UNIVERSITI PUTRA MALAYSIA

BIODEGRADATION OF DIESEL FUEL BY TWO PSYCHROTOLERANT STRAINS ISOLATED FROM SOUTHERN VICTORIA ISLAND, ANTARCTICA

NUR MUHAMAD SYAHIR BIN ABDUL HABIB

FBSB 2018 41
BIODEGRADATION OF DIESEL FUEL BY TWO PSYCHROTOLERANT STRAINS ISOLATED FROM SOUTHERN VICTORIA ISLAND, ANTARCTICA

By

NUR MUHAMAD SYAHIR BIN ABDUL HABIB

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

November 2017
COPYRIGHT

All materials contained within the thesis including without limitation text, logos, icons, photographs and all other artworks are copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from copyright holder. Commercial use of materials may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

This thesis is dedicated to my parents.
Abstract of thesis presented to Senate of Universiti Putra Malaysia in fulfillment of the requirements for the degree of Master of Science

BIODEGRADATION OF DIESEL FUEL BY TWO PSYCHROTOLERANT STRAINS ISOLATED FROM SOUTHERN VICTORIA ISLAND, ANTARCTICA

By

NUR MUHAMAD SYAHIR BIN ABDUL HABIB

November 2017

Chairman: Nur Adeela Binti Yasid, PhD
Faculty: Biotechnology and Biomolecular Sciences

Hydrocarbon contamination in Antarctica poses a great threat to the delicate and unique ecosystems of this continent. Bioremediation of hydrocarbon pollutants via utilisation of the indigenous hydrocarbon-degrading bacteria, has been proposed as an environmentally friendly method to clean-up contaminated soils in Antarctica. This study focused on diesel-degrading Pseudomonas and Rhodococcus species isolated from pristine soils located at the Southern Victoria Island, Antarctica. Isolates were assessed for their ability to grow on diesel as a sole carbon source on solid media at 4°C. Nine isolates showed significant growth in enriched agar after 14 days of incubation. Isolates were then screened to obtain the most promising diesel-degrading strains through colourimetric assay. Two potent isolates that possess rapid utilisation of 0.5% (v/v) diesel were selected and identified as Pseudomonas sp. strain ADL15 and Rhodococcus sp. strain ADL36. The factors that contribute to the growth of both strains were characterised initially using the conventional ‘one-factor-at-a-time’ approach. During this stage, the optimal condition for the growth of both ADL15 and ADL36 were at pH 7.0, 20°C, 1.0% (w/v) NaCl, and 1.0 g/L NH₄NO₃. However, strain ADL36 favoured a higher amount of diesel (2.0% (v/v)) for bacterial growth by comparison to ADL15 (1.0% (v/v)). Percentage of dodecane mineralisation was used as the mean to indicate diesel reduction through gas chromatographic analysis. While strain ADL36 showed 83.75% of dodecane mineralisation, the reduction of dodecane by AD15 is merely at 22.39%. Response surface methodology (RSM) based on central composite design (CCD) was used to improve and optimise the effect of significant factors toward the biodegradation of diesel. RSM proved to enhance the reduction of experimented hydrocarbon (dodecane) with a 15% and 16% increment of mineralisation for isolate ADL15 (38.32%) and ADL36 (99.89%), respectively. The results also demonstrated that addition of salt to culture media was the limiting factor in hydrocarbon degradation. Whole genome sequencing showed that ADL15 and ADL36 were closely related to the Pseudomonas fluorescens and Rhodococcus erythropolis grouping, respectively. Metagenomic analyses revealed the presence of alkane hydroxylases systems which was responsible for alkane degradation in ADL36 but not in ADL15. This founding corresponds to the
gas chromatographic analysis in which ADL36 proved to be a better alkane degrader than ADL15. Detection of the complete pathway of aromatic compound degradation in the latter strain indicates a stronger inclination of the strain to utilise aromatic components in diesel as the carbon source. The presence of putative monooxygenases may also suggest that this strain may utilise specific alkane for their growth. The results from this study showed that strain ADL15 and ADL36 have an excellent potential in bioremediation of aromatics and aliphatics, respectively.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Sarjana Sains

