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ABSTRACT 

 

In the industries today, metal components are increasingly being produced by powder 

metallurgy (PM) method. The PM method is highly efficient in cost of production and 

materials usage. However, PM components suffer from inhomogeneous density 

variation and are more likely to have internal cracks. These deficiencies usually make 

PM components prone to sudden fracture failure. A parameter that is known to define 

the rate at which cracks grow in a material is fracture toughness. Unfortunately, the 

fracture toughness of most metal powder compacts have not been determined due to 

lack of suitable test technique.  This study developed a notching device that has the 

capability to provide uniform notches on the surfaces of powder compacts. The 

effectiveness of the notching device enhanced the determination of mode I fracture 

toughness (KIC) of two metal powder compacts; iron and copper. A method known as 

the modified diametrical compression test technique (MDCTT) was also developed to 

measure the mode II fracture toughness (KIIC) of the powder compacts. Finally, the 

study examined the influence of density on the rate of crack propagation in the 

compacts and developed mathematical relation that predicts fracture toughness from 

the relative density of either the iron or copper powder compacts. Notched samples of 

two types of metal powder; Hoaganas ASC100.29 iron powder and pure copper powder 

were prepared by uniaxial compaction in a rigid die using universal testing machine. 

The relative density of the powder compacts was determined as a fraction of the 

density of the compact to their corresponding solid metal before the diametrical 

compression test was carried out for each sample. The behavior of the cracks around 

the tip of the notch was examined using scanning electron microscope (SEM).  A new 

equation was developed to calculate the values of KIIC from the MDCTT. The results of 

KIC for the iron powder compacts showed close agreement with values mentioned in 

the literature. The KIC values for copper powder compacts range from 0.32 to 0.58 

MPa.m0.5 while the KIIC for the iron and copper powder compacts ranged from 0.30 to 

0.57 MPa.m0.5 and 0.28 to 0.59 MPa.m0.5 respectively. The ratio KIIC/KIC for the iron 

and copper powder compacts from this study showed good agreement with the 

predicted values of 0.87 and 1.04 based on the maximum tangential stress (MTS) and 

the minimum strain energy density (SED) criteria respectively. The agreement implies 
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that the developed MDCTT is reliable and can be used to measure the KIIC of other 

metal powder compacts.  Furthermore, the results also show that the rate of crack 

extension reduced as the density of the powder compacts increases. A generalized 

mathematical expression that relates fracture toughness and relative density has been 

successfully developed. This relationship will be beneficial for further analysis of crack 

propagation within metal powder compact. 
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ABSTRAK 

 

Dalam industri hari ini, kaedah metalurgi serbuk semakin kerap digunakan dalam 

penghasilan komponen-komponen logam. Kaedah ini sangat efisien dalam kos 

pengeluaran dan penggunaan bahan. Walau bagaimanapun, komponen ini diketahui 

mempunyai taburan kepadatan tidak sekata dan lebih cenderung mempunyai keretakan 

dalaman. Kekurangan ini biasanya menyebabkan komponen metalurgi serbuk retak 

secara tiba-tiba. Parameter yang digunakan untuk menentukan kadar di mana retakan 

merambat dalam bahan adalah keliatan retak. Malangnya, keliatan retak kebanyakan 

komposit serbuk logam belum dapat ditentukan kerana kekurangan teknik yang sesuai. 

Kajian ini membangunkan alat takukan yang mempunyai keupayaan untuk 

memberikan takuk seragam pada permukaan padatan serbuk. Keberkesanan alat 

takukan meningkatkan penentuan keliatan retak mod I (KIC) bagi dua padatan serbuk 

logam; besi dan tembaga. Kaedah yang dikenali sebagai teknik ujian mampatan lurus 

yang diubah suai (MDCTT) juga dibangunkan untuk mengukur keliatan retak mod II 

(KIIC) bagi padatan serbuk. Akhir sekali, penyelidikan ini mengkaji pengaruh 

ketumpatan terhadap kadar perambatan retak padatan dan membangunkan hubungan 

matematik yang dapat meramalkan keliatan retak daripada ketumpatan relatif padatan 

serbuk besi atau tembaga. Sampel bertakuk bagi dua jenis serbuk logam; serbuk besi 

