UNIVERSITI PUTRA MALAYSIA

IN-VITRO SYNERGESTIC EFFECTS BETWEEN *BIFIDOBACTERIUM PSEUDOCATENULATUM* G4 AND INULIN ON HUMAN GASTROINTESTINAL TRACT MICROBIAL COMPOSITION

MUHAMMAD ANAS BIN OTHAMAN

FSTM 2009 24
IN-VITRO SYNERGESTIC EFFECTS BETWEEN BIFIDOBACTERIUM PSEUDOCATENULATUM G4 AND INULIN ON HUMAN GASTROINTESTINAL TRACT MICROBIAL COMPOSITION

MUHAMMAD ANAS BIN OTHAMAN

MASTER OF SCIENCE
UNIVERSITI PUTRA MALAYSIA

2009
IN-VITRO SYNERGESTIC EFFECTS BETWEEN *BIFIDOBACTERIUM PSEUDOCATENULATUM* G4 AND INULIN ON HUMAN GASTROINTESTINAL TRACT MICROBIAL COMPOSITION

By

MUHAMMAD ANAS BIN OTHAMAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

September 2009
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

IN-VITRO SYNERGESTIC EFFECTS BETWEEN BIFIDOBACTERIUM PSEUDOCATENULATUM G4 AND INULIN ON HUMAN GASTROINTESTINAL TRACT MICROBIAL COMPOSITION

By

MUHAMMAD ANAS BIN OTHAMAN

September 2009

Chairman : Professor Mohd Yazid Abdul Manap, PhD
Faculty : Food Science and Technology

The eagerness in finding the most effective probiotic strain has attracted many investigations. Bifidobacterium pseudocatenulatum G4, strain isolated from free-living infant was reported to have characteristics as probiotic candidate. Meanwhile, inulin is a known natural source of carbon that can act as a prebiotic substance. The consumption of probiotic, prebiotic, and its combination (synbiotic) was reported to have the ability to alter microbial composition in human gastrointestinal tract (GIT). In this study, the effects of B. pseudocatenulatum G4 (probiotic), inulin (prebiotic) and its combination (synbiotic) towards the human GIT microbial composition were evaluated in vitro. The effects of inulin incorporated in chocolate products as one of its ingredients were also tested. Real-time PCR assay with selected genus- and species-specific primers were used as a tool in identification and enumeration of selected bacterial strain in fermentation of mixture of bacteria from human faecal sample while dilution and plate count technique was used to enumerate the bacterial cell in fermentation of pure culture bacteria. The morphology of the tested Bifidobacterium strains was observed and the species was
confirmed by molecular method targeting 16S rRNA gene. In pure culture batch fermentation of tryptone peptone yeast (TPY) medium supplemented with 0.5% inulin, *B. pseudocatenulatum* G4 grew at the growth rate of 0.53 ± 0.06 log$_{10}$ h$^{-1}$ as compared to other *Bifidobacterium* strains namely *B. breve* ATCC 15700, *B. longum* BB536, and *B. infantis* ATCC 15697 which grew at 0.45 ± 0.04 log$_{10}$ h$^{-1}$, 0.31 ± 0.08 log$_{10}$ h$^{-1}$, and 0.72 ± 0.03 log$_{10}$ h$^{-1}$, respectively. The same amount of inulin was then introduced into dark- and milk chocolate and caused *B. pseudocatenulatum* G4, *B. breve* ATCC 15700, *B. longum* BB536, and *B. infantis* ATCC 15697 to grow at 0.54 ± 0.06, 0.44 ± 0.04, 0.36 ± 0.05, 0.73 ± 0.02 log$_{10}$ h$^{-1}$ for dark chocolate and 0.57 ± 0.05, 0.46 ± 0.03, 0.41 ± 0.04, 0.75 ± 0.01 log$_{10}$ h$^{-1}$ for milk chocolate respectively. Some of the chocolate ingredients had also influenced the growth of *B. pseudocatenulatum* G4. The addition of 0.5% of cocoa liquor in TPY medium caused *B. pseudocatenulatum* G4 to grow at 0.29 ± 0.03 log$_{10}$ h$^{-1}$, and isomalt at 0.59 ± 0.05 log$_{10}$ h$^{-1}$ compared to TPY medium without any additional carbon source which grew at 0.19 ± 0.02 log$_{10}$ h$^{-1}$, while the addition of cocoa butter did not support the growth of *B. pseudocatenulatum* G4. In 24 hours batch fermentation of human faecal bacteria, *B. pseudocatenulatum* G4 (Probiotic) showed its probiotic effects by inhibiting the growth of *Salmonella* and *Enterococcus faecalis*. The addition of inulin (Prebiotic) selectively supported the growth of *Bifidobacterium* and *Lactobacillus* as well as inhibits the growth of *Bacteroides, Salmonella*, and *E. faecalis*. The synbiotic combination of *B. pseudocatenulatum* G4 and inulin (Synbiotic) showed a synergistic effect as they reduced the number of *Bacteroides, Salmonella*, and *E. faecalis* better than Probiotic or Prebiotic alone. Synbiotic chocolate preparations (DCsynbiotic and MCSynbiotic) showed better synergistic effect with *B. pseudocatenulatum* G4