BIODEGRADASI MINYAK DIESEL OLEH DUA STRAIN PSIKROTOLERAN YANG DIPENCILKAN DARIPADA PULAU VICTORIA SELATAN, ANTARTIKA

Oleh

NUR MUHAMAD SYAHIR BIN ABDUL HABIB

November 2017

Pengerusi : Nur Adeela Binti Yasid, PhD
Fakulti : Bioteknologi dan Sains Biomolekul

Pencemaran hidrokarbon di Antartika menyebabkan ancaman yang besar kepada ekosistem yang unik dan rapuh di benua ini. Bioremediasi yang menggunakan bakteria yang mampu menguraikan hidrokarbon, telah dicadangkan sebagai kaedah yang mesra alam bagi membersihkan kawasan tercemar di Antartika. Kajian ini memberi tumpuan kepada pengurai minyak diesel daripada spesis Pseudomonas dan Rhodococcus yang diasingkan daripada tanah yang suci yang terletak di Pulau Victoria Selatan, Antartika. Pencilan dinilai melalui keupayaan mereka untuk menumbuh dengan menggunakan minyak diesel sebagai sumber karbon tunggal pada media pepejal pada 4°C. Sembilan pencilan menunjukkan pertumbuhan yang jelas di dalam agar yang diperkaya selepas 14 hari inkubasi. Pencilan kemudian disaring untuk mendapatkan pencilan pengurai minyak diesel yang paling bagus melalui ujian berwarna. Dua pencilan kekar yang menggunakan 0.5% (v/v) minyak diesel secara pantas telah dipilih dan dikenalpasti sebagai Pseudomonas sp. strain ADL15 dan Rhodococcus sp. strain ADL36. Faktor-faktor yang menyumbang kepada pertumbuhan kedua-dua strain dicirikan pada mulanya menggunakan pendekatan konvensional ‘satu-faktor-pada-satu-masa’. Pada peringkat ini, keadaan optimum pertumbuhan ADL15 dan ADL36 berada pada pH 7.0, 20°C, 1.0% (w/v) NaCl, dan 1.0 g/L NH4NO3. Walau bagaimanapun, strain ADL36 menyukai jumlah minyak diesel yang lebih tinggi (2.0% (v/v)) bagi pertumbuhan bakteria berbanding ADL15 (1.0% (v/v)). Peratusan penguraian dodekana digunakan sebagai tanda bagi menunjukkan pengurangan diesel melalui analisis kromatografi gas. Walaupun strain ADL36 menunjukkan 83.75% penguraian dodekana, pengurangan dodekana oleh ADL15 adalah hanya pada 22.39%. Pengkaedahan tindakbalas permukaan (RSM) berdasarkan reka bentuk komposit pusat (CCD) digunakan untuk meningkatkan dan mengoptimalkan kecekalan faktor-faktor penting kearah penguraian diesel. RSM terbukti dapat meningkatkan pengurangan hidrokarbon (dodekana) yang diuji dengan peningkatan sebanyak 15% dan 16% untuk penurunan dodekana bagi pencilan ADL15 (38.32%) dan ADL36 (99.89%), masing-masing. Keputusan yang diperoleh juga menunjukkan bahawa penambahan garam ke media kultur adalah faktor yang mengurangkan penguraian hidrokarbon. Penjauhan keseluruhan genom menunjukkan bahawa ADL15 dan ADL36 mempunyai kaitan rapat dengan kelompok Pseudomonas fluorescens dan Rhodococcus erythropolis. Analisis metagenomik mendedahkan
kehadiran sistem alkane hidroksilase yang bertanggungjawab terhadap penguraian alkana di dalam ADL36 tetapi tidak di dalam ADL15. Penemuan ini bersesuaian dengan analisis kromatografi gas dimana ADL36 terbukti menjadi pengurai alkana yang lebih baik daripada ADL15. Pengesanan laluan penguraian hidrokarbon aromatik yang lengkap didalam ADL15 mungkin menunjukkan kecenderungan ADL15 yang lebih kuat untuk menggunakan bahagian aromatik didalam diesel sebagai sumber karbon. Kehadiran monookssigenase putatif mungkin juga menunjukkan bahawa strain ini menggunakan alkana yang khusus untuk pertumbuhan mereka. Keputusan daripada kajian ini menunjukkan bahawa strain ADL15 dan ADL36 mempunyai potensi yang baik didalam bioremediasi hidrokarbon aromatik dan alifatik.
ACKNOWLEDGEMENTS