Hoaganas ASC100.29 dan serbuk tembaga tulen dihasilkan melalui pemadatan 

ekapaksi dalam acuan tegar dengan menggunakan mesin ujian sejagat. Ketumpatan 

relatif padatan serbuk logam ditentukan sebagai pecahan ketumpatan padatan terhadap 

ketumpatan logam pejal yang berkaitan, sebelum ujian mampatan lurus dijalankan ke 

atas setiap sampel. Tingkah laku retak di sekeliling kawasan hujung takuk diperiksa 

menggunakan mikroskop pengimbas elektron (SEM). Satu persamaan baru telah 

dibangunkan untuk mengira nilai KIIC menggunakan kaedah MDCTT. Keputusan KIC 

untuk padatan serbuk besi menunjukkan nilai yang dekat dengan nilai-nilai yang 

terdapat dalam kajian literatur. Nilai KIC untuk padatan serbuk tembaga adalah di 

antara 0.32 sehingga 0.58MPa.m0.5  manakala KIIC untuk padatan serbuk besi dan 

tembaga adalah di antara 0.30 sehingga 0.57 MPa.m0.5 dan 0.28 sehingga 0.59 

MPa.m0.5 masing-masing. Nisbah KIIC/KIC untuk padatan serbuk besi dan serbuk 
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tembaga menunjukkan nilai yang dekat dengan nilai yang dijangkakan iaitu 0.87 dan 

1.04 berdasarkan kriteria tangen tegasan maksimum (MTS) dan kriteria kepadatan 

tenaga terikan minimum (SED) masing-masing. Hubungan antara hasil eksperimen dan 

kriteria retakan membuktikan teknik ujian mampatan lurus yang diubah suai (MDCTT) 

boleh dipercayai dan boleh digunakan untuk mengukur KIIC bagi serbuk logam lain. 

Selain daripada itu, keputusan juga menunjukkan bahawa kadar perambatan retak boleh 

menjadi perlahan dengan meningkatkan ketumpatan serbuk logam. Hubungan 

matematik am di antara keliatan retak dan ketumpatan relatif telah berjaya dihasilkan. 

Hubungan ini akan bermanfaat untuk analisa lanjut mengenai perambatan retak dalam 

padatan serbuk logam. 
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t1 Thickness of TCDCTT compact 

t2 Thickness of MDCTT compact 

UTM Universal testing machine 

W 

XSA 

Half the width of the notch or crack 

Cross section area 

Α Crack angle ( angle between the crack and the y-axis) 

β R/h 

γ w/h 

σ Tensile stress 
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σx Tensile stress in the x-direction 

σy Tensile stress in the y-direction 

τxy Shear stress in the xy-plane 
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CHAPTER 1 

 

CHAPTER 

1 INTRODUCTION 

 

 

Powder metallurgy (PM) is a field of engineering that studies powder production and 

their useful applications. It has also been described as a forming process that involves 

consolidation of powdered materials into regular or irregular shaped components for 

use in different spheres of life. The forming process can be performed with hot or cold 

powders. When the powder consolidation is done in the cold state the compacted body 

is referred to as green body or green compact. PM process has been used to produce 

components from different powdered materials, but iron powder remains the oldest and 

the most used of them all. Other areas where the PM technique has found wide 

application include the ceramics and pharmaceutical industries, and for the production 

of composite materials.  The main advantage of PM over other forming processes such 

as casting and forging is its cost effectiveness. PM process consolidates powders at 

temperatures lower than their melting points. It turns out products which are very close 

to their designed shape and dimensions, thereby eliminating the need for machining. It 

uses up over 95% of the starting powder leaving little or no scraps (Krar and Gill, 

2003; Boljanovic, 2009). 

 

 

1.1 Background of the Study 

 

 

Some of the advantages which powder metallurgy (PM) has over other manufacturing 

techniques such as casting and forging are low production cost, higher energy 

efficiency and its ability to combine materials that are known to be incompatible. These 

virtues have made PM attractive for processing conventional and advanced materials.  

PM is a forming operation where one or more dry powdered material(s) is caused to 

fuse into a desired shape by the application of pressure.  The consolidation is usually 

done in a rigid or flexible die using cold or preheated powder.  Uniaxial compaction of 

dry powder in a rigid column-like die is the most used PM technique due to its 

simplicity. A fused powder ejected from a die is known as a green compact.  Green 

compacts are usually heat treated to improve the physical and mechanical properties. 

This heat treatment process is known as sintering.  

 

 

It is almost impossible to produce a flawless component irrespective of how advanced 

the manufacturing technique used may be. PM components are products of a well-

established sequence of events which include powder mixing, powder transfer, 

compaction, ejection and post-ejection handling. Defects or cracks can form in a 

compact at any stage in this sequence, but they are more likely during the compaction 

and ejection stages (Jonsén et al., 2007). During the onset of compaction, weak inter-

particle bonds are formed. The weak bonds are broken and give way for stronger bonds 

as the compaction progresses.  The complex nature of powder compression makes it 

difficult to predict and stop compaction at the exact point where all broken bonds have 

transformed to stronger ones. During the ejection process, a green compact held to the 

walls of the die by radial forces is forcibly ejected. This action usually creates cracks in 

the green body (Jonsén, 2006).  The degree of cracks is significantly reduced in 
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compacts with high green strength. Defect due to cracks is known to be the leading 

cause of fracture failure in metal PM components. Another cause of cracks in PM 

components is wide inhomogeneous density variation (Zhou et al., 2017; Jonsén, 

2006). Some of the factors that make it difficult to produce PM components with 

uniform density variation include the high flow of powder particles during compaction 

(Jonsén, 2006), friction between die walls and green compacts (Gethin et al., 2008;  

Zhou et al., 2017; Staf et al., 2017; Hjalmar et al., 2018), kinematics of the compaction, 

that is, the movement and the interactions between moving parts during compaction 

and ejection processes (Gethin et al., 2008; Enneti et al., 2013; Anbalagan et al., 2017). 

 

 

1.1 Problem Statement 

 

 

The need to reduce the cost of production, save energy, and produce materials with 

superior mechanical properties, has led to a tremendous increase in the volume of 

research work in material science and engineering. Components from iron and steels, 

the most used engineering materials, are usually produced by forging or casting 

processes. These processes require huge capital to set up, also consume an enormous 

amount of energy in production. Products of forging and casting processes usually have 

high inertia, and their properties can only be altered during production by alloying 

(another expensive technique, which usually requires a different set up), and after 

production by heat treatment (a highly technical and energy consuming technique). 

Metal powder compact is a class of material that has competed favorably with 

traditional iron and steels, especially in the automotive industry. In the automotive 

industry, metal powders have been used to produce parts such as self-lubricating 

bearings, oil pump rotors, gears, value seats and pulleys (Ramakrishnan, 2013; Erdem, 

2017) Metal powder components are light-weighted and, require lesser capital 

investment and energy for production.  

 

 

Metal powders have complex characteristics which make it difficult to predict their 

behavior during compaction. These features, in addition to cost and time, involve in 

conducting laboratory experiments, have made researchers dwell more on using 

computer software to simulate the behavior of metal powders compacts. As attractive 

as most finite element simulation methods are, the accuracy of their results depend on 

knowledge and reliability of available material parameter (Chtourou et al., 2002). In 

2010, Tahir et al., used existing experimental data as input data while simulating the 

fracture toughness of iron compact. Jonsén and Häggblad (2007) validated the results 

of their model on the residual stress state of green metal compacts using existing 

experimental values (Jonsén and Häggblad, 2005). Obviously, it is essential to have 

more experimental studies into the properties of metal powders to provide ample data 

to enhance the accuracy of simulated results. Unfortunately, only a few experimental 

works have studied the mode I fracture toughness of metal powder compacts while 

none has been dedicated to its mode II. It is not sufficient to argue that the mode II 

fracture toughness of iron powder compact has not been given much attention because 

the growth of a crack in any mode of fracture begins with pure opening (Tahir and 

Ariffin, 2006a), because the mode II fracture toughness for virtually all other materials 

have been studied (Ayatollahi and Aliha, 2005; Jamali et al., 2015; Aliha and Rezaei, 

2011; Backers and Stephansson, 2012a; Wang et al., 2016; Refat et al., 2005; 

Ayatollahi and Aliha, 2006; Aliha and Ayatollahi, 2008; Aliha et al., 2009). A review 
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of the methods that have been used to study mode II fracture toughness shows that all 

of them have one or more critical requirement that can hardly be fulfilled by metal 

powder compacts. The most common of these requirements are the specified specimen 

geometry and size, the need to machine the test specimen, and post-formation handling.  

 

 

Some of the identified gaps which this research has filled include: 

1. There is the need to have a simple and inexpensive means of notching iron and 

copper powder compacts for diametrical compression test. The notching 

device should be able to produce notch of same dimension and geometry on 

different test specimens with high precision, and with little or no adverse 

effect on the properties of the bonded metal powder. 

2. The experimental value of mode II fracture toughness for iron powder 

compact or any other metal powder compacts have not been reported. 

3. The existing test methods for the determination of mode II fracture toughness 

cannot accommodate the peculiar nature of metal powder compacts. Hence, 

there is a need to find an alternative method. 

 

 

1.2 Objectives 

 

 

The objectives of this study are: 

1. To develop a notching device that enhances the diametrical compression test 

technique for the determination of mode I fracture toughness of iron and 

copper powder compacts.  

2. To develop a test method for the determination of mode II fracture toughness 

of iron and copper powder compacts. 

3. To develop the relationship between fracture toughness and density of iron 

and copper powder compacts. 

 

 

1.3 Scope of Study 

 

 

This research work is limited to an experimental determination of the mode I and mode 

II fracture toughness of iron (Hoaganas ASC100.29) and copper powder compacts 

using the concept of the diametrical compression technique. A notching device was 

produced. The notching device enabled the powder samples to be compacted and 

notched simultaneously in a rigid die during a uniaxial compaction technique called 

“the integrated compaction and notching method.” A new test technique was developed 

for the determination of the mode II fracture toughness of iron and copper powder 

compacts. The technique is known as the modified diametrical compression test 

technique (MDCTT). A new equation was developed for evaluating the mode II 

fracture toughness of iron and copper powder compacts using the MDCTT. The results 

of the fracture toughness obtained from the use of the notching device and the MDCTT 

were validated by comparison with the theoretical predictions from two fracture 

criteria; the maximum tangential stress (MTS) criterion and the minimum strain energy 

density (SED) criterion. A new mathematical relation was also proposed to describe the 

influence of relative density of iron and copper powder compacts on their fracture 
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toughness.  The properties of the two metal powders were studied under four 

compaction pressures. These pressures are 206.87, 238.70, 270.53 and 302.36MPa.  

 

 

1.4 Thesis Overview 

 

 

The thesis is structured to present this research work in five chapters. 

 

 

Chapter 1 gave a general introduction to powder metallurgy (PM) as a production 

process, its advantages, and shortfalls.  The problem statements, objectives and scope 

of the research were highlighted. 

 

 

Chapter 2 began with an explanation of terms relevant to understanding metal powder 

compaction. The chapter also presented a review of studies relating to fracture 

toughness as a material property, methods of measuring fracture toughness, fracture 

criteria and the relationship between metal powder compact density and compaction 

pressure, green strength and fracture toughness. Chapter 2 was concluded by presenting 

a summary which justified the need to develop a notching device and to enhance the 

technique for the determination of mode I fracture toughness of metal powder 

compacts. The summary also justified the need to develop a new method for measuring 

the mode II fracture toughness of metal powder compacts, and the need to study the 

influence of compact density on the fracture propagation in metal powder compacts. 

 

 

Chapter 3 discussed the materials studied and the methods used to achieve the set 

objectives of the study. The chapter presented a detailed explanation of the production 

of the through-cut diametrical compression technique (TCDCTT) samples used for the 

determination of mode I fracture toughness for metal powder and the development of a 

test method known as modified diametrical compression technique (MDCTT)  for 

measuring the mode II fracture toughness of metal powder compacts. The chapter also 

presented the development of a new equation for the determination of the mode II 

fracture toughness of iron and copper powder compacts produced by the modified 

diametrical compression test technique (MDCTT). The design of a device for notching 

metal powder compacts during the compaction process (integrated compaction-

notching method) was also reported. This device eliminates the need for machining the 

consolidated metal powder, and it replicates the notch with accuracy and precision. The 

chapter ended with the discussion on the measurement of density and the morphology 

of fractured surfaces of the metal powder compacts.  

 

 

Chapter 4 presented and discussed the results of the findings of this study. The mass 

and thickness of the TCDCTT metal powder compacts were presented. The influence 

of compaction pressure on compact thickness, fracture loads and mode I fracture 

toughness were discussed. The data obtained from the compaction and compression of 

the developed MDCTT samples was also presented. The mode II fracture toughness for 

the iron and copper powder compacts were determined from the developed equation. 

The reliability of the results obtained from the use of the newly developed MDCTT 

was validated using the maximum tangential stress (MTS) and the minimum strain 
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energy density (SED) criteria. The chapter also presented the findings on the influence 

of the densities of iron and copper powder compacts on their mode I and mode II 

fracture toughness. An improved relative density in the compacts of the iron and 

copper powders was found to slow down the rate of crack propagation. Morphological 

study was presented to support the assertion that improved that relative density and 

fracture toughness are directly related.  Finally, a generalized equation was developed 

that described the relationship between the density of iron and copper powder compacts 

and their fracture toughness. The generalized equation contained some constants that 

were related to the thermal conductivity of iron and copper metals. 

Chapter five highlighted the conclusions drawn from this study and also the suggested 

recommendations for future research works.   
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