UNIVERSITI PUTRA MALAYSIA

THE POTENTIAL OF *Momordica charantia*, *Morinda citrifolia* and *Centella asiatica* EXTRACTS AS ANTIOBESITY AGENTS

By NAJLA GOODA SAHIB

FSTM 2009 22
THE POTENTIAL OF *Momordica charantia*, *Morinda citrifolia* and *Centella asiatica* EXTRACTS AS ANTI-OBESITY AGENTS.

By

NAJLA GOODA SAHIB

Thesis submitted to the School of Graduate studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

October 2009
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

THE POTENTIAL OF *Momordica charantia*, *Morinda citrifolia* and *Centella asiatica* EXTRACTS AS ANTIOBESITY AGENTS.

By

NAJLA GOODA SAHIB

October 2009

Chairman: Dr Azizah Abdul Hamid, PhD

Faculty: Food Science and Technology

The effect of *Momordica charantia* Extract (MCE), *Centella asiatica* Extract (CAE) and *Morinda citrifolia* Fruit Extract (MCFE) on lipoprotein lipase (LPL) activity, pancreatic lipase activity, proliferation and differentiation of 3T3-L1 preadipocytes were investigated to evaluate their potential application for obesity treatment. Dried plant samples were extracted in 99.5% ethanol. Extracts were analyzed for total phenolic compounds and flavonoids utilizing Folin Ciocalteau assay and HPLC respectively. The anti oxidative potential of all extracts were also evaluated using the FRAP and DPPH assays. The inhibitory effects of the extracts on lipoprotein lipase (LPL) and pancreatic
lipase (PL) were determined in vitro. The extent of cell proliferation was determined by cell viability assay and the degree of differentiation was measured by Oil Red O staining assay. Results of the study showed that all extracts tested consisted of excellent concentration of phenolics compounds, and catechin and epicatechin was predominantly present in all three extracts. All extracts also showed good anti oxidative potential in scavenging free radicals. At a concentration of 1 mg/mL, the extracts inhibited LPL activity differently, with MCFE showing the highest inhibitory effect (21.4±2.3%), followed by CAE (16.3±1.1 %) and MCE (10.6 ±0.6%). At a concentration of 0.02mg/ml, all three extracts inhibited PL, with CAE showing the highest inhibition (31.1%), followed by MCFE (29.7%) and lastly MCE (21.5 %), with no significance difference. MCE showed the highest inhibitory effect on both cell proliferation and differentiation of preadipocytes. After 72 hours, MCE was found to be most toxic with an LC50 of 1.6mg/L, followed by CAE with an LC50 of 2.4 mg/mL and MCFE had the least cytotoxic effect with LC50 of 4.5 mg/mL. Results after 48 hours of plating showed that MCE exhibited the highest inhibitory effect on differentiation in a dose dependent manner. The highest inhibition, 74.7 ±5.41% of control, occurred at concentration of 0.5 mg/mL. Data from the study indicate that MCE exert potential anti obesity effects by inhibiting proliferation and differentiation of preadipocytes. MCFE can also be used as a therapeutic treatment for obesity due to its relatively high anti LPL and PL activity and low cytotoxic effect.

Key words: Obesity, *Momordica charantia*, *Morinda citrifolia*, *Centella asiatica*, 3T3-L1 cells, cell differentiation, Lipoprotein lipase, flavonoids, catechin and phenolic compounds.
EKSTRAK *Momordica charantia*, *Morinda citrifolia* dan *Centella asiatica*

