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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 

of the requirement for the degree of Master of Science 

SCANNING LASER THERMOGRAPHIC SYSTEM FOR NON-

DESTRUCTIVE EVALUATION OF INCIPIENT THERMAL DAMAGES IN 

AIRCRAFT COMPOSITE PANEL 

By 

AFIQAH MUSA 

May 2018 

Chairman :   Chia Chen Ciang, PhD 

Faculty :   Engineering 

Composite materials applied in aerospace structure are getting popular due to 

advantages such as high specific strength and stiffness with favorable strength to 

weight ratio. However, incipient thermal damage (ITD) that can cause reduction of 

60% of composite mechanical strength are still unable to be detected using 

conventional NDT&E method.  

This project aims to develop an effective NDT&E tool that can detect or evaluate ITD 

through these three objectives. First, to synchronize laser system, laser scanner system 

and thermal imager as an active infrared imaging system. Second, to develop 

corresponding data acquisition and noise removal algorithm for extraction of local 

temperature-time profiles. Third, to validate the effectiveness of the system and 

algorithm for non-destructive evaluation of ITD in glass fiber reinforced composite 

plate (GFRP). In correspondence to research objective, laser pulse was implemented 

as a powerful thermal energy source in thermography method for evaluating ITD. 

GFRP plate was insulted with high temperature at range of material glass transition 

temperature, 0.8𝑇𝑔,1.0𝑇𝑔,1.1𝑇𝑔,1.2𝑇𝑔 and 1.3𝑇𝑔(𝑇 = 97°C,121°C,133°C,145°C and 

157°C) at time 𝑡 = 120, 60, 30, 15, 10 and 5 minutes to prepare ITD as well as thermal 

damage (TD) for reference. Focus was done on ITD which are insulted at borderline 

temperature of 𝑇𝑔with relatively longer insult time; 0.8𝑇𝑔 and 1.0𝑇𝑔 at 𝑡 = 120,60,30 

minute. ITD evaluation in this study are realized in the form of percentage difference 

between damage and reference derived from thermal contrast base principle. 

Following this, result gained represents outliers with respective to reference area and 

thus indicate detection of damage. Result gained for ITD at 0.8𝑇𝑔 are 1.93851%, 

0.30561% and 0.20913% meanwhile 2.02966%, 1.73518% and 0.53167% at 
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1.0𝑇𝑔for 𝑡 =  120,60,30 minute. A gradual decrement trend can be seen from longer 

insult time to lower insult time to indicate level of severity on damage detected. 

According to system resolution and capability, these values are within the range and 

thus proves the detection of ITD. Further verification done using ultrasonic method 

also proves the inability of conventional NDT&E method to detect ITD as expected. 

Hence, with proposed Scanning Laser Thermographic system, all ITD that were 

insulted with temperature at borderline of 𝑇𝑔 at relatively longer insult time had been 

successfully detected at minimum of 0.20913% at insult temperature; 0.8𝑇𝑔 with insult 

time 𝑡 = 30 minute and at maximum of 2.02966% at insult temperature; 1.0𝑇𝑔 with 

insult time 𝑡 = 120 minute.  
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Abstrak tesis yang dikemukakan kepada Senat Univiersiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Master Sains 

SISTEM IMBASAN LASER TERMOGRAFI UNTUK UJIAN TIDAK 

MEROSAKKAN KEATAS KEROSAKAN TERMAL AWAL PADA PANEL 

KOMPOSIT KAPAL TERBANG  

Oleh 

AFIQAH MUSA 

Mei 2018 

Pengerusi :   Chia Chen Ciang, PhD 

Fakulti :   Kejuruteraan 

Bahan-bahan komposit yang diaplikasikan pada struktur aeroangkasa semakin 

meningkat populariti disebabkan oleh kelebihan-kelebihan seperti spesifik kekuatan 

dan kekenyalan yang tinggi serta nisbah berat kepada kekuatan yang berpatutan. 

Walaubagaimanapun, kerosakan termal awal (ITD) yang boleh mengakibatkan 

pengurangan 60% daripada kekuatan mekanikal bahan komposit masih lagi tidak 

boleh dikesan menggunakan cara ujian tidak merosakkan konvensional. 

