

been received, the corresponding “uncertainty” will be measured and removed. Then, 

with some probabilistic formula, the information will be measured by this reduction 

in uncertainty. Entropy will be introduced after this. 

In real life, physical channels are imperfect due to the existence of some form of 

noise. This means that the receiver may receive a message that is already damaged, 

as a result of the message being sent in readily damaged form: the damage is 

unpredictable by either the receiver or the sender of the message.  

1.2 Symmetric Chaos Cryptosystem 

1.2.1 Symmetric Cryptography (Private-Key Cryptography) 

Symmetric cryptography also known as private-key cryptography is a branch of 

cryptography study which acts as a single private key to encrypt and decrypt data. 

Any individual that has the key can use it to encrypt and decrypt data. It is also not 

possible for a person who views the encrypted data with a symmetric cipher to be 

able to do so without having access to the key used to encrypt it in the first place. 

They are also referred to as block ciphers. Symmetric cryptography algorithms are 

typically faster and are suitable to process large streams of data. 

Source 

 

Channel Receiver 
message 
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Symmetric key ciphers use the same key to both encrypt and decrypt data. This type 

of cipher is valuable because it is relatively inexpensive to produce, the key tend to 

be much smaller for the level of protection they afford and the algorithms are 

relatively inexpensive to process. 

Here, a private key cryptosystem analogy will be illustrated. Symmetric-key 

encryption provides secrecy when two parties, say Alice and Bob, communicate. An 

adversary who intercepts a message should not get any significant information about 

its contents. Symmetric-key algorithms are generally much less computationally 

intensive than asymmetric key algorithms. It is known as symmetric encryption and 

decryption, because both communication partners use the same key k for encryption 

and decryption. The encryption and decryption algorithm E and D are publicly 

known. Anyone can decrypt a ciphertext, if he or she knows the key. Thus the key k 

has to be kept secret. 

 

 

 

 

 

 

 

 

Figure 1.2.1 Analogy Symmetric-key Cryptosystem 

In practice, asymmetric key algorithms are typically hundreds to thousands times 

slower than symmetric key algorithms. One disadvantage of symmetric-key 

algorithms is the requirement of a shared secret key, with one copy at each end. In 

order to ensure secured communications between everyone in the population of n 

people, a total of 
[௡ሺ௡−ଵሻ]ଶ  keys are needed, which is the total number of possible 

communication channels. To limit the impact of a potential discovery by a 

cryptographic adversary, the users should be changed regularly and kept secure 

during distribution and in service. The process of selecting, distributing and storing 

keys is known as key management, and is very difficult to achieve reliably and 

securely. 

The modern study of symmetric key ciphers related to the study of block ciphers and 

stream ciphers and also to their applications. Block ciphers take input as a block of 

plaintext and key, and generate output as a block of ciphertext of the same size. Since 

the message is always longer than a single block, some method of knitting the block 

is required. Several methods have been developed with better security. The Data 

Encryption Standard (DES) and the Advanced Encryption Standard (AES) are the 

two block cipher designs that have been created by the US government. 
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1.2.2 Exponent Lyapunov 

Let two points in a space ݔ଴ and ݔ଴ +  ଴, where the two points will generate anݔ∆

orbit in space, based on an equation or a system of equations. This orbit is assumed 

to use time as its parameter. If we use one of the orbits as the reference orbit, the 

separation between the two orbits can also be assumed to use time as a parameter. 

Since the system may become sensitive at certain parts of the system (such as the 

logistic maps), this separation also serves as the function of the initial point location 

and comes in the form of ∆ݔ଴ሺݔ଴,  ሻ. In a system with an attractors fixed point orݐ

periodic attractors, ∆ݔ଴ሺݔ଴,  ሻ will vanish after a time interval. If a system is notݐ

stable, the orbits will diverge in exponent for a while, but then stabilized again. For 

chaotic points, ∆ݔ଴ሺݔ଴,  ሻ function will be erratic. To study the rate of divergence ofݐ

two originally close points, we will use Lyapunov exponent which is given by: � = ݈�݉�→∞,∆௫బ→଴ ͳݐ ݈݊ ,଴ݔ∆ሺݔ∆|  ଴ݔ∆|ሻݐ                                   ሺͳ.ʹ.ʹሻ 

For practical purposes, Lyapunov exponents are used to characterize the Chaotic. 

The orbits of a mapping is said to have its chaotic features if the Lyapunov 

exponent, � the mapping is positive (i.e. � >  Ͳ). 

Consider a dynamic system with dimension 1 ݂ ∶ ܫ → < � When .ܫ  Ͳ, ∀� > Ͳ, ∃݊ଵ, ݊ଶ ∈ ℕ, ݔ∃ ∈ �௡భ, ௡మ , ∀݊ ∈ [݊ଵ, ݊ଶ], ,ଵݖ∀ ଶݖ ∈ �௡భ, ௡మ , 
 expሺ� − �ሻ݊|ݖଵ − |ଶݖ  < |݂௡ሺݖଵሻ −  ݂௡ሺݖଶሻ| < expሺ� + �ሻ݊|ݖଵ −  .|ଶݖ 

These means that the initial distance |ݖଵ −  ଶ| between any two pointsݖ 

(which is an element of the neighborhood �௡భ, ௡మ for point ݔ) will increase at least exp ሺ� − �ሻ݊ times after ݊ iteration, 

1.2.3 Chaos Dynamical System 

Modern telecommunication networks, especially with the internet and mobile phone 

network expanding its limits and the possible methods of communication and 

transmission of information. With the increasingly rapid growth of this, there is an 

escalating need to ensure that the information to be in transmission made known only 

to the parties required only. Therefore, the current cryptographic techniques, gaining 

attention, and indirectly causes drastic change in the results of this research in 

cryptography. (Stinson D.R. 1995), (Menzes G.J. et al. 1977). 

Since the 1990s, many researchers have observed an interesting relationship between 

chaos and cryptography. For example, sensitive to its initial value and has a 

cascading trajectory that covers the entire interval seems to be a classic model fulfills 

confusion and diffusion given by Shannon. (Shannon C.E. 1949). 

“A transformation that has a good mix often formed by the combination of 

two simple operations are not cumulative. For example, Hopf has shown that 

a powder is kneaded in such a way can be blended with a sequence of 

operations. Flour is kneaded initially stocked to be a thin layer, then folded in 

two and continued operation of the fold, etc” 
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From the above statement, clearly shows that Shannon had actually discussed a mean 

toward chaos by stretching and then folding the information. This is a method that 

has been known in chaos theory (Devaney R. L. 1989). In fact, it is a basic rule to 

implement one or more non-linear mapping to design a modern ciphers, a non-linear 

mapping which can be considered as discrete values or discrete time representation 

of a chaotic system. As an effort to find the correlation between the latest encryption 

techniques and a study of the chaotic system of chaos and the AES cipher system 

was conducted. (Ruggiero D. et al. 2004), (Kocarev L. et al. 2004) 

In order to discuss the relationship between chaotic dynamic system and its potential 

to form a cryptosystem, mathematical characteristics of chaotic dynamic system will 

be the core of discussion. Following denotes the dynamic system  ܺሺ݇ + ͳሻ = ݂(ܺሺ݇ሻ), ܺሺͲሻ ∈ ,ܫ ݇ = Ͳ,ͳ,ʹ, …                              ሺͳ.ʹ.͵ሻ 

where ܫ is either interval unity (Hatbusu T. et al. 1991) or square unity (Fridrich J. 

1998) and  ݂: ܫ →  is non-linear continuous functions. The chaos of a dynamic ܫ

system associated with the chaotic dynamic system Lyapunov's exponent. 

Lyapunov's exponent measures the strength of the sensitivity of the dynamic system 

of initial value. If a dynamic system is chaotic on the interval ܫ, the existence of 

periodic points is limited to a set of zero measure. Next, it can be guaranteed that all 

periodic points of a chaotic dynamical system ݂ is characteristically rejected 

(Devaney R.L. 1989) is even a trajectory ܺሺ݇ሻ will approach to a periodic cycle of a 

value ݇, it would avoid the cycle of the index that is greater than ݇. 

Apart from having the knowledge of the periodic points, should we want to use the 

output of a chaotic dynamical system for the purpose of encryption, we will need to 

know the characteristics of output distribution. Previous studies and mathematical 

techniques related to it are available (Collet P. et al.1980). 

1.2.4 Chaos based Symmetric Cryptosystem 

Many of the features found in a chaotic dynamic system have its equivalence in 

cryptography. Table 1.2.3 shows the characteristics of equivalence. 

Table 1.2.3 Desirable characteristics of Chaos and Cryptography 

Chaos 

property 

Cryptographic 

property 

Explanation 

Ergodic Confusion The output has the same 

distribution for any input 

Sensitive to 

initial values 

/ parameters 

control 

Diffusion with very small 

changes in the original 

text / secret key 

A very small change in 

input can produce large 

changes in output 

Mixed 

characteristic 

Diffusion occurs with 

very small changes in the 

original text block from 

the entire original text 

A very small change in 

the local area can 

produce a very large 

change in the whole 

space 
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Dynamics can 

be determined 

Pseudo-randomness 

can be determined 

A process can be determined 

can produce random 

behaviour (pseudo-random) 

Structural 

complexity 

Complexity (the 

attack on the 

algorithm) 

A simple process has a very 

high rate of complexity 

 

In 1998, Baptista proposes a chaos-based cryptography system that uses a dynamic 

system with ergodic properties of the chaotic logistic mapping. Each "letter" will 

have a particular site in the interval [0,1]. Cryptographic system is implemented by 

iterating the logistic map. When the iteration is an element of a site specific alphabet, 

the number of iterations passed, ݊ will be taken. Then a random number will be 

generated, ݇ and compared with ݊. If ݇ > ݊ then ݊ will be different cipher text of 

identical letters. Then, someone who wants to overcome these cryptographic systems 

will have to deal with text ciphertexts ciphers that can represent different characters. 

Therefore, the attacker is then confronted with a high probability of text ciphers 

(because each text ciphers have the same probability to represent any letter). 

In 2003, Alvarez has reviewed the cryptographic system in his paper entitled 

“Cryptanalysis of a Discrete Chaotic Cryptosystem Using External Key” and has 

produced a one-time pad attack, a type of attack that can occur once the original text 

is known. This attack successfully overcomes chaos-based cryptography system 

dynamic system proposed by Baptista. This attack has been exploited successfully 

for text ciphers with ergodic nature that resembles a one-time pad attack by assuming 

the key. Method of attack is based on the symbolic dynamics of one-dimensional 

quadratic mapping. 

Since Baptista’s original proposal, many variant cryptosystems based on chaotic 

maps have been proposed for cryptographic implementation. In 2008, Ariffin 

attempted to modify the cryptosystem to enhance the performance of the original 

Baptista’s cryptosystem via an example. Rhouma identified a flaw in the example 

that Ariffin put forward, specifically in step 4 of the encryption procedure, where it 

does not implement one-to one operation, resulting in failure to decrypt the 

ciphertext (Rhouma R. 2009). 

A fractal set is a set that fits a physical world model better than regular arrangements 

involving smooth curves and surfaces. Iterated Function Systems (IFS) provide a 

convenient framework for the description, classification, and communication of 

fractals. Due to their complicated mathematical structure and deterministic nature, 

especially their recursive construction, it has many applications in physics, 

chemistry, biology, engineering, and recently in cryptographic systems. In this thesis 

a fractal map is discretized in order for it to be suitable for cryptographic 

applications. The discritized map will be utilized to enhance a cryptosystem utilizing 

the Baptista mechanism. Each resulting consecutive ciphertext from the Baptista 

encryption technique will be paired to represent a coordinate on the ݕݔ-plane. A 

discretized fractal map will then be in use to continue with the encryption operation. 

The result will be resistant toward Alvarez’s one time pad attack. 

Mathematical and empirical analyses are conducted to determine the security of our 

suggested cryptosystem. Careful considerations are conducted during the design of 
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this cryptosystem such that weaknesses that arise from the Baptista design will not 

occur. Mechanisms explaining the design of this new cryptosystem such that it does 

not inherit the weaknesses of the previous Baptista design are also detailed out. 

1.2.5 Background for Fractal and Iterated Function System (IFS) 

The theory of fractal sets is a modern domain of research. Iterated function systems 

have been used to define fractals. Such systems consist of sets of equations, which 

represent a rotation, a translation, and a scaling. These equations can generate 

complicated fractal images. 

Given a metric space ሺܺ, ݀ሻ, the space of all nonempty compact subset of ܺ is called 

the Hausdorff space ܪሺܺሻ. The Hausdorff distance h is defined on ܪሺܺሻ by, ℎሺܲ, ܳሻ = �}݂݊�}ݔܽ݉ > Ͳ; ܳ ⊂ ��ሺܲሻ}, �݂݊{� > Ͳ; ܲ ⊂ ��ሺܳሻ}},         ሺͳ.ʹ.ͷሻ 

Definition 1.2.5.1  

For any two metric spaces ሺܺ, ݀௑ሻ and ሺܻ, ݀௒ሻ, a transformation �: ܺ → ܻ is said to 

be a contradiction if and only if there exists a real number ݏ, Ͳ ≤ ݏ ≤ ͳ, such that ݀௬ ቀ�ሺݔ௜ሻ, ቁ(௝ݔ)� < ௜ݔ)௫݀ݏ , ௜ݔ ௝), for anyݔ , ௝ݔ ∈ ܺ, where ݏ is the contractivity 

factor for �. 

The following theorem, known as the contraction mapping theorem, states an 

important property of contractive transformations of a complete metric space within 

itself. 

Theorem 1.2.5.1 (Barnsley M. F. 1993) 

Let �: ܺ → ܻ be a contraction on a complete metric space ሺܺ, ݀ሻ. Then, there exists a 

unique point ݔ� ∈ ܺ such that �(ݔ�) = ݔ Furthermore, for any .�ݔ ∈ ܺ, have lim௡→∞ �௢� =  .� where �௢� denotes the ݊-fold composition of ,�ݔ

A fractal is constructed from a collage of transformed copies of itself. It is inherently 

self-similar and infinitely scalable. The transformation is performed by a set of affine 

maps. An affine mapping of the plane is a combination of a rotation, scaling, a sheer 

and a translation in ℝଶ. 

Definition 1.2.5.2  

Any affine transformation �: ℝଶ → ℝଶ of the plane has the form, ቀݒݑቁ = � [ݕݔ] = ቀܽ ܾܿ ݀ቁ [ݕݔ] + [݂݁] = ⃗ܺܣ + ܾ                          ሺͳ.ʹ.ͷ.ʹ.ͳሻ 

where ሺݑ, ,ሻݒ ሺݔ, ሻݕ ∈ ℝଶ, are any point on a plane. 

By considering a metric space ሺܺ, ݀ሻ and a finite set of contractive transformation �௡: ܺ → ܺ, ͳ ≤ ݊ ≤ �, with respective contractivity factor ݏ௡, proceed to define a 

transformation ܤ: ሺܺሻܪ →  ,ሺܺሻ is the collection of nonemptyܪ ሺܺሻ, whereܪ

compact subsets of ܺ, by : 
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ܣ = ሻܣሺܤ = ⋃ �௜ሺܳሻ ݂ݕ݊ܽ ݎ݋ ܳ ∈ ሺܺሻ �௜=ଵܪ                    ሺͳ.ʹ.ͷ.ʹ.ʹሻ 

It is easily shown that ܤ is a contraction, with contractivity factor ݏ = maxଵ<௡<�  ሺͳ.ʹ.ͷ.ʹ.͵ሻ                                                  ݊ݏ

The mapping B is usually referred to as the Hutchinson operator. It follows from the 

contraction mapping theorem that, if ሺܺ, ܣ has a unique fixed point ܤ ,ሻ is completeݕ ∈  .ሺܺሻ, satisfying the remarkable self covering conditionܪ

ܣ = ሻܣሺܤ = ⋃ �௜ሺܣሻ�௜=ଵ                                      ሺͳ.ʹ.ͷ.ʹ.Ͷሻ 

1.2.6 The Relationship between Fractal, Chaos and Cryptography  

Chaos theory has a close tie-in with fractals. Most of the attractors produced by 

chaotic dynamical systems are fractal sets. For example, the Lorenz attractor is a 

fractal of Hausdorff dimension equal to 2.073. The chaotic behavior of a fractal is 

used to encrypt data, in fractal cryptography there are no rounds, iterations are used 

instead, and the security is based in the non-determinism of a recursive function (for 

calculating the n-th iteration of a function you need to calculate ሺ݊ − ͳሻiteration 

first) 

In the literature, fractal theory has proved to be suitable in many fields and 

particularly interested in various applications of image processing. First important 

advances are due to Barnsley M.F., who introduced the term of Iterated Function 

System (IFS) for the first time based on the self-similarity of fractal sets (Barsley 

M.F. 1996). Barnsley’s work assumes that many objects can be closely approximated 

by self-similarity objects that might be generated by the use of IFS simple 

transformations. From this assumption, the IFS can be seen as a relationship between 

the whole image and its parts, thus exploiting the similarities that exist between an 

image and its smaller parts. 

Consider that an IFS consisting of the maps, ݓ௜ሺݔ, ሻݕ = (ܽ௜ ܾ௜ܿ௜ ݀௜) ቀݕݔቁ + ቀ݁௜݂௜ ቁ , � = ͳ,ʹ, … , �                           ሺͳ.ʹ.͸.ͳሻ 

for � = ͳ. That is, ݓଵ = ቀݔ௜+ଵݕ௜+ଵቁ = ቀܽ ܾܿ ݀ቁ ቀݔ௜ݕ௜ቁ + ቀ݂݁ቁ,                                    ሺͳ.ʹ.͸.ʹሻ 

and let the matrix ܣ = ቀܽ ܾܿ ݀ቁ                                                  ሺͳ.ʹ.͸.͵ሻ 

consist of only elements within set {Ͳ, ͳ}. 

Next, the ʹ × ͳ matrix 
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ܤ = ቀݔ௜ݕ௜ቁ                                                     ሺͳ.ʹ.͸.Ͷሻ 

will consist of Baptista ciphertext values, and the matrix ܥ = ቀ݂݁ቁ                                                     ሺͳ.ʹ.͸.ͷሻ 

will be equal to zero (i.e. ܥ = Ͳ). 

1.3     Thesis Organization   

This thesis begins with the discussion on this research direction and notations will 

often be used. In Chapter two, the compression technique will be introduced. 

Introduction to data compression techniques will be classified broadly into their own 

category. In Chapter three, the definitions that will be used in a new approach to 

compression algorithm are presented. We will also discuss the options that we have 

on compression schemes. In Chapter four, researches related to chaotic dynamical 

systems, logistics and chaos mapping are discussed. This research aims to give a 

treatment for the one-time pad attack and for encryption procedures to implement 

one-to-one operation. The definitions and mathematical explanations for this 

phenomenon will also be introduced. We give an algorithm, if satisfied by a ‘counter 
measure’ method, would result in this cryptosystem being invulnerable against the 
one-time pad attack. As for the encryption procedures, we have implemented one-to-

one operation to overcome the flaw in the example that Ariffin (2008) has put 

forward in step 4 of the encryption procedure. Next, a strategy has been developed, 

and if there is a ‘counter measure’ method that can meet the requirements in the 

strategy, then this strategy has facilitated the deployment of the practical possibility 

of Baptista cryptosystem. An example of a counter measure method that meets the 

requirements of these strategies is also given in this chapter. In the final chapter, 

conclusions for study are presented and further research that may take place to give 

this area a further depth has been recommended. 

1.4     Research Objective 

The objectives of this thesis are to 

i. design an enhanced compression technique. 

ii. design a formal treatment method to overcome attacks on the one-time pad 

attack. 

iii. design methods to overcome the flaw found in the example that Ariffin has 

put forward in step 4 of the encryption procedure. 
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