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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfilment of the requirement for the degree of Doctor of Philosophy

DIFFERENTIAL GAMES DESCRIBED BY INFINITE SYSTEM OF
DIFFERENTIAL EQUATIONS

By

RISMAN MAT HASIM

April 2014

Chair: Gafurjan Ibragimov, PhD
Faculty: Science

Different approaches have been used by many researchers to solve control problems
for parabolic and hyperbolic partial differential equations. Some of these problems
can be reduced to the ones described by infinite systems of ordinary differential
equations by using the decomposition method. Therefore there is a significant
relationship between control problems described by partial differential equations
and those described by infinite system of differential equations.

We study three types of infinite systems. The first is infinite systems of first order
differential equations. The second system is infinite system of second order differ-
ential equations and the third system is infinite system of 2-systems of first order
differential equations.

In this thesis, we study the uniqueness and existence theorems for all systems then
we study control and differential game problems. For the first system, we study
a pursuit game of one pursuer and one evader and evasion differential game of
one evader from infinitely many pursuers in the case of integral constraints. For
the second system, we study an evasion differential game of one evader from finite
number of pursuers in the case of geometric constraints and for the third system,
we study a control problem.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

PERMAINAN PEMBEZAAN YANG DIHURAIKAN OLEH SISTEM
PERSAMAAN PEMBEZAAN YANG TIDAK TERHINGGA

Oleh

RISMAN MAT HASIM

April 2014

Pengerusi: Gafurjan Ibragimov, PhD
Fakulti: Sains

Pelbagai pendekatan telah digunakan oleh penyelidik untuk menyelesaikan kawalan
masalah untuk persamaan pembezaan separa parabolik dan hiperbolik. Sebaha-
gian daripada masalah ini boleh diturunkan kepada sistem persamaan pembezaan
biasa tak terhingga dengan menggunakan kaedah penguraian. Oleh itu, terdapat
hubungan yang signifikan antara kawalan masalah yang digambarkan oleh per-
samaan pembezaan separa dan sistem persamaan pembezaan tak terhingga.

Kami mengkaji tiga jenis sistem tak terhingga. Sistem yang pertama adalah sis-
tem tidak terhingga peringkat pertama. Sistem yang kedua adalah sistem tak
terhingga peringkat kedua dan sistem yang ketiga adalah sistem tak terhingga 2-
sistem peringkat pertama.

Dalam tesis ini, kami mengkaji keunikan dan kewujudan teorem untuk semua
sistem tersebut dan kemudian kami mengkaji kawalan dan masalah permainan
pembezaan. Untuk sistem yang pertama, kami mengkaji permainan pembezaan
pengelakan dalam kes kekangan kamiran. Bagi sistem yang kedua, kami mengkaji
permainan pembezaan pengelakan untuk satu mangsa dari sejumlah terhingga
pemangsa dalam kes kekangan geometrik dan untuk sistem yang ketiga, kami
mengkaji kawalan masalah.
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CHAPTER 1

INTRODUCTION

1.1 Background

Differential game constitutes a group of important mathematical problems related
to game theory and optimal control theory. It is a game that consists of two
players, a pursuer and evader with different goals. The goal of the pursuer is to
capture the evader in some sense while that of the evader is to avoid this capture.
For example, capture could be minimizing the distance as much as possible be-
tween the two players. The game consists of a model describing the behavior of the
players which is determined by the players’s input through their respective control
functions contained in the model. The model is usually a system of differential
equations and each player attempts to control the state of the system so as to
achieve his goal.

Differential game relates to optimal control theory in the sense that optimal control
problems consists of a single control function in the model and a single criterion
to be optimized. Differential game theory generalizes this to two controls and two
criteria, on for each player. Therefore, optimal control problem are regarded as
differential game involving only one player. Technically, control problem can be
extended to a differential game problem by introducing control function of the
second player to the game model. In both optimal control and differential game
problems, the control functions are normally subjected to constraints to reflect a
natural phenomenon.

Usually the constraints could be either geometric or integral. If players’s control
parameter belongs to a subset of Rn, then it is said to be subjected to a geometric
constraint. A constraint is referred to as integral if the resources of the player are
bounded.

Numerous applications of differential games signify it’s importance. It has been
applied to solve practical problems related to military operations, economics and
engineering among others. For example, it has been employed for missile guidance
system and military strategy. It has been used to solve problems related market,
financial and economy strategies. Other application includes searching building
for Intruders, traffic control and surgical operations.