Tujuan kajian ini adalah untuk membangunkan alat NDT&E yang berkesan serta dapat 

mengesan atau menilai ITD menerusi tiga objektif ini. Pertama, untuk menyegerakkan 

sistem laser, sistem pengimbas laser dan pengimejan termal sebagai sistem 

pengimejan inframerah yang aktif. Kedua, untuk membangunkan algoritma 

pemerolehan data dan penghapusan hingar yang bersesuaian untuk pengekstrakan 

profil suhu setempat-masa. Ketiga, untuk mengesahkan keberkesanan sistem dan 

algoritma untuk penilaian tidak merusak ITD pada plat komposit polimer gentian kaca 

(GFRP). Dalam perkaitan pada objektif penyelidikan ini, sumber laser telah digunakan 

sebagai sumber tenaga haba yang kuat dalam kaedah termografi untuk menilai ITD. 

Plat GFRP dirosakkan dengan suhu tinggi pada julat suhu peralihan kaca bahan, 

0.8𝑇𝑔,1.0𝑇𝑔,1.1𝑇𝑔,1.2𝑇𝑔 dan 1.3𝑇𝑔(𝑇 = 97°C,121°C,133°C,145°C and 157°C) pada 

masa t = 120, 60, 30, 15, 10 dan 5 minit untuk menyediakan ITD serta kerosakan 

termal (TD) untuk rujukan. Tumpuan telah dilakukan pada ITD yang dirosakkan pada 

suhu sempadan 𝑇𝑔 dengan masa yang lebih lama; 0.8𝑇𝑔 dan 1.0𝑇𝑔pada t = 120,60,30 

minit. Penilaian ITD dalam kajian ini direalisasikan dalam bentuk peratusan perbezaan 

antara kerosakan dan rujukan yang diperoleh dari prinsip asas perbezaan termal. 

Berikutan itu, keputusan yang diperoleh mewakili keluarbatasan berbanding kawasan 



© C
OPYRIG

HT U
PM

 

iv 

 

rujukan, dengan itu menunjukkan pengesanan kerosakan. Hasil yang diperolehi untuk 

ITD pada 0.8𝑇𝑔 ialah 1.93851%, 0.30561% dan 0.20913% manakala 2.02966%, 

1.73518% dan 0.53167% pada 1.0𝑇𝑔 untuk 𝑡 =  120,60,30minit. Gaya penurunan 

secara beransur-ansur boleh dilihat bermula dari masa kerosakan yang lebih lama 

kepada masa keroskan yang lebih sebentar untuk menunjukkan tahap keparahan 

kerosakan yang dikesan. Menurut resolusi dan keupayaan sistem, nilai-nilai ini berada 

dalam lingkungannya dan dengan itu membuktikan pengesanan ITD. Pengesahan 

selanjutnya yang dilakukan menggunakan kaedah ultrasonik juga membuktikan 

ketidakupayaan kaedah NDT&E konvensional untuk mengesan ITD seperti yang 

dijangkakan. Oleh itu, dengan sistem pengimbasan Laser Termografik yang 

dicadangkan, semua ITD yang dirosakkan dengan suhu di sempadan 𝑇𝑔 pada masa 

kerosakan yang lebih lama telah berjaya dikesan dengan sekurang-kurangnya 

0.20913% pada suhu kerosakan; 0.8𝑇𝑔 dengan masa kerosakan t = 30 minit dan 

maksimum 2.02966% pada suhu kerosakan; 1.0𝑇𝑔 dengan masa kerosakan t = 120 

minit. 
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1 INTRODUCTION 

This chapter presents introduction of research done on incipient thermal damage 

detection on composite aerospace structure using laser based thermography. Section 

1.1 Research Background describes current deployment and usage scenario in 

aerospace structural parts. The deployment difficulties are highlighted at the end of 

the session, and the core of the problems is stated in Section 1.2 Problem Statement. 

Hypothesis on solving problems is described in Section 1.3 Hypothesis followed by 

detailed objectives as well as scope of research in Section 1.4 Research Objectives and 

Section 1.5 Scopes of Research. Finally, Section 1.6 Thesis Organization shall provide 

brief flows and statement throughout chapters in this thesis. 

1.1 Research Background/Introduction 

Composite materials such as carbon, glass, and Kevlar fibers reinforced plastics are 

getting popular in aerospace sector nowadays. Composite materials are gaining such 

popularity primarily because they provide much higher specific strength and specific 

stiffness over metallic counterparts. These characteristics could be translated into 

significant improvement of fuel efficiency, which is a great concern for aerospace 

sector due to hike of fuel price and the fact that fuel cost is the major cost for aerospace 

structures ownership and operational cost (“A350XWB Special Edition,” 2013). Other 

advantages of composite materials include corrosion resistance and ability to 

withstand harsh chemical. This provide benefit over metallic structure that are exposed 

to corrosion over time especially over uncontrolled severe weather. Also, because 

composites are build based on part consolidation, a single piece of composite material 

can replace an entire assembly of metal parts resulting to reduction of number of joints 

and mechanical fastener to save more time and maintenance. 