iii
compared to Synbiotic when *Bifidobacterium* increased at 1.64 log$_{10}$ (DCsynbiotic) and 1.67 log$_{10}$ cells/ml (MCsynbiotic) from the initial counts. *Lactobacillus* also increased its cell number higher than Synbiotic treatment. Nevertheless, synbiotic chocolate preparations also gave a positive result towards the growth of potential pathogenic bacteria when compared to Synbiotic. However, the inhibition pattern still can be observed on *Salmonella* and *E. faecalis* when compared to glucose (control). The antimicrobial action was largely due to the pattern of lactic and acetic acid production in fermentation. Here, the synbiotic approach was more efficient than prebiotic or probiotic alone to modulate the human GIT microbial composition and *B. pseudocatenulatum* G4 with inulin is a compatible synbiotic pair to perform the function.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN SINERGISTIK IN-VITRO DI ANTARA BIFIDOBAKTÉRIUM PSEUDOCATENULATUM G4 DAN INULIN TERHADAP KOMPONENSI MIKROB DALAM SALURAN GASTRO-USUS MANUSIA

Oleh

MUHAMMAD ANAS BIN OTHAMAN

September 2009

Pengerusi : Professor Mohd Yazid Abdul Manap, Ph D
Fakulti : Sains dan Teknologi Makanan

