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In this research, the block methods have been used to solve the second order linear 

boundary value problems of Dirichlet and Neumann type. Mathematical problems which 

involve higher order ordinary differential equations were likely to be reduced into the 

system of first order equations. However, these block methods will solve the problems 

directly without reducing it into the first order equations using constant step size. 

 

There are three methods that have been used in this research which are two point one-

step block method, three point one-step block method and four point one-step block 

method. Each of these methods will be implemented to solve the second order linear 

boundary value problems with two different types of boundary conditions i.e. Dirichlet 

and Neumann type. 

 

Those three methods will be implemented together with the linear shooting technique to 

construct the numerical solution. The stability for each method will be presented. 

Numerical results of the methods are compared with the existing methods. 

 

As a conclusion, the proposed block methods can give better and comparable accuracy 

with the advantage of less costly. Thus, the proposed block methods are suitable to solve 

the second order linear boundary value problems of Dirichlet and Neumann type 

directly. 
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KAEDAH SECARA LANGSUNG BLOK SATU-LANGKAH BAGI 

PENYELESAIAN MASALAH NILAI SEMPADAN LINEAR JENIS DIRICHLET 

DAN NEUMANN 

Oleh 

 

MOHD MUGHTI BIN HASNI 

 

Februari 2014 

 

Pengerusi: Profesor Madya Zanariah Binti Abdul Majid, PhD 

Fakulti: Institut Penyelidikan Matematik 

 

Dalam kajian ini, kaedah blok telah digunakan untuk menyelesaikan masalah nilai 

sempadan linear peringkat kedua jenis Dirichlet dan Neumann. Secara kebiasaannya, 

masalah  matematik yang melibatkan peringkat persamaan pembezaan biasa yang lebih 

tinggi akan diubah ke dalam bentuk sistem persamaan peringkat pertama. Walau 

bagaimanapun, kaedah blok ini  akan menyelesaikan ini secara langsung tanpa perlu 

mengubah ke dalam bentuk sistem persamaan peringkat pertama dengan menggunakan 

saiz langkah yang malar. 

 

Terdapat tiga kaedah yang telah digunakan dalam kajian ini iaitu kaedah blok dua titik 

satu-langkah, kaedah blok tiga titik satu-langkah dan kaedah blok empat titik satu-

langkah. Setiap satu daripada kaedah ini akan menyelesaikan masalah nilai sempadan 

linear peringkat kedua dengan dua jenis keadaan sempadan iaitu jenis Dirichlet dan 

Neumann. 

 

Ketiga-tiga kaedah ini akan dilaksanakan bersama-sama dengan teknik tembakan linear 

untuk membina penyelesaian berangka. Kestabilan bagi setiap kaedah juga akan 

dibentangkan. Keputusan penyelesaian berangka bagi kaedah tersebut akan 

dibandingkan dengan kaedah yang sedia ada. 

 

Sebagai kesimpulan, kaedah blok yang dicadangkan ini mampu memberi ketepatan yang 

setanding dan lebih baik dengan kelebihannya yang kurang mahal. Lantas, kaedah blok 

yang dicadangkan adalah sesuai untuk menyelesaikan masalah nilai sempadan linear 

peringkat kedua jenis Dirichlet dan Neumann secara langsung. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Introduction 

 

In the fields of science, many physical phenomena have been modeled mathematically to 

provide a better understanding of the phenomena. These mathematical models often 

yield an equation that contains some derivatives of an unknown function. This kind of 

equation is called a differential equation. Differential equation plays an important part in 

wide variety of subjects (i.e. physical sciences, economics, medicine, psychology and 

operation research). 

 

Differential equations can be divided into two categories which are ordinary differential 

equations (ODEs) and partial differential equations (PDEs). ODEs are differential 

equations which deal with function of single variables and its derivatives. In contrast to 

the ODEs, PDEs are differential equations which deal with multivariable functions and 

their partial derivatives. 

 

There are many types of differential equation. One of them is a boundary value problems 

(BVPs). BVPs are subfields of differential equations. BVPs are common thing in diverse 

fields (i.e. science, engineering, technology, boundary layer theory in fluid mechanics, 

heat power transmission theory, space technology and optimization theory). Many 

researchers have carried out their research for solving this kind of problems. Some of 

them have developed powerful methods for solving the BVPs numerically. BVPs and 

initial value problems (IVPs) are almost similar but differ in terms of their boundary 

conditions. BVPs have a condition specified at their extreme boundaries, whereas IVPs 

have all the conditions specified by the same value which is the initial value. In terms of 

their solutions, BVPs can give whether a unique solution, no solution or many solutions 

compared to the IVPs which only give unique solution.  