BISMILLAHIRRAHMANIRRAHIM

First of all, I would like to take this opportunity to express my appreciation to every person who motivates, helps and contributes in completing this research project directly or indirectly. I would like to give my earnest gratefulness to my supervisor, Dr. Nur Adeela Yasid for her constant involvement, useful opinion and her supervision throughout the project.

Furthermore, I would also like to acknowledge Dr. Siti Aqilma Ahmad, Assoc. Prof. Dr. Mohd Yunus Shukor, Dr. Wan Lutfi Wan Johari and all the staffs in Bioremediation and general laboratory who contributed in giving brilliant suggestions and constant engagement in aiding me to complete the project. A million thanks also to Dr. Khalilah, Dr. Azham, Dr. Khalizan, Dr. Radzi, Dr. Azah, Dr. Ain, Dr. Noor Azmi, Dr. Syahida, Dr. Grace, Dr. Kenneth, Sook Yee, Basyar and Arief for their guidance and wisdom throughout this project.

Last but not least, I would like to thank my family especially to my loving parents, Abdul Habib Alapitchay and Zaharah Dahlan, and my siblings, Afzan, Aisyah, Hafiz and Bahri who had shown me their continuous support and encouragement. I would also like to appreciate all my laboratory partners and members – Motharasan, Nadzirah, Shakirah, Ain, Allamin, Hafiz, Fadhil, Umar, Aisami, Maryam, Gillian, Nadia Izzati, Aida and Fatin – and all my friends who have been my inspiration, motivation and support all these years.

Finally, special thanks are given to the Faculty of Biotechnology and Biomolecular Sciences and Faculty of Environmental Sciences for giving me a good environment and facilities. I doubt that this project will be possible without the support from the people that I have mentioned above. Thank you very much.

Syahir Habib, 2017
I certify that a Thesis Examination Committee has met on 30 November 2017 to conduct the final examination of Nur Muhamad Syahir bin Abdul Habib on his thesis entitled "Biodegradation of Diesel Fuel by Two Psychrotolerant Strains Isolated from Southern Victoria Island, Antarctica" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Syahida binti Ahmad, PhD
Senior Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Noor Azmi Shaharuddin, PhD
Senior Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Sazlina Md Salleh, PhD
Senior Lecturer
Universiti Sains Malaysia
Malaysia
(External Examiner)

![Signature]

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 27 February 2018
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Nur Adeela Yasid, PhD
Senior Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairperson)

Siti Aqlima Ahmad, PhD
Senior Lecturer
Faculty Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Mohd Yunus Shukor, PhD
Associate Professor
Faculty of Biotechnology
Universiti Putra Malaysia
(Member)

Wan Lutfi Wan Johari, PhD
Senior Lecturer
Faculty of Environmental Sciences
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writing, seminar paper, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ____________________ Date: ____________________

Name and Matric No.: Nur Muhamad Syahir Bin Abdul Habib, GS44253
Declaration by Members of Supervisory committee

This is to certify that:
• the research conducted and the writing of the thesis was under our supervision
• supervision of responsibilities as slated in Rule 41 in Rules 2003 (Revision 2012 – 2013) were adhered to.

Signature: __________________________
Name of Chairman of Supervisory Committee:
Dr. Nur Adeela Yasid

Signature: __________________________
Name of Member of Supervisory Committee:
Dr. Siti Aqlima Ahmad

Signature: __________________________
Name of Member of Supervisory Committee:
Associate Professor
Dr. Mohd Yunus Shukor

Signature: __________________________
Name of Member of Supervisory Committee:
Dr. Wan Lutfi Wan Johari
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER

1 **INTRODUCTION**

2 **LITERATURE REVIEW**

2.1 Hydrocarbon pollution in Antarctica | 3 |
2.2 Petroleum hydrocarbons | 3 |
2.2.1 Composition of petroleum hydrocarbons | 3 |
2.2.2 Diesel oil | 4 |
2.2.3 Fate of petroleum hydrocarbons |
2.2.3.1 Soil system | 5 |
2.2.3.2 Aquatic and marine system | 6 |
2.3 Petroleum hydrocarbon toxicity | 6 |
2.4 Removal techniques of hydrocarbon |
2.4.1 Physical and chemical methods | 9 |
2.4.2 Biological methods | 9 |
2.4.2.1 Biostimulation | 10 |
2.4.2.2 Bioaugmentation | 10 |
2.5 Microbial degradation of petroleum hydrocarbons | 11 |
2.6 Petroleum hydrocarbons degradation pathways |
2.6.1 Bacterial aerobic degradation | 14 |
2.6.2 Bacterial anaerobic degradation | 20 |
2.7 Factors affecting petroleum hydrocarbon degradation |
2.7.1 Temperature | 21 |
2.7.2 Oxygen availability | 22 |
2.7.3 pH | 22 |
2.7.4 Nutrient availability | 22 |
2.7.5 Salinity | 23 |
2.8 Bacterial whole genome sequencing (WGS) |
2.8.1 First-generation sequencing | 23 |
2.8.2 Second-generation sequencing | 24 |
2.8.3 Illumina (Solexa) sequencer |
2.8.3.1 Illumina MiSeq | 26 |

3 **MATERIALS AND METHODS**

3.1 Chemicals and equipment | 27 |
3.2 Preparation of culture growth medium | 28 |
3.2.1 Nutrient agar (NA) 28
3.2.2 Nutrient broth (NB) 28
3.2.3 Bushnell Haas (BH) medium 28
3.2.4 Bushnell Haas (BH) agar with diesel 28
3.2.5 Phosphate-buffered saline (PBS) 28

3.3 Isolation and screening of diesel-degrading strains 29
3.3.1 Collection of soil samples 29
3.3.2 Strain isolation and maintenance 29
3.3.3 2,6-dichlorophenolindophenol (DCPIP) assay 31

3.4 Identification of diesel-degrading strains 32
3.4.1 Morphological characterisation 32
3.4.2 Biochemical characterisation 32
3.4.3 Molecular identification 33
 3.4.3.1 Genomic extraction 33
 3.4.3.2 Quantitative and qualitative assessment of DNA extract 33
 3.4.3.3 Amplification of 16S rRNA gene via PCR 33
 3.4.3.4 Sequence analysis 34
 3.4.3.5 Phylogenetic analysis 34

3.5 Physiological characterisation 34
 3.5.1 Cell suspension preparation and experimental design 35
 3.5.2 Effect of substrate concentration 35
 3.5.3 Effect of pH 35
 3.5.4 Effect of temperature 35
 3.5.5 Effect of salt concentration 36
 3.5.6 Effect of nitrogen sources 36
 3.5.6.1 Effect of different concentration of selected nitrogen sources 36

3.6 Optimisation by statistical approach 36
 3.6.1 Plackett-Burman (PB) design 36
 3.6.2 Central composite design (CCD) 37

3.7 Gas chromatographic analysis 38

3.8 Whole genome sequencing for isolated strain 39
 3.8.1 Preparation of genomic DNA template 39
 3.8.2 Library preparation 39
 3.8.2.1 Tagmentation of gDNA and amplification 40
 3.8.2.2 Library cleanup and normalisation 40
 3.8.3 Cluster generation and de novo sequencing 40
 3.8.4 Data analysis 40
 3.8.4.1 FastQ files analysis 41
 3.8.4.2 Reads assembly, annotation and analysis 41