Keinginan untuk mencari strain probiotik yang paling berkesan telah menarik minat banyak penyelidikan. Bifidobacterium pseudocatenulatum G4, strain yang dipencilkan dari najis bayi telah dilaporkan mempunyai ciri-ciri sebagai calon probiotik. Manakala inulin sedia kala diketahui sebagai sumber karbon yang boleh bertindak sebagai bahan prebiotik. Pengambilan produk probiotik, prebiotik dan kombinasinya (sinbiotik) telah dilaporkan mempunyai kebolehan untuk merubah komposisi mikroorganisma di dalam saluran usus manusia. Oleh itu, dalam kajian ini, kesan B. pseudocatenulatum G4 (probiotik), inulin (prebiotik) dan kombinasinya (sinbiotik) terhadap komposisi mikroorganisma di dalam saluran usus manusia telah dinilai secara in vitro. Kesan inulin yang telah dicampurkan ke dalam produk coklat sebagai salah satu bahan ramuan dalam pembuatannya juga telah diuji. Reaksi rantaian polimerase-masa nyata (real-time PCR) bersama pemula (primer) spesifik kepada genus dan spesis bakteria terpilih telah digunakan sebagai alat untuk mengenal pasti dan mengira jumlah bakteria terpilih dalam fermentasi bakteria campuran dari sampel najis manusia manakala teknik pencairan dan
pengiraan kultur dalam piring digunakan untuk mengira sel bakteria dalam fermentasi kultur bakteria tulen. Morfologi kesemua strain bifidobacteria yang dikaji telah diperhatikan dan pengesahan di peringkat spesis pula dilakukan menggunakan teknik molekular yang mensasarkan gen 16S rRNA. Dalam fermentasi sesekelompok kultur tulen media TPY yang diibekalkan dengan 0.5% inulin, kadar pertumbuhan \(B. \) pseudocatenulatum G4 adalah pada 0.53 ± 0.06 log10 jam\(^{-1}\). Dalam perbandingan bersama strain bifidobacteria yang lain, \(B. \) breve ATCC 15700, \(B. \) longum BB536, dan \(B. \) infantis ATCC 15697, masing-masing tumbuh pada 0.45 ± 0.04 log10 jam\(^{-1}\), 0.31 ± 0.08 log10 jam\(^{-1}\), and 0.72 ± 0.03 log10 jam\(^{-1}\). Kemudian, jumlah inulin yang sama dimasukkan ke dalam coklat hitam dan coklat susu dan menyebabkan \(B. \) pseudocatenulatum G4, \(B. \) breve ATCC 15700, \(B. \) longum BB536, dan \(B. \) infantis ATCC 15697 masing-masing tumbuh pada kadar 0.54 ± 0.06, 0.44 ± 0.04, 0.36 ± 0.05, 0.73 ± 0.02 log10 jam\(^{-1}\) untuk coklat hitam dan 0.57 ± 0.05, 0.46 ± 0.03, 0.41 ± 0.04, 0.75 ± 0.01 log10 jam\(^{-1}\) untuk coklat susu. Sebahagian dari bahan-bahan dalam coklat juga mempengaruhi pertumbuhan \(B. \) pseudocatenulatum G4. Penambahan likur koko dan isomalt dalam media TPY (0.5%) menjadikan \(B. \) pseudocatenulatum G4 membiak, masing-masing pada kadar 0.29 ± 0.03 log10 jam\(^{-1}\), dan 0.59 ± 0.05 log10 jam\(^{-1}\) berbandingkan dengan media TPY tanpa apa-apa sumber karbon yang hanya menunjukkan \(B. \) pseudocatenulatum G4 membiak pada kadar 0.19 ± 0.02 log10 jam\(^{-1}\), manakala penambahan mentega koko pula tidak menyokong pertumbuhan \(B. \) pseudocatenulatum G4. Dalam 24 jam fermentasi sesekelompok statik kultur campuran dari najis manusia, \(B. \) pseudocatenulatum G4 (Probiotic) telah menunjukkan kesan probiotiknya apabila merencat pertumbuhan \(Salmonella \) dan \(Enterococcus faecalis \). Inulin juga menunjukkan kesan prebiotiknya apabila menyokong
pertumbuhan *Bifidobacterium* dan *Lactobacillus* secara selektif dan merencat pertumbuhan *Bacteroides, Salmonella, and E. faecalis*. Kombinasi sinbiotik oleh *B. pseudocatenulatum* G4 dan inulin menunjukkan kesan sinergistik apabila menurunkan jumlah bilangan *Bacteroides, Salmonella* and *E. faecalis* lebih baik dari apa yang dilakukan oleh sediaan Probiotic dan sediaan Prebiotic sahaja. Sediaan sinbiotik coklat (DCsynbiotik dan MCsynbiotic) juga menunjukkan kesan sinergistik yang lebih baik bersama *B. pseudocatenulatum* G4 apabila masing-masing meningkatkan bilangan *Bifidobacterium* sebanyak 1.64 log_{10} and 1.67 log_{10} sel/ml daripada kiraan permulaan. Peningkatan sel *Lactobacillus* juga lebih tinggi jika dibandingkan dengan sediaan Synbiotic. Selain daripada itu, persediaan sinbiotik coklat juga memberi keputusan yang positif terhadap pertumbuhan bakteria patogen apabila dibandingkan dengan sediaan Synbiotic. Walaupun begitu, corak perencatan masih lagi boleh diperhatikan ke atas *Salmonella* and *E. faecalis* apabila dibandingkan dengan glukos (kawalan). Kesatuan antimikrob yang ditunjukkan dipengaruhi besar oleh corak penghasilan asid laktik dan asid asetik dalam fermentasi. Disini, pendekatan sinbiotik adalah lebih berkesan daripada prebiotik dan probiotik bersendirian dalam mengubahsuaikan komposisi mikroorganisma di dalam saluran usus manusia dan *B. pseudocatenulatum* G4 bersama inulin adalah pasangan sinbiotik yang sesuai untuk melakukan tugas ini.
ACKNOWLEDGEMENTS