SEBAGAI AGEN ANTI OBESITI

Oleh

NAJLA GOODA SAHIB

Oktober 2009

Pengerusi: Azizah Abdul Hamid, PhD

Fakulti: Sains dan Teknologi Makanan

Kesan exstrak *Momordica charantia* (MCE), ekstrak *Centella asiatica* (CAE) dan buah *Morinda citrifolia* (MCFE) ke atas aktiviti lipase lipoprotein (LPL), aktiviti lipase pancreatic, pengandaan dan perbezaan 3T3-L1 preadipocytes tela dikaji untuk menilai potensi untuk rawatan kegemukan. Sampel tumbuhan yang telah dikeringkan telah diesktrak dalam 99.5 \% etanol. Jumlah komponen fenolik/ flavonoids telah dianalisis menggunakan Kaedah Folin Ciocalteau dan HPLC. Keupayaan anti-pengoksidaan semua exstrak juga dinilai meg gunakan kaedah FRAP dan DPPH. Kesah pencegahan semua ekstrak juga meggunakan kaedah FRAP dan DPPH. Kesah pengandaan sel telah
ditentukan oleh kaedah MTT dan darjah perbezaan diukur oleh assey Oil Red O staining. Keputusan daripada kajian menunjukkan semua ekstrak yang diuji mengandungi kepekatan komponen fenolik yang baik dan katekin dan epikatekin adalah paling dominan di antara kesemua ekstrak. Kesemua juga menunjukkan keupayaan antioksidaan yang tinggi terhadap pemerangkapan radikel bebas. Pada kupekatan 1mg/mL, ekstrak merencat aktiviti LPL secara berbeza dengan MCFE menunjukkan kesan perencatan paling tinggi (21.4±2.3%), diikuti CAE (16.3±1.1 %) dan MCE (10.6 ±0.6%). Pada kepetan 0.25 mg/mL CAE, MCFE and MCE menunjukkan pencegehan aktiivti lipase pankreatik tinggi pada masing masing (31.1%), (29.7%), (21.5 %). MCE menunjukkan kesa perencatan paling keats pengandaan sel dan pembezaan preadiposites. Selepas 72 jam, MCE didapati lebih toksik dengan LC50 1.6 mg/mL diikuti oleh CAE dengan nilai LC 50 dan 2.4 mg/mL dan MCFE mempunyai kesa sitotosik paling rendah dengan nilai LC 50 4.5 mg/mL. Keputusan selepas 48 jam menunjukkan MCE menpunyai kesa perencatan paling tinggi Perencatan paling tinggi 74.7 ± 5.41 5 daripada kawalan berlaku pada kepekat 0.5 mg/mL. Data daripada kajian menunjukkan MCE boleh memberi kesa anti kegemukan dengan mencegah pengendaan dan perbezaan preadiposite dan MCFE juga anti LPL dan anti PL yang tinggi.
ACKNOWLEDGEMENT

First and foremost, I am Grateful to Allah (SWT) for having made this project possible and for having supported me all through the most difficult times. Next I would like to thank my main supervisor, Associate Professor Dr Azizah Abdul Hamid, for having always been here to provide guidance and support. I would like to extend my warmest thanks to my committee members: Professor Dr Nazamid Saari and Dr Faridah Abas who were of immense help. My thanks also go to all lecturers and staff of Faculty of Food Science and Technology who have provided technical support. A word of thanks also goes to my good friends: Adnaan, Ali and Maryam for having supported me always when things were not going so great. Thank you guys, for being my source of inspiration and courage. Last but not least, my parents, my brothers, my sister and Dr Ezra for their continuous support and love.

Thank you.
I certify that an Examination Committee has met on 27th October 2009 to conduct the final examination of Najla Gooda Sahib on her degree entitled "The potential of \textit{Momordica charantia}, \textit{Morinda citrifolia} and \textit{Centella asiatica} extracts as antiobesity agents" in accordance with the Universities and Universities Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia (P.U(A) 106) 15 March 1998. The Committee recommends that the student awarded the Master of Science.

Members of the Examination Committee were as Follows:

\textbf{Azizah Osman, PhD}
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

\textbf{Suhaila Mohamed, PhD}
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

\textbf{Asmah Rahmat, PhD}
Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Internal Examiner)

\textbf{Laily Din, PhD}
Professor Dato’
Centre For Graduate Management
Universiti Kebangsaan Malaysia
Malaysia
(External Examiner)

\textbf{BUJANG KIM HUAT, PhD}
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date : 24 December 2009
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Azizah Abdul Hamid, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Nazamid Saari, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Faridah Abas, PhD
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

HASANAH MOHD. GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 14 January 2010
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

NAJLA GOODA SAHIB

Date: 7 December 2009
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii-iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv-v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii-viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi-xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiii-xiv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER

1 **INTRODUCTION**

2 **LITERATURE REVIEW**

2.1 Obesity and causes of obesity

2.1.1 Biochemistry of obesity

2.1.1.1 Leptin

2.1.1.2 Adiponectin

2.1.1.3 PPAR-γ

2.1.1.4 C/EBP-α

2.1.1.5 FAS

2.1.2 Treatment for obesity

2.1.3 Obesity and oxidative stress

2.2 Lipases

2.2.1 Lipoprotein Lipase

2.2.2 Characteristics and structure of Lipoprotein Lipase

2.2.3 Apolipoprotein C II

2.3 Pancreatic Lipase

2.3.1 Characteristics and structure of Pancreatic Lipase

2.3.2 Colipase
2.4 The Adipocyte Life cycle

2.4.1 Origin of adipose cells and adipose tissue 22-23
2.4.2 Adipocyte life cycle and differentiation 24-26
 2.4.2.1 3T3-L1 preadipocytes 26-27

2.5 Phytochemicals 27-29

2.5.1 Phytochemicals and Obesity 29-33

2.6 *Morinda citrifolia* (L) 33-34

2.6.1 Nutritional composition and health benefits of *Morinda citrifolia* (L) 34-35

2.7 *Momordica charantia* 35-36

2.7.1 Nutritional composition and health benefits of *Momordica charantia* 36-37

2.8 *Centella asiatica* L Urban 37-38

2.8.1 Nutritional composition and health benefits of *Centella asiatica* L 38-39

3 TOTAL PHENOLICS AND ANTI OXIDANT ACTIVITIES OF EXTRACTS

3.1 Introduction 40-41

3.2 Materials and Methods

3.2.1 Materials 41-42

3.2.2 Methods
 3.2.2.1 Extraction 42-43
 3.2.2.2 High Performance Liquid Chromatography 43-44
 3.2.2.3 Total Phenolic compounds 44
 3.2.2.4 Antioxidant activity by DPPH assay 44-45
 3.2.2.5 Antioxidant activity by FRAP assay 45
 3.2.2.6 Statistical analysis 45
3.3 Results

3.3.1 Flavonoids and Total phenolic content of MCE, MCFE And CAE 46-48

3.3.2 Antioxidant potential of MCE, MCFE and CAE 49-51

3.4 Discussion

3.4.1 Flavonoids and Total phenolic content of MCE, MCFE And CAE 51-53

3.4.2 Antioxidant potential of MCE, MCFE and CAE 53-55

3.5 Conclusion 56

4. EFFECT OF MCE, MCFE AND CAE ON LIPOPROTEIN AND PANCREATIC LIPASE ACTIVITY

4.1 Introduction 57-58

4.2 Materials and Methods

4.2.1 Materials 58

4.2.2 Methods

4.2.2.1 Pancreatic Lipase activity 59

4.2.2.2 Lipoprotein Lipase activity 60-61

4.2.2.3 Statistical Analysis 61

4.3 Results

4.3.1 Inhibitory effects of MCE, MCFE and CAE on Pancreatic lipase activity in vitro 62-63

4.3.2 The effect of increased concentration of extracts On pancreatic lipase activity 63-64

4.3.3 Inhibitory effects of MCE, MCFE and CAE on Lipoprotein lipase 65-66

4.4 Discussion

4.4.1 Effects of MCE, MCFE and CAE on Pancreatic Lipase 66-71

4.4.2 Effects of MCE, MCFE and CAE on Lipoprotein Lipase 71-73
5 EFFECT OF MCE, MCFE AND CAE ON PROLIFERATION AND DIFFERENTIATION OF 3T3-L1 PREADIPOCYTES

5.1 Introduction 75-76

5.2 Materials and Methods

5.2.1 Materials 76

5.2.2 Methods

5.2.2.1 Cell culture 76-77
5.2.2.2 Measurement of cell viability 77
5.2.2.3 Cell differentiation Oil Red O staining assay 78
5.2.2.4 Statistical Analysis 79