Differential game problem that requires finding conditions for which the pursuer
can catch the evader is called pursuit problem. On the other hand, evasion problem
requires finding conditions for which the evader can avoid catch from the pursuer.
Pursuit and evasion differential games are played in an environment (space) where
the solution of the system of the differential equations or game model is exists.
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1.2 Preliminaries

1.2.1 Hilbert Space

Definition 1.1 Let X be a complex linear space. An inner-product on X is a
function 〈·, ·〉 : X ×X → C which satisfies the following axioms:

1. 〈y, x〉 = 〈x, y〉, the complete conjugate of 〈x, y〉
2. 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉
3. 〈λx, y〉 = λ〈x, y〉
4. 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 where x, y ∈ X.

An inner-product space is a linear space with an inner-product on it and is denoted
as (X, 〈·, ·〉).

(Chandrasekhara, 2002)

Example 1.1 Euclidean space Rn with the dot product

〈(x1, ..., xn), (y1, ..., yn)〉 =
n∑

k=1

xkyk,

is an inner product space.

(Pedersen, 2000)

Definition 1.2 A Sequence {xn} in Hilbert space (X, 〈·, ·〉) is called Cauchy se-
quence if for every positive real number ε > 0, there is a positive integer N(ε) > 0
such that ‖xm − xn‖ < ε for all natural numbers m,n > N(ε).

(Thomson et al., 2001)

Definition 1.3 A complete inner-product space is called a Hilbert space. In other
words, a Hilbert space is an inner-product space in which every Cauchy sequence
in the space converges to a point in the space.

(Ponnusamy, 2002)

Example 1.2 C is a Hilbert space with inner-product

〈x, y〉 =
n∑

k=1

xkȳk,

where x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) are in Cn

2
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Definition 1.4 Let X be a linear space. A norm on X is a real-valued function
‖ · ‖ on X satisfying the following axioms:

1. ‖x‖ > 0 ∀x ∈ X

2. ‖x‖ = 0 ↔ x = 0, zero element in X

3. ‖x + y‖ ≤ ‖x‖+ ‖y‖ ∀x, y ∈ X.

4. ‖αx‖ = |α|‖x‖ ∀x ∈ X and for all scalars α

A linear space X with a norm ‖·‖ on it is called a normed space (or normed linear
space). It is denoted by (X, ‖ · ‖). The norm is also referred to as the length of the
vector x.

(Chandrasekhara, 2002)

Definition 1.5 The sequence space lp (1 ≤ p ≤ ∞) for which norm for the se-
quence {zn} ∈ lp defined by

‖z‖p =

{
(
∑∞

n=1 |zn|p)1/p < ∞, if 1 ≤ p < ∞,
sup1≤n<∞|zn| < ∞, if p = ∞.

is normed space.

The norm defined for 1 ≤ p < ∞ is called lp norm and for p = ∞ is called l∞
norm.
(Ponnusamy, 2002).

Theorem 1.1 Every inner-product space is a normed linear space with norm de-
fined by ‖x‖ =

√
〈x, x〉.

Proof of this theorem, see (Chandrasekhara, 2002)

1.2.2 Measurable Function

Definition 1.6 The set {x = (x1, x2, ..., xn)| a < xi < b, i = 1, 2, ..., n} is called
n-cubes.

Definition 1.7 A subset N of Rn is called a null set (or set of measure zero) in
case N can be covered by a countable union of n-cubes whose total n-volume is less
than an arbitrarily prescribed number ε > 0.

Example 1.3 Any finite or countable infinite set of points in Rn has measure
zero.

Definition 1.8 Two functions f1(x) and f2(x) defined on A ⊂ Rn that differ in
value only on a null set are said to be equal almost everywhere on A.

3
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Definition 1.9 The measurable sets of Rn are defined as the members of the
smallest family of sets of Rn that contains all open sets, all closed sets, all null sets
of Rn and also every difference, and countable union, and countable intersection
of its members.

Definition 1.10 A real-valued function h(t) on a real interval J is called measur-
able in case for all real α and β, the set {t| t ∈ J, α < h(t) < β} is measurable in
R1.

If h(t) is measurable on J, there exist a closed subset C on which h(t) is continuous,
and we can require that the measure of J − C be arbitrarily small.
If h(t) is measurable on J then we can define the Lebesgue integral

∫
J h(t)dt by

considering appropriate limits of sums. The function h(t) is called integrable on
J if the integration of |h(t)| is finite real number.
A change of the values of h(t) on a null set does not effect the value of the integral.
If h(t) is piecewise continuous and J is compact the value of the Lebesgue integral
of h(t) is the same as that of the usual Riemann integral.

Definition 1.11 Let h(t) be integrable on the interval J = (t0, t1) and consider

H(t) =

∫ t

t0

h(s)ds for t0 ≤ t ≤ t1.