First of all, I want to give my warmest appreciation to my Chairperson of Supervisory Committee, Prof. Dr. Mohd Yazid bin Abd Manap who had lead and guide me in doing research. A bunch of appreciation also to my co-supervisors, Dr Shuhaimi bin Mustafa and Prof. Madya Dr. Loong Yik Yee for their invaluable advices and guidance throughout my research studies.

I also want to extend my gratitude to all the science officers and laboratory assistances in Food Biotechnology laboratory, Basic Biotechnology laboratory (202), HPLC room, and Food Biochemistry Laboratory. Without their help, none of this work would have been possible.

Also special thanks to all my labmates in Food Biotechnology laboratory, Barka, Arizou, Stephnie, Farrah, Nassim, Amir, Paghty, Babak, Farnaz, Ali and also in my Basic Biotechnology Laboratory, Hamim, Huda, Raba’atun, Zarizal, Yamin, Faizah, Khalilah, and Salma, who had always cheered me up and lend their hands whenever I was in trouble, thanks a lot!

Last but not least, I would like to thank my beloved parents who encourage me to further study in this field. The moral support from my lovely wife, Wan Malliati bte Wan Mustafa which kept me focus and work in high spirit. This work is also dedicated to both of my cute and amazing daughter and son, Aina Malliani and Muhammad Aidif.
I certify that an Examination Committee has met on 16th September 2009 to conduct the final examination of Muhammad Anas bin Othaman on his Master of Science thesis entitled “The in-vitro study of synergistic effects between Bifidobacterium pseudocatenulatum G4 and inulin on human gastrointestinal tract microbial composition” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master Science degree.

Azizah Abdul Hamid, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Nazamid Saari, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Fatimah Abu Bakar, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Ainon Hamzah, PhD
Associate Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(External Examiner)

BUJANG KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mohd Yazid Abd Manap, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Shuhaimi Mustafa, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Loong Yik Yee, MD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

__
HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
Date: 14 January 2010
DECLARATION

I hereby declare that the thesis is based on my original work except for quotation and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

MUHAMMAD ANAS BIN OTHAMAN

Date: 13 November 2009
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL SHEETS</td>
<td></td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION FORM</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

