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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of 

the requirement for the degree of Master of Science 

 

BLOCK ONE-STEP METHODS FOR SOLVING STIFF DIFFERENTIAL 

EQUATIONS 

 

By 

 

MUHAMMAD IZZAT ZAKWAN BIN MOHD ZABIDI 

 

September 2014 

 

Supervisor: Prof. Madya Zanariah Binti Abdul Majid, PHD 

Faculty: Institute for Mathematical Research 

 

In this research, both stiff ordinary differential equations (ODEs) and parabolic partial 

differential equation (PDEs) are solved using the A-stable one-step block method with 

Newton’s iteration with constant step size. 

 

Two-point block one-step method and three-point block one-step method had been 

proposed in this research. These two methods are used to approximate the solutions for 

stiff ODEs and parabolic PDEs at two and three points simultaneously. The 

implementation of these methods will be in predictor and corrector mode. The predictor 

formulae is formulated from the modified block method itself. Newton’s iteration is 

adapted in implementation of the block methods. The order, error constant, convergence 

and stability of each method are also discussed. 

 

This study also focused on solving parabolic PDEs. In order to solve parabolic PDEs 

using the proposed methods, we reduced the form of parabolic PDEs into ODEs by 

discretizing the parabolic equation using method of line. To illustrate the applicability of 

the proposed method, several numerical results are shown and compared with the results 

obtained by the existing methods  

 

In conclusion, the proposed methods are suitable for solving stiff ordinary differential 

equations at varies stepsizes especially when the stepsizes are larger. Other than that, the 

proposed method also appropriate for solving stiff parabolic partial differential equations 

due to acceptable results that had been produced. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Master Sains 

 

KAEDAH BLOK SATU-LANGKAH UNTUK PENYELESAIAN PERSAMAAN 

PEMBEZAAN KAKU  
 

Oleh 

 

MUHAMMAD IZZAT ZAKWAN BIN MOHD ZABIDI 

 

September 2014 
 

Penyelia : Prof. Madya Zanariah Binti Abdul Majid, PHD 

Fakulti : Institut Penyelidikan Matematik 

 

Dalam kajian ini, kedua-dua persamaan pembezaan biasa kaku dan persamaan 

pembezaan separa parabolik telah diselesaikan dengan menggunakan kaedah blok A-

stabil satu-langkah  dengan lelaran Newton menggunakan saiz langkah yang malar. 

 

Terdapat dua kaedah yang telah dicadangkan dalam kajian ini iaitu kaedah blok dua-titik 

satu-langkah dan kaedah blok tiga-titik satu-langkah. Kedua-dua kaedah telah digunakan 

untuk mengira penyelesaian bagi persamaan pembezaan biasa kaku dan persamaan 

pembezaan separan parabolik, pada dua dan tiga titik serentak. Dalam pelaksanaan 

kedua-dua keadah, kaedah peramal dan pembetul akan digunakan. Formula peramal 

dirumuskan daripada kaedah blok yang diubah suai sendiri. Lelaran Newton telah 

disesuaikan ke dalam setiap kaedah blok sebagai pembetul. Peringkat, pemalar ralat, 

penumpuan dan kestabilan setiap kaedah juga telah dibincangkan.  

 

Persamaan pembezaan separa dalam kajian ini akan lebih tertumpu kepada penyelesaian 

persamaan pembezaan separa parabolik. Untuk menyelesaikan persamaan pembezaan 

separa parabolik dengan menggunakan kaedah yang dicadangkan, kami akan 

menurunkan bentuk persamaan pembezaan separa parabolik kepada persamaan 

pembezaan biasa dengan mendiskretkan persamaan parabolik menggunakan kaedah 

garis. Beberapa keputusan berangka ditunjukkan untuk dibandingkan dengan keputusan 

yang diperolehi melalui kaedah yang sedia ada untuk menggambarkan kesesuaian 

kaedah yang dicadangkan. 

 

Secara keseluruhan, kita dapat membuat kesimpulan bahawa kaedah yang dicadangkan 

adalah sesuai untuk menyelesaikan persamaan pembezaan biasa kaku pada saiz langkah 

yang bervariasi terutama ketika saiz langkah adalah lebih besar. Selain daripada itu, 

kaedah yang dicadangkan juga sesuai untuk menyelesaikan persamaan pembezaan 

separa dengan memberi keputusan yang boleh diterima pakai.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Introduction 

 

Differential equations occur frequently in many branches of science, including pure and 

applied mathematics. Those branches of science are chemical process, mechanical 

processes and mathematical models of electrical. 

 

Differential equations can be classified into two parts which are ordinary differential 

equations (ODEs) and partial differential equations (PDEs). ODE is equation involving 

functions and derivatives while the PDEs involving functions and their partial 

derivatives. 