4 RESULT AND DISCUSSION 42
4.1 Isolation and screening of diesel-degrading strains 42
4.2 Identification of diesel-degrading strains 46
 4.2.1 Morphological characterisation 46
 4.2.2 Molecular identification 49
4.2.2.1 Genomic extraction
4.2.2.2 Isolation of 16S rRNA gene sequence
4.2.3 16S rRNA sequence analysis
4.2.4 Phylogenetic analysis
4.3 Physiological characterisation
4.3.1 Effect of substrate concentration
4.3.2 Effect of pH
4.3.3 Effect of nitrogen sources
4.3.3.1 Effect of different concentration of NH₄NO₃
4.3.4 Effect of salinity
4.3.5 Effect of temperature
4.4 Evaluation and assessment of residual hydrocarbon components
4.5 Statistical optimisation by response surface methodology (RSM)
4.5.1 Plackett-Burman (PB) design
4.5.1.1 Viable plate count (ADL15)
4.5.1.2 Viable plate count (ADL36)
4.5.2 Central composite design (CCD)
4.5.2.1 Justification of Central composite design (CCD)
4.5.2.2 Pseudomonas sp. ADL15
4.5.2.3 Rhodococcus sp. ADL36
4.5.3 Model prediction and validation
4.5.3.1 Pseudomonas sp. ADL15
4.5.3.2 Rhodococcus sp. ADL36
4.5.4 Verification of optimisation experiment
4.6 Bacterial whole genome sequencing
4.6.1 Preparation of genomic DNA template
4.6.2 Validation of gDNA library and sequencing run
4.6.2.1 Quantitative and qualitative validation
4.6.3 Data analysis
4.6.3.1 MiSeq run analysis
4.6.3.2 FastQ files analysis
4.6.4 Reads assembly, annotation and analysis
4.6.4.1 Pseudomonas sp. ADL15
4.6.4.2 Rhodococcus sp. ADL36
4.7 Summary on the utilisation of hydrocarbons by ADL15 and ADL36

5 CONCLUSIONS AND RECOMMENDATION

REFERENCES
BIODATA OF STUDENT
LIST OF PUBLICATIONS
LIST OF TABLES

Table	Page
2.1 Toxic effects of different hydrocarbons on human health | 8
2.2 Toxic effects of different hydrocarbons on animal and plants | 8
2.3 List of several Antarctic hydrocarbon-degrading bacteria | 12
2.4 List of strain used for plasmid-related hydrocarbon degradation | 13
3.1 List of chemicals | 27
3.2 List of equipment | 27
3.3 List of soil samples with exact sampling location and description | 29
3.4 Experimental values for variables tested on bacterial growth | 37
3.5 Experimental design for independent factors on bacterial growth | 37
3.6 Experimental values selected for CCD optimisation | 37
3.7 Experimental CCD on dodecane mineralisation | 38
3.8 Index adaptor used for gDNA sample from isolate 15 and 36 | 40
4.1 List of pure bacterial isolates with growth on different media | 43
4.2 Purity and genomic DNA concentration of ADL15 and ADL36 | 50
4.3 PB experimental design matrix with levels of bacterial growth | 72
4.4 Analysis of variance (ANOVA) for bacterial growth of ADL15 | 72
4.5 PB experimental design matrix with levels of bacterial growth | 73
4.6 Analysis of variance (ANOVA) for bacterial growth of ADL36 | 74
4.7 Experimental CCD on dodecane degradation by ADL15 | 77
4.8 ANOVA for dodecane mineralisation by ADL15 in CCD | 78
4.9 Experimental CCD on dodecane degradation by ADL36 | 81
4.10 ANOVA for dodecane mineralisation by ADL36 in CCD | 82
4.11 Suggestions for maximum dodecane mineralisation by ADL15 | 84
4.12 Suggestions for maximum dodecane mineralisation by ADL36 | 86
4.13 Differences of optimised state of dodecane mineralisation by ADL15 from different optimisation method | 89
4.14 Differences of optimised state of dodecane mineralisation by ADL36 from different optimisation method | 89
4.15 Purity and gDNA concentration of ADL15 and ADL36 | 91
4.16 The final Qubit concentration and average library size obtained | 92
4.17 The summary of genomic analysis with features of both strains | 96
4.18 General characteristics of the genomes of P. fluorescens strains Pf0-1, SBW25 and Pseudomonas sp. strain ADL15 and GM60 | 98
4.19 General characteristics of the genomes of R. erythropolis strains PR4 and CCM2925 along with ADL36 | 102
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Examples of aliphatic and aromatic hydrocarbons</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Peripheral pathways of alkane mineralisation</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>The initial attack on n-alkane and aromatic compound benzene by oxygenases</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>The schematic illustration for the divergent pathways for aerobic degradation of toluene</td>
<td>20</td>
</tr>
<tr>
<td>4.1</td>
<td>The growth of ADL15 and ADL36 on BH agar added with 0.5% (v/v) diesel</td>
<td>42</td>
</tr>
<tr>
<td>4.2</td>
<td>The structural changes of DCPIP redox indicator from blue (oxidised) to colourless (reduced)</td>
<td>44</td>
</tr>
<tr>
<td>4.3</td>
<td>The DCPIP assay for primary screening</td>
<td>45</td>
</tr>
<tr>
<td>4.4</td>
<td>The DCPIP assay for secondary screening</td>
<td>45</td>
</tr>
<tr>
<td>4.5</td>
<td>The results of colourimetric assay on discolouration of DCPIP with different hydrocarbons</td>
<td>46</td>
</tr>
<tr>
<td>4.6</td>
<td>The gram staining of a 24 hours culture of isolate ADL15 and ADL36 grown on nutrient agar</td>
<td>46</td>
</tr>
<tr>
<td>4.7</td>
<td>The oxidase test results on ADL15 and ADL36</td>
<td>48</td>
</tr>
<tr>
<td>4.8</td>
<td>The catalase test results on ADL15 and ADL36</td>
<td>48</td>
</tr>
<tr>
<td>4.9</td>
<td>Gel image of genomic extracts strain ADL15 and ADL36 on 1.0% (w/v) agarose gel</td>
<td>49</td>
</tr>
<tr>
<td>4.10</td>
<td>Gel image of PCR products for ADL15 and ADL36 on 1.0% (w/v) agarose gel</td>
<td>51</td>
</tr>
<tr>
<td>4.11</td>
<td>The accession number of 16S rRNA gene sequence of isolate ADL15 as deposited in GenBank</td>
<td>53</td>
</tr>
<tr>
<td>4.12</td>
<td>The accession number of 16S rRNA gene sequence of isolate ADL36 as deposited in GenBank</td>
<td>54</td>
</tr>
<tr>
<td>4.13</td>
<td>Neighbour-joining method cladogram showing the phylogenetic relationship between strain ADL15 and other 20 closely related reference microorganisms based on 16S rRNA gene sequence</td>
<td>56</td>
</tr>
<tr>
<td>4.14</td>
<td>Neighbour-joining method cladogram showing the phylogenetic relationship between strain ADL36 and other 20 closely related reference microorganisms based on 16S rRNA gene sequence</td>
<td>57</td>
</tr>
<tr>
<td>4.15</td>
<td>The effect of substrate concentration on bacterial growth of ADL15</td>
<td>59</td>
</tr>
</tbody>
</table>
4.16 The effect of substrate concentration on bacterial growth of ADL36
4.17 The effect of pH on bacterial growth of ADL15 using three overlapping buffers
4.18 The effect of pH on bacterial growth of ADL36 using three overlapping buffers
4.19 The effect of different inorganic nitrogen source on bacterial growth of ADL15 and ADL36
4.20 The effect of different concentration of NH$_4$NO$_3$ on growth of ADL15
4.21 The effect of different concentration of NH$_4$NO$_3$ on growth of ADL36
4.22 The effect of salt (NaCl) on bacterial growth of ADL15
4.23 The effect of salt (NaCl) on bacterial growth of ADL36
4.24 The effect of temperature on bacterial growth of ADL15
4.25 The effect of temperature on bacterial growth of ADL36
4.26 GC-FID profile of hydrocarbons obtained from an optimised ADL15 culture at 0 day and after 7 days of incubation
4.27 GC-FID profile of hydrocarbons obtained from an optimised ADL36 culture at 0 day and after 7 days of incubation
4.28 The 3D response surface plots showing the effect of interactions between significant factors of ADL15
4.29 The 3D response surface plots showing the effect of interactions between significant factors of ADL36
4.30 GC-FID profile of hydrocarbons obtained from RSM-optimised ADL15 culture at 0 (top) and after 7 (bottom) days of incubation
4.31 The relationship between the dodecane mineralisation and bacterial growth of ADL15
4.32 GC-FID profile of hydrocarbons obtained from RSM-optimised ADL36 culture at 0 (top) and after 7 (bottom) days of incubation
4.33 The relationship between the dodecane mineralisation and bacterial growth of ADL36
4.34 The schematic diagram of bacterial whole genome sequencing
4.35 The Krona chart showing distribution of ADL15 sequencing reads based on metagenomics at the domain and species level
4.36 The Krona chart showing distribution of ADL36 sequencing reads based on metagenomics at the domain and species level
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percent</td>
</tr>
<tr>
<td>% (v/v)</td>
<td>Percent concentration volume / volume</td>
</tr>
<tr>
<td>% (w/v)</td>
<td>Percent concentration weight / volume</td>
</tr>
<tr>
<td>ºC</td>
<td>Degree celsius</td>
</tr>
<tr>
<td>µl</td>
<td>Microlitre</td>
</tr>
<tr>
<td>µm</td>
<td>Micrometre</td>
</tr>
<tr>
<td>x g</td>
<td>Relative centrifugal force</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>CCD</td>
<td>Central composite design</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony forming unit</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxyribonucleotide phosphate</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EtBr</td>
<td>Ethidium bromide</td>
</tr>
<tr>
<td>et al.,</td>
<td>And friends</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>GC-FID</td>
<td>Gas chromatography- flame ionisation detector</td>
</tr>
<tr>
<td>gDNA</td>
<td>Genomic DNA</td>
</tr>
<tr>
<td>g/L</td>
<td>Gram per Litre</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobase</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>mg/ml</td>
<td>Milligram per millilitre</td>
</tr>
<tr>
<td>mM</td>
<td>Milimolar</td>
</tr>
<tr>
<td>mm</td>
<td>Millimetre</td>
</tr>
<tr>
<td>ng/µl</td>
<td>Nanogram per microlitre</td>
</tr>
<tr>
<td>nM</td>
<td>Nanomolar</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>OFAT</td>
<td>One-factor-at-a-time</td>
</tr>
<tr>
<td>PAHs</td>
<td>Polycyclic aromatic hydrocarbons</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolution per minute</td>
</tr>
<tr>
<td>rRNA</td>
<td>Ribosomal RNA</td>
</tr>
<tr>
<td>RSM</td>
<td>Response surface methodology</td>
</tr>
<tr>
<td>sp.</td>
<td>Species (singular)</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-acetate-EDTA</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Oil and its refined products represent a significant fraction of the pollution found in the Antarctic region, an area considered as the most pristine in the world (Raymond et al., 2017). The occurrences of pollution are more clustered near former military and industrial spots, scientific research stations, rural communities, and remote airfields, while recent spills and discharges tend to be linked with resource development and mishaps in transportation (Aislabie et al., 2004). Fuel spills are recognised as a potential threat as contamination can cause risks for humans and other living organisms if oil and fuel reach groundwater reservoirs and water bodies (Wang and Bartha, 1990; Jesus et al., 2015). Hydrocarbon contamination in these ecosystems is perceived as damaging as they are more sensitive, being profoundly adapted to extreme conditions (McDonald and Knox, 2014; Yang et al., 2009). Besides, due to the slow natural attenuation rates in cold climates, hydrocarbons can persist for longer periods of time than their temperate counterparts causing a stunted ecosystem recovery (Snape et al., 2008). Although the crude oil extraction from the polar region is declining and a strict legislation such as Antarctic Treaty was introduced, contamination of hydrocarbons in the Antarctic region may still be introduced by the booming numbers of tourists during the austral summer (November to March) period. According to the recent tourism statistics recorded by the International Association of Antarctica Tour Operators (IAATO), there is a 16% increase in the number of tourists landed on Antarctic from the 2015-2016 to 2016-2017 tour (IAATO 2016, 2017). While tourism cannot be solely blamed for their chances of introducing contamination, any small contamination can cause great risks to the environment for a remote and almost pristine land such as Antarctica.

Soil remediation in Antarctica is driven by several critical factors such as cost, strict environmental policy, and remediation constraints (Filler et al., 2006). Attempts to clean-up Antarctic polluted sites using both physical and chemical methods have been done but considered as a minor success. Several methods which highly practical in temperate environments such as thermal incineration, is banned from the Antarctic environment while soil excavation and removal of contaminated soils are often impractical, for the reason of high cost and risks of further damage from excavation (Snape et al., 2008). Bioremediation is widely proposed to remove pollutants from the contaminated Antarctic environment due to the increased interest in using the eco-friendly method as a process of remediating diesel fuel polluted sites (Aislabie et al., 2006; Jesus et al., 2015; Rayner et al., 2007). Bioremediation aids remediation activities being carried out either near or on site, which can be appealing in an isolated contamination spot. However, the effectiveness of this approach depends on strong limitations in temperature, bioavailability, oxygen, toxicity, and soil freeze-thaw cycle (Yang et al., 2009; Delille and Coulon, 2008). Among the factors, temperature plays a significant role in determining the rate and degree of microbial hydrocarbon biodegradation while affecting the volatilisation and viscosity of hydrocarbons (Delille and Coulon, 2008).
Biodegradation of varied components of hydrocarbons at low temperatures in Antarctic soils (Baraniecki et al., 2002; Bej et al., 2000) has been reported and is a result of the degradation capacity of indigenous cold-adapted microorganisms. Cold-adapted microorganisms are able to grow at temperatures around 0°C and have adapted their metabolism to function optimally at low temperatures. These microorganisms play a substantial role in the in situ biodegradation of hydrocarbons in cold environments, where ambient summer temperatures often correspond with their growth temperature range. As the Antarctic Treaty prohibits the introduction of non-native organisms, microbes that are indigenous to the Antarctic soil were required for the application of bioremediation (Aislabie et al., 2000). Among microbes, bacterial species play a key role in degrading hydrocarbon pollutants. A large number of hydrocarbon-degrading bacteria from cold soils have been identified, including representatives of gram-negative and gram-positive genera (Aislabie et al., 2000; Ruberto et al., 2005; Shukor et al., 2009). Although large numbers of hydrocarbon-degrading bacteria were isolated from contaminated soils, Margesin et al. (2003) and Stallwood et al. (2005) have observed the occurrence of bacterial species with hydrocarbon-degradative ability in the pristine soil. The addition of indigenous bacteria isolated from Antarctic pristine soil that possess a high competency to degrade diesel fuel may speed up the mineralisation process of petroleum hydrocarbons by several folds when favourable condition is maintained and the regulation of genetic diversity in the bacteria is acknowledged.

Thus, a study was carried out with the following objectives:

1. To isolate and identify bacterial species with hydrocarbon-degrading capacity from the Antarctic pristine soil.
2. To determine the optimum condition for bacterial growth and dodecane mineralisation for isolated strain using statistical analysis and model prediction.
3. To observe the residual hydrocarbon compounds in culture-optimised state qualitatively using gas chromatographic analysis.
4. To analyse the responsible alkane pathways, hydrocarbon-degrading enzymes and their respective genes through bacterial whole genome sequencing.
REFERENCES