2.1 Human Gastrointestinal Tract (GIT)

2.1.1 Indigenous Microbiota in Human Gastrointestinal Tract

2.1.2 Overview of Fermentation in Human Gastrointestinal Tract

2.2 Probiotics

2.2.1 History and Definition of Probiotics

2.2.2 Therapeutic Potential and Health Benefits of Probiotics

2.2.3 Probiotic Characteristics

2.3 Bifidobacteria

2.3.1 Discoveries and Properties of Bifidobacteria

2.3.2 Growth Factors of Bifidobacteria

2.3.3 Physiological Effect of Bifidobacteria

2.4 Bifidobacterium pseudocatenulatum G4

2.5 Prebiotics

2.5.1 Definition and Concept of Prebiotics

2.5.2 Prebiotics in Food

2.6 Inulin

2.7 Synbiotic Prospects and Therapies

2.8 Methods for Testing Probiotic and Prebiotic

2.9 Molecular Biological Methods in Bacterial Analysis

2.9.1 Polymerase Chain Reaction (PCR)

2.9.2 Quantitative Real-time Polymerase Chain Reaction (Q-PCR)
3 MATERIALS AND METHODS

3.1 Bacterial Cultures and Storage Condition

3.2 Morphology Observation and Species Identification of B. pseudocatenulatum G4

3.3 Fermentation of B. pseudocatenulatum G4 as Pure Culture

3.3.1 Culture Media and Inoculum Preparation

3.3.2 Carbon Sources

3.3.3 Bioreactor Setting and Fermentation Condition

3.3.4 Quantification of Bacteria

3.4 Effect of Probiotics, Prebiotics and Synbiotics Agents on Bacterial Composition of Human GIT (in-vitro)

3.4.1 Fermentation Medium and Carbon Sources

3.4.2 Inoculum Preparation

3.4.3 Fermentation Conditions

3.4.4 Bacterial Composition Analysis

3.4.5 Organic Acids Analysis

3.5 Statistical Analysis

4 RESULT AND DISCUSSION

4.1 Morphological Observation of B. pseudocatenulatum G4

4.2 16S rRNA Identification Analysis

4.2.1 Extraction, Purity Checking and Quantification of Bacterial DNA.

4.2.2 Gel Documentation of PCR Products

4.2.3 DNA Sequencing and BLAST Analysis

4.3 Fermentation of B. pseudocatenulatum G4

4.3.1 Growth of B. pseudocatenulatum G4 on Inulin

4.3.2 The Influence of Chocolate Ingredients to the Growth of B. pseudocatenulatum G4

4.4 Accuracy and Specificity of Real-Time PCR Assays

4.4.1 Real-Time PCR Standard

4.4.2 Standard Curves and Melting Curves Analysis

4.5 Fermentation of Human Faecal Bacteria

4.5.1 Effect of Probiotic, Prebiotic and Synbiotic

4.5.2 Effect of Synbiotic in Cocoa Products

4.5.3 Organic Acids Analysis

5 CONCLUSION

REFERENCES

APPENDICES

BIODATA OF STUDENT
LIST OF TABLES

Table	Page
3.1 | TPY media composition 40
3.2 | Six batches of fermentation that used human faecal samples as inoculum 43
3.3 | The components and concentrations of fermentation medium for human faecal sample 44
4.1 | Definition of terms used for the description of bifidobacteria (Oxford, 1989) 48
4.2 | NCBI DNA sequences databank BLAST results of PCR product from forward and reverse primers targeting 16S rRNA of *Bifidobacterium pseudocatenulatum* G4 57
4.3 | NCBI DNA sequences databank BLAST results of PCR product from forward and reverse primers targeting 16S rRNA of *Bifidobacterium longum* BB536 57
4.4 | NCBI DNA sequences databank BLAST results of PCR product from forward and reverse primers targeting 16S rRNA of *Bifidobacterium breve* ATCC 15700 58
4.5 | NCBI DNA sequences databank BLAST results of PCR product from forward and reverse primers targeting 16S rRNA of *Bifidobacterium infantis* ATCC 15697 58
4.6 | Growth rates constant (k) of *B. pseudocatenulatum* G4, *B. infantis* ATCC 15697, *B. breve* ATCC 15700 and *B. longum* BB536 in TPY medium containing glucose (control), inulin, inulin in dark chocolate, and inulin in milk chocolate 61
4.7 | Growth rates of *B. pseudocatenulatum* G4 in cocoa butter, cocoa liquor and isomalt 69
4.8 | Selected bacterial populations after 18 and 24 h of faecal batch culture fermentations with Prebiotic, Probiotic and Synbiotic treatments 84