 

Usually, the well-known one-step method such as the Euler method computes only one 

approximation value at a time. The same thing goes to multistep method such as the 

Adam Moulton method that computes only one approximation value at a time. However, 

this is different with the block method that computes more than one approximation 

values simultaneously at a time. A block is a set of new approximation values which are 

evaluated during each application of the iteration formula. Block method is a numerical 

method that computes n approximation values at a time. A n points block will produce n 

new function values simultaneously at each computational steps. The block method can 

be categorized as one-step block method or multistep block method. One-step block 

methods only use one previous information from the last block to obtain n 

approximation values in the next block. The multistep block methods use several 

previous information from the last preceding block to obtain n approximation values in 

the next block. Let yn denotes the approximation to the exact solution y(xn) at x = xn. For 

n = ms, m = 0,1, ... ,s, a block of solution can be represented by the vector                     

Ym = (yn+1, yn+2, … , yn+s)
T
 with yn+i (1 ≤ i ≤ s) is the approximate solution at                 
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xn+i = xn + ih, where xn is the right-hand end point of the previous block. If the block 

method computes the values of yn+i, where (1 ≤ i ≤ s) from the value of yn only, then it is 

called as one-step method. If that is not the case, the block method may also refer to 

several or all points in the preceding block which is called as multistep method. 

 

1.2 Boundary Value Problem 

 

Boundary value problems (BVPs) that would be solved in this research is an ODEs 

together with a set of additional restraints, called the boundary conditions. A solution to 

BVPs is a solution to the differential equations which also satisfies the boundary 

conditions. This is the type of problems where the unknown function or its derivatives 

are given at two different points (i.e. x = a and x = b). There are many types of BVPs. 

Some of them can be distinguished from their boundary conditions. Usually, there are 

three common types of boundary conditions which are the Dirichlet, Neumann and 

mixed boundary conditions.  

 

Suppose the linear second order BVPs with the different boundary conditions as follows: 

     ,xryxqyxpy    ,0xq  ,,ba  
(1.3.1) 

First type of boundary conditions (Dirichlet boundary conditions): 

  ay  and   ,by  (1.3.2) 

where   and   are constants. 

Second type of boundary conditions (Neumann boundary conditions): 

   ay and   , by  (1.3.3) 

where   and   are constants. 

Third type of boundary conditions (mixed boundary conditions): 

 )()( 1 aycay and ,)()( 2  bycby  (1.3.4) 

where  ,   , 1c  and 2c are constants. 

Refer Fausett (2003). 

 

In this investigation, only two types of boundary conditions will be considered which are 

the Dirichlet and Neumann boundary conditions. BVPs also can be distinguished 

whether it is linear or nonlinear. When the function of ),,( yyxf  has in the form of 

     ,),,( xryxqyxpyyxf   then the ),,( yyxfy   is called linear differential 

equation. 

 

Theorem 1.1 (Burden and Faires (1993)) 

 

If the linear BVPs in (1.3.1) is continuous on the set 

   yybxayyxD ,,,, , 

and the partial derivatives 
yf and 'y

f are also continuous on D. If 

i.   0,, yyxf y for all   Dyyx ,, , and 

ii. a constant M exists, with 
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  ,,,' Myyxf
y

 for all   .,, Dyyx   

Then, the BVPs has a unique solution. Readers can refer to Keller (1968) for the proof 

of this theorem. 

 

Corollary 1.1 (Burden and Faires (1993)) 

 

If the linear BVP in (1.3.1) satisfies 

i. p(x), q(x), and r(x) are continuous on  ba, , 

ii. q(x) > 0 on  ba, . 

Then, the BVPs has a unique solution. 

 

1.3 Problem statement 

 

The problems that will be considered in this research were equation (1.3.1) with two 

types of boundary conditions which are (1.3.2) and (1.3.3). Boundary value problems 

have become one of the main interests among the researchers nowadays. The difficulties 

when solving the BVPs arise from the existence of the boundary conditions at their 

extreme points, unlike the IVPs which have all the information specified in their initial 

conditions. To overcome this difficulty, the already well-known method such as 

shooting and finite difference method are often employed by several researchers such as            

Ha (2001) and Tirmizi and Twizell (2002). Ha (2001) proposes a new nonlinear 

shooting method for solving the nonlinear two-point boundary value problems.            

Ha (2001) has used the fourth order Runge-Kutta method and the Newton method 

implemented with the new nonlinear shooting method. Another researcher who has 

implemented the nonlinear shooting method was Phang et al. (2011). Phang et al. (2011) 

use the multistep block method and the three-step iterative method implemented with the 

nonlinear shooting technique for solving the second order nonlinear BVPs. However, 

there is another type of shooting technique which is linear shooting technique use mainly 

for solving linear two-point BVPs. Burden and Faires (1993) distinguish the two types 

of shooting technique which is the linear shooting method for solving linear second 

order BVPs and the nonlinear shooting method for solving nonlinear second order 

BVPs. Basically, the linear shooting technique is normally used for solving linear BVPs 

although the nonlinear shooting technique also could be used. Majid et al. (2012b), 

Mukhtar et al. (2011) and Mukhtar et al. (2012) have proposed the two-point, three-point 

and four point one-step block method for solving second order ODEs. In this research, 

we would like to extend the two point, three point and four point one-step block method 

implements with the linear shooting technique for solving linear two point second order 

BVPs. The numerical comparison will be provided to show the advantages of using the 

linear shooting technique over the nonlinear shooting technique for solving linear second 

order BVPs.  

 

1.4 Objective of the thesis 

 

The purpose of this research is to propose three types of block method for solving BVPs 

of Dirichlet and Neumann type. The objectives of this research are: 
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i. To apply the one-step block method for solving second order linear BVPs 

directly. 

ii. To develop algorithm for one-step block method implement with linear 

shooting technique for solving second order two point linear BVPs of 

Dirichlet type directly using constant step size. 

iii. To develop algorithm for one-step block method implement with linear 

shooting technique for solving second order two point linear BVPs of 

Neumann type directly using constant step size. 

iv. To determine the stability analysis, order, error constant and the stability 

region for each method in this research. 

v. To discuss and analyze the numerical solution obtain by linear shooting 

technique. 

 

1.5 Scope of Study 

 

The scope of this research will be mainly focused on solving the single second order 

linear two point BVPs of the Dirichlet and Neumann types by one-step block methods. 

Only three types of method with different orders will be considered in this research 

which are two, three and four point one-step block method with the order of three, four 

and five respectively. In this research, the step size used is constant.  

 

1.6 Methodology 

 

The direct two, three and four point one-step block method will be used in this research 

for solving second order linear BVP. The stability for each method will be tested by 

determining its zero stability, consistency and convergence. Each one-step block method 

will be implemented with the linear shooting technique. For n points one-step block 

method where n = 2, 3, and 4, the interval of [a, b] will be evenly separated for each 

block contains n points. The n points one-step block method will compute n 

approximation values by using only one point (right-hand end point) from the preceding 

block.  These block methods will be used to solve the problem directly without reducing 

it into the system of first order ODEs. The C language is used to develop the codes for 

these three types of method which are two, three and four points one-step block method. 

With these codes, we will obtain the accuracy, total number of function call, total 

number of steps and the computational time. Then, comparison will be made with the 

Runge-Kutta order four and several other existing methods. 

   

1.7 Outline of the thesis 

 

This thesis basically can be divided into six chapters. Chapter 1 covers for the 

introductory part. Problem statements are introduced in this chapter. The main objectives 

of this thesis and the scope of this ressearch are also given in this chapter. 

 

Chapter 2 will cover the literature review and the basic mathematical concepts. Chapter 

3 and 4 present the two and three point one-step block method respectively, for solving 

linear BVPs of Dirichlet and Neumann type directly using constant step size. The 

derivation, stability analysis, order, error constant and the stability region of the two and 
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three point one-step block method is included in Chapter 3 and 4 respectively. The 

implementation and the algorithm for the two point one-step block method are given in 

Chapter 3. The numerical results and the discussion will also be presented. Chapter 5 

shows the derivation of the four point one-step block method. In this chapter, we will 

show the stability analysis, order, error constant, stability region and the numerical 

results. Finally, the discussion of the method will end this chapter. 

 

Chapter 6 is the last chapter in this thesis and all the finding obtained throughout this 

research will be concluded and the suggestion for the future work is also provided. 
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