Such an indefinite integral H(t) defines an absolutely continuous function. An ab-
solutely continuous function can be proved to be continuous and to have a derivative
almost everywhere (everywhere on J except a null set) and there

d

dt
H(t) = h(t).

Every Lipschitz continuous function H(t) is absolutely continuous

Definition 1.12 The set of all real functions u(t) on an interval J for which∫
J |u(t)|pdt < ∞, 1 ≤ p < ∞, defines the space Lp. The norm ‖u‖p =

(∫
J |u(t)|pdt

)1/p

of the vector space Lp acquires a complete metric and Lp is a Banach Space (upon
identifying functions differing only on null sets, Lp becomes a complete normed
vector space).

1.3 Objectives of the thesis

The following are the objectives of the thesis:

• to prove existence and uniqueness theorem for infinite system of 2-systems
of first order Differential Equations.

{
ẋk = −αkxk − βkyk + w1k, xk(0) = xk0,
ẏk = −βkxk − αkyk + w2k, yk(0) = xk0,

k = 1, 2, ...

4
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in the Hilbert Space l2, αk, βk are real numbers, αk ≥ 0, x0 = (x10, x20, ...) ∈
l2, y0 = (y10, y20, ...) ∈ l2.

• to obtain sufficient conditions of completion of pursuit in differential game
with coordinate-wise integral constraints and describes by infinite system of
differential equations of first order.

żi + λizi = ui − vi, i = 1, 2, ... .

where zi, ui, vi ∈ Rni , ni is a positive integer, λi are given nonnegative
numbers, u = (u1, u2, ...) and v = (v1, v2, ...) are control parameters of the
pursuer and the evader respectively. Integral constraints are imposed on the
control functions of players.

• to obtain sufficient conditions of evasion from many pursuers in the game
described by infinite system of differential equations of second order in the
case of geometric constraints.

z̈ik = −λkzik − uik + vk, zik(0) = z0
ik, żik(0) = z1

ik, k = 1, 2, ...,

where
zik, uik, vk, z0

ik, z1
ik ∈ R1,

z0
i = (z0

i1, z
0
i2, ..) ∈ l2r+1, z1

i = (z1
i1, z

1
i2, ..) ∈ l2r , ||z0

i ||r+1 + ||z1
i ||r 6= 0,

ui = (ui1, ui2, ...) is control parameter of ith pursuer, i = 1, 2, ..., m, and
v = (v1, v2, ...) is control parameter of the evader. Geometric constraints are
imposed on the control functions of players.

• to obtain sufficient conditions of evasion (problem) and completion of pur-
suit (problem) in the game of many pursuers and one evader described by
infinite system of differential equations of first order in the case of integral
constraints.

żik = −λkzik − uik + vk, zik(t0) = z0
ik, k = 1, 2, ...,

where zik, uik, vk, t0, z0
ik ∈ R1, z0

i = (z0
i1, z

0
i2, ...) ∈ l2r+1, z0

i 6= 0, ui =
(ui1, ui2, ...) is control parameter of the ith Pursuer, and i = 1, 2, ..., v =
(v1, v2, ...) is that of the Evader. Suppose that ui(·), v(·) ∈ L2(t0, T ; l2r),
where T is fixed positive number. In both cases, integral constraints are
imposed on the control functions of players.

1.4 Outlines of the thesis

In this thesis, we study the differential game problems described by an infinite sys-
tem of differential equations in Hilbert Space. The players influence on the system

5
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is by the use of control parameters which are subject to various constraints.

In chapter 2 is review about a history of the differential game where the players
influence on the system is by the use of control parameters which are subject to
various constraints. Some important works by the researches which related to our
works are also presented.

Chapter 3, we proof the existence and uniqueness theorem for infinite system of
2-systems of first order Differential Equations. Here we showed that the system
has a unique solution and we showed the continuity of the function.

In chapter 4 focuses on the pursuit game with coordinate wise integral constraints
on control functions of players. This game is the solution for the system infinite
systems of first order differential equations in early chapter 3.

In chapter 5 we focuses on evasion game from many pursuers. We investigate
a game problem of m pursuers and one evader described by infinite systems of
differential equations of second order. Geometric constraints are imposed on the
controls of players.

Chapter 6 we study in both cases, pursuit and evasion differential game in Hilbert
Space described by the same system. First part, in evasion Differential game with
integrals constraints on the control function of players. A group consisting of
countable number of pursuers tries to force the states of the systems toward the
origin against any action of the evader. Second part, pursuit differential game with
countable many pursuers. Chapter 7 proposes some future studies as an extension
to this research.

6
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