4.9 | Selected bacterial populations after 18 and 24 h of faecal batch culture fermentations with Synbiotic and synbiotic in chocolate (DCsynbiotic and MCsynbiotic) treatments 88
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The parts of the human gastrointestinal tract</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Electron Micrograph of B. pseudocatenułatum G4</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>1 L double jacketed vessels bioreactor, model BIOSTAT® Q autoclavable multi fermentor system</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>with DCU-3 local controller, B. Braun Biotech International, Melsungen, Germany</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Universal bottles (20 ml) that were used as a fermentation vessel (standing culture)</td>
<td>45</td>
</tr>
<tr>
<td>4.1</td>
<td>The image of B. pseudocatenułatum G4 after Gram stained under compound light microscope</td>
<td>50</td>
</tr>
<tr>
<td>4.2</td>
<td>The image of B. longum BB536 after Gram stained under compound light microscope</td>
<td>50</td>
</tr>
<tr>
<td>4.3</td>
<td>The image of B. infantis ATCC 15697 after Gram stained under compound light microscope</td>
<td>51</td>
</tr>
<tr>
<td>4.4</td>
<td>The image of B. breve ATCC 15700 after Gram stained under compound light microscope</td>
<td>51</td>
</tr>
<tr>
<td>4.5</td>
<td>The image of gel electrophoresis of bacterial genomic DNA after extracted from the cells</td>
<td>53</td>
</tr>
<tr>
<td>4.6</td>
<td>The image of gel electrophoresis of PCR products using Bifidobacterium genus-specific primers</td>
<td>55</td>
</tr>
<tr>
<td>4.7</td>
<td>a) Growth and b) Acidifying activity of 4 Bifidobacterium strains in TPY medium containing</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>glucose (control) as carbon source</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>a) Growth and b) Acidifying activity of 4 Bifidobacterium strains in TPY medium with inulin</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>as a carbon source</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>a) Growth and b) Acidifying activity of 4 Bifidobacterium strains in TPY medium with dark</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>chocolate fortified with inulin as a carbon source</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>a) Growth and b) Acidifying activity of 4 Bifidobacterium strains in TPY medium with milk</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>chocolate fortified with inulin as a carbon source</td>
<td></td>
</tr>
</tbody>
</table>
4.11 Blue and white colonies of the *E. coli* JM 109 (competence cells) on LB agar containing ampicillin, IPTG and X-Gal

4.12 Gel electrophoresis of PCR products from plasmid DNA that carry target sequences of selected genus and species of human intestinal microorganism

4.13 Amplification plot with threshold line (a) and standard curve (b) for *Bifidobacterium* spp generated by real-time PCR machine

4.14 Amplification plot with threshold line (a) and standard curve (b) for *Lactobacillus* spp generated by real-time PCR machine

4.15 Amplification plot with threshold line (a) and standard curve (b) for *Bacteroides* spp generated by real-time PCR machine

4.16 Amplification plot with threshold line (a) and standard curve (b) for *Salmonella* spp generated by real-time PCR machine

4.17 Amplification plot with threshold line (a) and standard curve (b) for *E. faecalis* spp generated by real-time PCR machine

4.18 Post-amplification melting curve analysis of a) *Bifidobacterium*, b) *Lactobacillus*, c) *Bacteroides*, d) *Salmonella*, and e) *E. faecalis*