In aerospace structure, composite have been applied in both primary and secondary 

part of aircraft. Graph illustrated in Figure 1.1 stated number of composite weight 

percentage over time since 1980s (“No Title,” 2009). Initially, composite was applied 

on secondary part only where composite percentage is lower than 5%. In 60 years, 

number of composite percentage has been increasing up to 50% and used at both 

primary and secondary structure. Primary structures in aircraft are structure that carries 

flight, ground, loads and whose failure would reduce the structural integrity of the 

aircraft or may causes injury and death to passenger or crew (Cutler, 2006). This part 

will carry critical load bearing structure on an aircraft and plays important role during 

service. Examples of primary structure of an aircraft are fuselage, wing spar, and wing 

rib. In other hand, secondary part is non-primary part and mainly functionalize to 

provide enhanced aerodynamics to aircraft. Differ from primary structure, failure at 

this part will be less critical and would not reduce the structural integrity of the aircraft. 

Among listed secondary parts are floor and other ancillary structure such as windows 

and fairing (Cutler, 2006)(Rupke, 2002). Figure 1.2 shows illustration by Airbus 
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company of structure that deploy composite material in Airbus A380 and proves high 

percentage of composite as it has been applied to both primary and secondary part 

(Jane’s All the World’s Aircraft, n.d.). 

 

Figure 1.1 : Percentage of composite per weight over time (“No Title,” 2009) 

 

 

 

Figure 1.2 : Composite deployment in Airbus A380 including primary and 

secondary part of aircraft structure (Jane’s All the World’s Aircraft, n.d.) 
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Similar to conventional metallic structures, composite structures are also susceptible 

to damages that are classified into manufacturing and in-service damages. 

Manufacturing damages are introduced during manufacturing and fabrication 

processes meanwhile in-service damages occur during service or operation of a 

structure within its lifetime (Ghobadi, 2017). Common damages in manufacturing 

damage are porosity and inclusion that results to reduction of material and structural 

strength. For in service damages, three major damages that commonly happens in-

service are impact, fatigue, and lightning & thermal damage. These damages are 

usually interrelated to each other and most possibly leads to other extensive damages 

such as delamination, cracks, and debonding.  

In recent research, lightning and thermal damage are given more focus due to 

detrimental effects that it may consume on composite aerospace structure. These 

damage that shares the same effect of high thermal exposure have been considered 

lately as significant damage because it may lead to catastrophic effect to aircraft at the 

range of visible to non-visible for current damage detection technique. Non-visible 

damage or so called incipient thermal damage (ITD) are damage specially occurred at 

early stage of thermal damage. Even though it is invisible to current damage detection 

technique, reduction of mechanical properties from these damages are significant and 

had been proven to have reduction values as high as 60% (Maria, 2013) (Tucker 

Howie, Pate, Morasch, & Flinn, n.d.). At this level, mechanical properties of 

composite had already changed and deteriorated to reduce composite strength. Hence, 

detection of ITD in aerospace had been focused to overcome any severe damage that 

it may lead or any irreversible damage to happen. 

In accordance to the fact that each material is highly exposed to imperfections and 

damages at different stages, NDT&E technique provides a systematic damage 

detection method. Ultrasonic scan, eddy current, dye penetrant and infrared 

thermography are among technique used in NDT&E and found to be the most effective 

way for a precise and non-intrusive damage detection especially for conventional 

material (Cutler, 2006; “FAST 32,” 2003; Maria, 2013). Nevertheless, in the 

advancement of material development of composite material, there are numbers of 

limitation in damage detection. As for nowadays NDT&E technique, only severe 

damage such as delamination, crack and debonding can be excellently recognized 

leaving incipient thermal damage undetected.  

In this regard, an effective NDT&E tool that can evaluate incipient thermal damage is 

needed for a better safety and maintenance. This research explores NDT&E techniques 

specifically infrared thermography in evaluating incipient thermal damage by 

considering the aspect of conventional and advance technology in thermography.  
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1.2 Problem statement 

Incipient thermal damage (ITD) could reduce mechanical strength of composite 

materials for up to 60%, but conventional non-destructive test and evaluation 

(NDT&E) techniques established for composite material inspection are not capable of 

detecting it. This problem posts a potential catastrophic structural failure and fatal 

accident, hence an effective NDT&E tool that can detect or evaluate ITD is 

imperatively needed. 

Due to thermo-mechanical properties of ITD, it’s local changes or discontinuities 

caused by heat are very small and are outside of conventional NDT&E capability. 

Understanding that there are local changes due to ITD, thermography method was 

chosen with the implementation of laser as an active source.  

Using laser pulse as localized heat source and thermal imager as sensor, it is possible 

to acquire local temperature-time profile at specific points of inspection. In method 

such as flying laser spot thermography and ultrasonic wave propagation imaging, laser 

had been used and proves it’s effectiveness in detecting less severe damage such as 

lightning damage which are closely related to ITD. Thus, the implementation of laser 

source in proposed Scanning Laser Thermographic System with appropriate noise 

removal algorithm should be able to detect and evaluate ITD. 

1.3 Hypothesis 

Thermal damage (TD) and incipient thermal damage (ITD) in composite materials are 

local changes or discontinuities of material properties caused by heat. These changes 

or discontinuity prevents normal continuous, uniform flow of heat flux. Hence, by 

using laser pulse as localized heat source and thermal imager as sensor, it is possible 

to acquire local temperature-time profile at specific points of inspection. Comparing 

the profiles could highlight outliers and hence indicate TD or ITD.  

1.4 Research Objectives 

This project aims to develop an effective NDT&E tool that can detect or evaluate ITD 

through the following objectives: 

1. To synchronize laser system, laser scanner system, and thermal imager as an active 

infrared imaging system suitable for non-destructive evaluation purposes. 

2. To develop corresponding data acquisition and noise removal algorithm for 

extraction of local temperature-time profiles.  

3. To validate the effectiveness of the system and algorithm for non-destructive 

evaluation of ITD in glass fiber reinforced composite plate. 
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1.5 Scopes of Research  

This study covered the development and application of a laser-based, active 

thermography system with noise removal algorithm for non-destructive detection 

of TD and ITD inflicted with controlled insult time and temperature on thin (~1 mm), 

flat plate of glass fiber reinforced polymer as a simple representation of aircraft skin. 

In damage preparation, especially thermal damage, term ‘insult’ is most appropriately 

used to describe specifically to damage (Pelivanov, Ambrozinski, & O’Donnell, 

2016). Note that, term ‘insult’ was used to describe damage throughout this study. 

This study was conducted to only one category of ITD at insult temperature in 

borderline of 𝑇𝑔 and long insult time. Temperature in borderline of 𝑇𝑔 shall be based 

on fabricated GFRP plate properties insulted to time higher than 30 minutes to 120 

minutes. Finally, validation was done with reference to existing conventional NDT&E 

method used for composite material that is ultrasound method.  

1.6 Thesis Organization 

This thesis work will be divided into 5 chapters. Chapter 2 Literature Review discuss 

briefly on introductory and conceptual understanding in regarding to research scope. 

Included, previous research and significant finding in damage detection of composite 

aerospace structure. Lightning, thermal and incipient thermal damage are given focus 

in accordance to objectives and problem statement stated in Chapter 1 Introduction. 

Damage detection method in composite are also discussed especially for ultrasonic 

and thermal imaging method.  

Chapter 3 Research Methodology describes the process design for scanning laser 

thermographic system. Fabrication of composite material (glass fibre reinforced 

plastic) with aerospace standard was explained including damage preparation on 

specimen. Then, image processing steps was explained in accordance to noise removal 

algorithm. Damage detection calculation using thermal contrast base algorithm was 

presented here. Comparison using conventional method, ultrasonic method is also 

presented for verification purpose.    

Chapter 4 Result and Discussion discuss results collected and processed from 

scanning laser thermographic system. Observation and analysis throughout image 

processing algorithm of thermographic data on thermal damage and incipient thermal 

damage was discussed. Damage detection is presented in the form of percentage 

difference (%) between damage and reference area. Also included result and 

discussion of ultrasonic method for verification. 
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Lastly, Chapter 5 Conclusion and Recommendation for future work summarize final 

result and findings of incipient thermal damage as well as thermal damage detection 

in composite material specifically GFRP in developed scanning laser thermographic 

system. Ultimately, the ability of developed system to detect incipient thermal damage 

in GFRP will determine the relevance of the results for future studies. 
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