 

An ODE is a differential equation in which the unknown function is a function of a 

single independent variable. In the simplest form, the unknown function is a real or 

complex valued function, but more generally, it may be vector-valued or matrix-valued: 

this corresponds to a system of ODEs for a single function. When a different part of 

ODEs system has different time dependencies, this ODES equation become stiff ODEs. 

A small step size is needed in order to get an accurate result when we use existing 

numerical method except that the method is with A-stability properties. 

 

An unknown function will be called as PDEs when the unknown function is a function 

of various independent variables and involving partial derivatives. PDEs can be 

classified into three major categories which are elliptic, parabolic and hyperbolic.  

 

Elliptic PDEs can be considered as Poisson equation: 

 

    ),,(,,
2

2

2

2

yxfyx
y

u
yx

x

u











 
 

The function 𝑓(𝑥, 𝑦) describes the input to the problem on a plane 𝑅 whose boundary 

denote by 𝑆.  Typically, this type of equation arises in the study of various time-

dependent physical problems such as the energy potential of a point in a plane acted on 

by the force of gravity plane, two-dimensional steady-state problems involving in 

compressible fluids and steady-state heat distribution in a plane region. In the study of 

steady-state distribution of heat in a plane region requires that 𝑓(𝑥, 𝑦) = 0, in the result 

will simplify the Poisson equation into: 

 

    ,0,,
2
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2
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which is called Laplace’s equation. 

http://mathworld.wolfram.com/PartialDerivative.html
http://mathworld.wolfram.com/PartialDerivative.html
http://en.wikipedia.org/wiki/Vector-valued_function
http://en.wikipedia.org/wiki/Matrix_%28mathematics%29
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PDEs can be described as the physical problems of heat flow along the rod length l (see 

Figure 1.1), which is considered to have a uniform temperature in each element of the 

cross-section. In this condition, a perfectly insulated on a rod lateral surface is required. 

The form of parabolic PDEs: 

 

   ,,,
2

2
2 tx

x

u
tx

t

u









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where the constant  is determined by the heat-conductive properties of the material of 

which rod is composed and is assumed to be independent of the position in the rod. 

 

 
 

Figure 1.1 The flow of heat on a insulation rod. 

(Source Burden et al. 2005) 
 

Wave equation is an example of hyperbolic PDEs. For example, an elastic string of 

length l is stretched between two supports at the same horizontal level. When the string 

is in a motion state and its vibration is on a vertical plane, the vertical displacement 

 txu ,  of point x  at time t  satisfies the PDEs 
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,0 lx   ,0 l  

 

provided that damping effects are neglected and the amplitude is too large. 

In this research, we will only focus on solving parabolic PDEs using the proposed 

method. 

Source: Burden et al. (2005) 

 

1.2 Objective of the thesis 

 

The goal of this study is to propose two types of block method in solving stiff ODEs and 

parabolic PDEs. The objectives of the research are: 

a) To establish the order, convergent and stability region for two-point and three-

point block one-step methods. 

b) To formulate the two-point and three-point block one-step methods for solving 

stiff ODEs using constant step size. 

c) To formulate the two-point and three-point block one-step methods for solving 

parabolic PDEs using constant step size. 
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1.3 Scope of the study 

 

The scope of this study will focus on solving two types of problems, i.e. first order 

ODEs equations and one dimensional of PDEs. Two-point and three-point block one-

step methods will be implemented to compute both problems using constant step size. In 

addition, C program will be used to run the develop code of the methods. 

MATHEMATICA software will be used to plot the stability region of both block 

methods. 

 

1.4 Outline of the thesis 

 

There are six chapters in this thesis. In chapter one, the introduction of this thesis will be 

discussed. It covers the general introduction for differential equations, the main 

objectives of this thesis and the scope of study for this thesis. 

 

Chapter two consists of preliminary mathematical concepts and literature review of the 

previous work will be discussed at the end of this chapter. 

 

Chapter three presents the two-point block one-step method for solving stiff ODEs using 

constant step size.  The derivation of this method, stability region, order, algorithm of 

this method, problem tested and the implementation of this method also have been 

discussed in this chapter. Discussion will be at the end of this chapter. 

 

Chapter four deals with three-point block one-step method for solving stiff  ODEs using 

constant step size. The derivation of this method, stability region, order, algorithm of 

this method, problem tested and the implementation of this method have also been 

discussed in this chapter. This chapter will finish with the discussion of the results. 

 

Chapter five discusses the PDEs that will solve using block method. This chapter also 

includes the introduction of PDEs, method of lines, implementation of the block method, 

algorithm of the method and the test problem. The numerical results and discussion will 

be at the end this chapter. 

 

Chapter six consists of the summary and the findings of this study. It also provides 

recommendations for future work. 
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