4.19 Production of lactic acid (dotted black bars) and acetic acid (vertical lines bars) at 0, 18 and 24 h in batch cultures fermentation of human faecal microbiota with Synbiotic, Probiotic, Prebiotic, DCsynbiotic, and MCsynbiotic treatments
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>$k(h^{-1})$</td>
<td>growth rate constant</td>
</tr>
<tr>
<td>μL</td>
<td>Micro liter</td>
</tr>
<tr>
<td>μM</td>
<td>Micro molar</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic Local Alignment Search Tool</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>cfu</td>
<td>Colony forming unit</td>
</tr>
<tr>
<td>cn</td>
<td>Copy number</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxyribonucleotide triphosphate</td>
</tr>
<tr>
<td>DP</td>
<td>Degree of polymerization</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EtBr</td>
<td>Ethidium Bromide</td>
</tr>
<tr>
<td>e.g</td>
<td>Example gratia (for example)</td>
</tr>
<tr>
<td>et al.</td>
<td>Et cetera (and company)</td>
</tr>
<tr>
<td>FOSHU</td>
<td>Foods for Special Health Use</td>
</tr>
<tr>
<td>FOS</td>
<td>Fructooligosaccharides</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GET</td>
<td>Glucose-EDTA-Tris</td>
</tr>
<tr>
<td>GIT</td>
<td>Gastrointestinal tract</td>
</tr>
</tbody>
</table>
h Hour
H$_2$SO$_4$ Sulphuric acid
HCl Hydrochloric acid
HPLC High performance liquid chromatography
i.e. id est (that is)
IPTG Isopropyl-β-D-thiogalactopyranoside
JCM Japan Collection of Microorganism
kb Kilo base pair
kV Kilo volt
L Liter
LB Lysogeny broth
LAB Lactic acid bacteria
Log Logarithm
M Molar
min Minute
Mg Magnesium
MgCl$_2$ Magnesium Chloride
mL Mililiter
mM Milimolar
N Normality
NaOH Sodium Hydroxide
NCBI National Centre of Biotechnology
OFN Oxigen free nitrogen

xviii
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS</td>
<td>Oligosaccharides</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate-buffered Saline</td>
</tr>
<tr>
<td>rDNA</td>
<td>Ribosomal deoxyribonucleic acid</td>
</tr>
<tr>
<td>rRNA</td>
<td>Ribosomal ribonucleic acid</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolution per minute</td>
</tr>
<tr>
<td>s</td>
<td>Second</td>
</tr>
<tr>
<td>S.D.</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SOC</td>
<td>Super Optimal Broth (with catabolite)</td>
</tr>
<tr>
<td>spp.</td>
<td>Species</td>
</tr>
<tr>
<td>TPY</td>
<td>Trypticase-Phytone- Yeast Extract</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume per volume</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight per volume</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>X-gal</td>
<td>5-bromo-4-chloro-3-indolyl-ß-D-galactoside</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

The awareness on keeping good gastrointestinal tract (GIT) health among the public has risen nowadays. Inflammatory bowel disease (IBS), irritable bowel syndrome (IBS), Crohn’s disease, ulcerative colitis and Celiac disease are the common problem in gut due to unbalance of bacteria in GIT (Bradesi et al. 2003; Asakura et al. 2008; Collado et al. 2008). Many factors affect the population of intestinal bacteria including diet, age, sex, use of drugs, surgery, and some diseases. Researches showed that maintaining a proper balance of bacteria in GIT is the key to good gut health (Gorbach 2000) and one of the ways to achieve it is by consuming probiotics and prebiotics.

Probiotics and prebiotics are already a reputable sector in the health food market of developed countries. Probiotic dairy products were reported as one of the most developed and well-liked functional food products in European market (Shortt et al. 2004). The market is currently estimated to be worth more than USD 2 billion per annum (Saxelin 2008). In the USA, the annual market value of functional foods is estimated to be around USD80 billion in 2000. An estimated USD 1.86 billion is contributed by probiotics, and probiotic related products. The value is expected to grow to USD3.5 billion by 2007 (Sanders 1998). In Japan, the market size for probiotics and other dietary supplement segments, dominated (80%) the Foods for Special Health Use (FOSHU) category. The FOSHU market is estimated to worth more than USD 10 billion, annually (Amagase 2008). Meanwhile, in Malaysia,
probiotics and prebiotics are an emerging health food concept. Probiotic and prebiotic food products have a huge potential in the functional food market in Malaysia. Hence, special attention is required to develop the sector to be market driven and most important is to use locally manufactured products and expertise in order to participate and compete in the main stream of the field.