5.3 Results

5.3.1 Cytotoxicity of MCE, MCFE and CAE 79-82
5.3.2 Inhibition of differentiation by MCE, MCFE and CAE 82-85

5.4 Discussion

5.4.1 Influence of MCE, MCFE and CAE on proliferation and differentiation of 3T3-L1 preadipocytes 85-97

5.5 Conclusion 97-98

6. CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH 99-102

REFERENCES 103-123
APPENDICES 123-131
BIODATA OF STUDENT 132
LIST OF PUBLICATIONS /CONFERENCES
<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>47</td>
</tr>
<tr>
<td>4</td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td>49</td>
</tr>
</tbody>
</table>

1. The Human lipase gene family
2. Natural Products patented as anti obesity agents
3. Flavonoids contents of *Momordica charantia*, *Morinda citrifolia* and *Centella asiatica*
4. Total phenolic compounds content represented in Gallic acid (GA)
5. Antioxidant activities of extracts as measured b DPPH and FRAP assays
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mechanism of enzymatic reaction of ‘one enzyme one substrate’ system</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>Mechanism of apoC II stimulation of LPL heterogeneous catalysis</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>The adipocyte life cycle</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>The basic structure of flavonoids</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>Chemical structure of catechins</td>
<td>29</td>
</tr>
<tr>
<td>6</td>
<td>The correlation between Catechin and anti oxidant activity as measured by DPPH assay</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>The correlation between Catechin and anti oxidant activity as measured by FRAP assay.</td>
<td>51</td>
</tr>
<tr>
<td>8</td>
<td>The inhibitory effects of Epicatechin, Orlistat, MCE, MCFE and CAE at the concentration of 0.25mg/mL</td>
<td>62</td>
</tr>
<tr>
<td>9</td>
<td>The inhibitory effects of Epicatechin, Orlistat, MCE, MCFE and CAE at the concentration of 0.007mg/mL</td>
<td>63</td>
</tr>
<tr>
<td>10</td>
<td>The inhibitory effects of MCE, MCFE and CAE on PL activity, at different concentration.</td>
<td>64</td>
</tr>
<tr>
<td>11</td>
<td>Inhibitory effects of Epicatechin, MCE, CAE and MCFE on LPL</td>
<td>66</td>
</tr>
</tbody>
</table>
Cytotoxicity effects of MCE, CAE and MCFE on 3T3-L1 after 24 hours of incubation.

Cytotoxicity effects of MCE, CAE and MCFE on 3T3-L1 after 48 hours of incubation.

Cytotoxicity effects of MCE, CAE and MCFE on 3T3-L1 after 72 hours of incubation

Effects of MCE (0-0.5mg/ml) on 3T3-L1 preadipocytes differentiation

Effects of CAE (0-0.5mg/ml) on 3T3-L1 preadipocytes differentiation

Effects of MCFE (0-0.5mg/ml) on 3T3-L1 preadipocytes differentiation
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>APOC-II</td>
<td>Apolipoprotein C II</td>
</tr>
<tr>
<td>BHA</td>
<td>Butylated Hydroxyanisole</td>
</tr>
<tr>
<td>BMI</td>
<td>Basic Metabolic Index</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>CA</td>
<td>Centella asiatica</td>
</tr>
<tr>
<td>CAE</td>
<td>Centella asiatica Extract</td>
</tr>
<tr>
<td>C/EBP-α</td>
<td>CCAAT/enhancer binding protein</td>
</tr>
<tr>
<td>DEX</td>
<td>Dexamethasone</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s Modified Eagle’s Medium</td>
</tr>
<tr>
<td>DMRT</td>
<td>Duncan’s Multiple Range Test</td>
</tr>
<tr>
<td>DPPH</td>
<td>Dinitrophenyl hydrazine</td>
</tr>
<tr>
<td>EGCG</td>
<td>Epillogalocatechin Gallate</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FFA</td>
<td>Free Fatty Acids</td>
</tr>
<tr>
<td>FRAP</td>
<td>Ferric Reducing Antioxidant Potential</td>
</tr>
<tr>
<td>GA</td>
<td>Gallic Acid</td>
</tr>
<tr>
<td>GSE</td>
<td>Grape Seed Extract</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>IBMX</td>
<td>Isobutylmethylxanthine</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>IDL</td>
<td>Intermediate Density Lipoprotein</td>
</tr>
<tr>
<td>LDL</td>
<td>Low Density Lipoprotein</td>
</tr>
<tr>
<td>LFO</td>
<td>Licorice Flavonoids Oil</td>
</tr>
<tr>
<td>LPL</td>
<td>Lipoprotein Lipase</td>
</tr>
<tr>
<td>MCE</td>
<td>Momordica charantia Extract</td>
</tr>
<tr>
<td>MCFE</td>
<td>Morinda citrifolia Fruit Extract</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger Ribose Nucleic Acid</td>
</tr>
<tr>
<td>NHMS</td>
<td>National Health and Morbidity Survey</td>
</tr>
<tr>
<td>PL</td>
<td>Pancreatic Lipase</td>
</tr>
<tr>
<td>PPAR-γ</td>
<td>Peroxisome Proliferator Activated Receptor</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for Social Sciences</td>
</tr>
<tr>
<td>TG</td>
<td>Triglycerides</td>
</tr>
<tr>
<td>TPC</td>
<td>Total Phenolic Compounds</td>
</tr>
<tr>
<td>TPTZ</td>
<td>Tris (2-pyridyl)-5 triazine</td>
</tr>
<tr>
<td>VLDL</td>
<td>Very Low Density Lipoprotein</td>
</tr>
<tr>
<td>WAT</td>
<td>White Adipose Tissue</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Standard Curve of Gallic acid and Trolox</td>
<td>124</td>
</tr>
<tr>
<td>B</td>
<td>Determination of IC\textsubscript{50} for standards and samples (DPPH)</td>
<td>125-127</td>
</tr>
<tr>
<td>C</td>
<td>Chromatogram of flavonoids standards</td>
<td>129</td>
</tr>
<tr>
<td>D</td>
<td>Chromatogram of flavonoid content in MCE</td>
<td>130</td>
</tr>
<tr>
<td>E</td>
<td>Chromatogram of flavonoid content in MCFE</td>
<td>131</td>
</tr>
<tr>
<td>F</td>
<td>Chromatogram of flavonoid content in CAE</td>
<td>132</td>
</tr>
</tbody>
</table>
CHAPTER 1

1 INTRODUCTION

Obesity is a rapidly growing epidemic worldwide, presenting an increase in the risk of morbidity and mortality in many countries across the world (World Health Organization, 2000). It is believed that today, more than 1.1 billions people are overweight worldwide and 312 million are classified as obese (Hossain et al., 2007). Complications associated with obesity, such as hypertension, hyperlipidemia, diabetes mellitus, cardiovascular disease, cancer, metabolic disorders are forcing researchers to come up with long term solutions for weight management and control (Ferraro et al., 2002; Mukherjee 2003). Unfortunately, Malaysia has not been spared by the escalating problem of obesity. The Third National Health and Morbidity Survey (NHMS III, 2001/2002) revealed that 23 % of adults were overweight and 14 % were in the obese category (Fatimah et al., 2005). Obesity has also been defined as an increased adipose tissue mass which is the result of an enlargement in fat cells and/or an increase in their number (Couillard et al., 2000). The main cause of obesity is believed to be an imbalance between energy input and energy expenditure and weight loss requires a sustained negative energy balance: energy output must exceed energy intake (Stunkard, 1996).

Although reduction of caloric intake by diet and increased level of physical activity are very well known approaches to lose weight, the needs for drugs and other supplements are fast gaining acceptance. Pancreatic lipase (PL) is one of the exocrine enzymes of
pancreatic juice that is essential for the digestion of dietary fats in the intestinal lumen. Pancreatic lipase fulfills an important function in dietary fats absorption by hydrolyzing triglycerides into diglycerides and subsequently into monoglycerides and free fatty acids (Winkler et al., 1990). As hydrolysis of dietary triacylglycerol is essential for subsequent absorption by enterocytes, inhibition of pancreatic lipase will function by reducing the availability of dietary fats calories preventing the assimilation of fats and thus mimic the effect of reduced food intake (Mukherjee, 2003).

Lipoprotein Lipase (LPL) is a non covalent homodimeric protein produces mainly by the adipose, heart and muscle tissues (Brunzell et al., 1989). LPL is the enzyme that hydrolyses triglycerides (TG) component of circulating lipoprotein, hence ensuring that fatty acids are delivered to the tissues. LPL activity in the adipose tissue and muscle will determine to what extent ingested lipids are stored or utilized, hence the amount of fat deposited in the adipose tissue. Due to this action, LPL is closely related to obesity. It was also observed that LPL activity seems relatively high in obese rats (Gamarallage et al., 2003)

Lu and co workers (2006) reviewed that fat tissues are regulated by the number and capacity of adipocytes. An increased in the proliferation and differentiation of preadipocytes may promote excess fat accumulation in the tissues. A regulation of the proliferation and differentiation of preadipocytes could mean control over fat deposition in the tissues. Moreover since the conversion from undifferentiated fibroblast-like preadipocytes into mature adipocytes, constitutes the adipocyte life cycle (Rayalam et al.,
2008), the inhibition of adipocyte differentiation can be used as a control for obesity (Okano et al., 1997).

The condition of obesity has also been linked with poor antioxidant status (Ozata et al., 2002). People with higher Body Mass Index (BMI) have been shown to have high oxidative stress in relation to the content of antioxidative compounds and minerals in the blood (Reitman et al., 2002).

Tropical countries like Malaysia are very rich in herbs and plants and much research has to be done to make maximum use of their benefits. Research in this area is very crucial as the use of medication and pharmaceuticals in the management of obesity is highly controversial and does not address a long term solution. *Momordica charantia*, (MC) Bitter melon; cucurbitacea family, locally known as “peria katak” is a vegetable indigenous to subtropical and tropical regions of South America and Asia. Fruits and seeds of this plant have been used since the dawn of time for treatment of diabetes in Southeast Asian countries (Platel and Srinivasan, 1997). *Centella asiatica* (CA) or “pegaga” is one of the local herbs that is claimed to possess various physiological effects (Zainol et al., 2003). *Centella asiatica* have been known to be used for wound healing, memory improvement, treating mental fatigue (Goh et al., 1995), allergies and cancer, especially leukemia (Kan, 1986). *Morinda citrifolia L.* (MCL) (Rubiaceae), locally known as mengkudu, has been used in folk remedies for over 2000 years. All parts of the plants, which include fruits, leaves, bark and roots have been shown to contain active compounds that have high medicinal values. Medical applications have been reported for
diabetes, antiseptic, hypertension, anticancer and antibiotic properties (Dixon et al., 1999). These plants are also known to be used as slimming aids by various communities in Malaysia.

Hence the objectives of this study were:

1. To determine the total phenolic content, flavonoids content and antioxidant activity of extracts of *Momordica charantia*, *Morinda citrifolia* Fruit and *Centella asiatica*.

2. To determine the effects of extracts on Pancreatic lipase and Lipoprotein lipase activity.

3. To determine the effects of extracts on the proliferation and differentiation of 3T3-L1 preadipocytes.
2. LITERATURE REVIEW

2.1 Obesity and Causes of Obesity

Obesity is a rapidly growing, worldwide epidemic and increases the risk of morbidity, in many countries across the world (World Health Organization, 2000). The most common definition of obesity is the BMI, calculated as body weight in kilogram divided by the square of height in meters. Being overweight is defined as a BMI of 25.0 – 29.9 kgM$^{-2}$ and a BMI exceeding 30 kg M$^{-2}$ is considered as obese. An extreme obesity is defined as a BMI of greater than 40 kg M$^{-2}$(Thompson et al., 2007). Today, more than 65 percent of adults in the United States are overweight or obese (National Institutes of Health, 2006). Although the problem of Obesity in Malaysia is not as severe as it is in the United States, it has been a source of worry lately for the Malaysian Government. Based on the Third National Health and Morbidity Survey (NHMS III, 2001/2002) that was carried out nationwide, the prevalence of overweight and obesity among adults aged 18 years were 23 % and 14 % respectively (Fatimah et al., 2005). Obesity is a major source of concern as it is now characterized as a chronic disease (Stunkard, 1999). A chronic disease is defined as a disruption of bodily functions that develops slowly, and persists for an extended period, often for the life of the affected individual (Butler, 1991). As described by Mukherjee (2003), not only obesity is a threat to the general health of the public but is also a risk factor for clinical disorders such as hypertension, hyperlipidemia, diabetes