The concept of ingesting live microorganisms for therapeutic and prophylactic purposes can be traced back to the beginning of the 20th century (Metchnikoff 1910). Ever since such discovery had been made, there has been rapid growth in research regarding the use of live bacterial cells to benefit humankind. Probiotic organisms influence the physiological and pathological process of the host by modifying the intestinal microbiota, thereby affecting human health (Erickson and Hubbard 2000). They have been used in the prevention and treatment of many GIT disorders, such as inflammatory bowel disease, antibiotic-related diarrhea, and post-resection disorders such as pouchitis (Gorbach 2000). Most of the applied probiotic microorganisms are of human origin and are largely represented by *Bifidobacterium* and *Lactobacillus* species in the commercial. For the past several years, research in our laboratory has focused on *Bifidobacterium* strain that shows the most probiotic characteristics. *Bifidobacterium pseudocatenulatum* G4 was isolated from free-living breast-fed infant by Yazid *et al.* (1999a) and has shown some characteristics as a probiotic candidate.

Prebiotics is defined as non digestible food ingredient that beneficially affects the host by selectively stimulating the growth and/or activity of one or a limited number of bacteria in the colon and thus improve host health (Gibson and Roberfroid 1995). It is
a recent novel food concept that includes food ingredients that are not digested in the human upper intestinal tract and commonly used as a food additive (fiber), fat replacer, sugar substitute, or emulsifier. Dietary modulation of the gut microflora by prebiotics is designed to improve human health by reducing disease risk through the large intestinal surface with various physiological process and stimulating the numbers and/or activities of the bifidobacteria and lactobacilli (Manning and Gibson 2004). Prebiotics for which sufficient data are available for their classification as functional food ingredients are the inulin-type fructans, which include native inulin, enzymatically hydrolysed inulin or oligofructose, and synthetic fructo-oligosaccharides (FOSs) (Roberfroid and Delzenne 1998; Roberfroid et al. 1998).

Inulin is a plant-derived carbohydrate with the benefits of soluble dietary fiber (Schneeman 1999). It was reported to be fermented by resident bacterial groups such as bifidobacteria once reaches the colon intact (Roberfroid et al. 1998). In addition, the bifidogenic effect of inulin has been well proven (Gibson and Roberfroid 1995; Kolida and Gibson 2007).

Prebiotics are consumed by human generally in the form of ingredients in food products. Many food companies especially companies that produce dairy products take a prospect in developing a new product that contains prebiotic substances for the health claim. Inulin and fructo-oligosaccharides (FOS) have been studied in terms of their prebiotic activity in many studies. However, when it comes to its role as a food ingredient, only few tests took place. Most studies of prebiotics have involved the consumption of inulin- or oligosaccharide-containing powders, which may not be
relevant to everyday life because the substrates, for commercial use, would be incorporated into a food product (Tannock et al. 2004).

Probiotics, when applied in conjugation with prebiotics give rise to another possibility in microflora management technique known as synbiotics (Gibson and Roberfroid 1995). This combination could confer greater advantages to the host owing to greater survivality of probiotic candidate due to availability of substrate for its fermentation. Probiotics, prebiotics and synbiotics can be classified as health-enhancing and health-promoting functional food concepts. However, only a few combinations of pre/probiotics have been evaluated as synbiotics, with only a limited number determining effects on the human faecal microbiota using reliable molecular techniques (Saulnier 2007) and to date, finding the novel probiotic strain and the best synbiotic preparation still remains a challenge (Liong and Shah 2008). Thus, this study was conducted to elucidate the effect of synbiotic preparation of our own probiotic candidate, *B. pseudocatenulatum* G4 with inulin towards the bacterial composition in human GIT using real-time PCR assays. Here, we describe the first stages in the development of a synbiotic, by first determine the ability of probiotic strain of interest to metabolize prebiotic substance of interest, then by evaluating their effect on the faecal microbiota *in vitro*, to assess whether the synbiotic can have a superior functionality as compared with its probiotic/prebiotic components. Synbiotic function was also tested in food products to see whether the functionality of synbiotic was affected or not by the food itself. This general objective meets the specific objectives as listed below: