UNIVERSITI PUTRA MALAYSIA

ADSORPTION OF QUARTERNIZED PALM KERNEL SHELL FOR FLUORIDE REMOVAL

AYU HASLIJA BT ABU BAKAR

FK 2018 139
ADSORPTION OF QUARTERNIZED PALM KERNEL SHELL FOR FLUORIDE REMOVAL

By

AYU HASLIJA BT ABU BAKAR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

April 2018
DEDICATION

TO:
MY DEAREST BELOVED PARENT:
ABU BAKAR BIN HUSSAIN & HASNAH BT ABDUL RAHMAN

MY HUSBAND:
SAIFUL MUNIR BIN MOHD. SAAD

MY CHILDREN:
SYAUQEE HARRAZ
SYIF-A’ HANNAN
SYATHIR HAFFAZ
SYAMINA HANNAH

MY FAMILY:
AYU HASWIDA
ABU HASWANDY
ABU HASANIF
AYU HASLELA
ABU HASWIRA

MY FRIENDS
ALL WHO ALWAYS PRAY FOR ME AND SUPPORT ME IN ALL STAGES OF MY PHD JOURNEY.

LOVE YOU ALL & MAY ALLAH BLESS YOU ALWAYS.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy.

ADSORPTION OF QUATERNIZED PALM KERNEL SHELL FOR FLUORIDE REMOVAL

By

AYU HASLIJA BT ABU BAKAR

April 2018

Chair : Professor Luqman Chuah bin Abdullah, PhD
Faculty : Engineering

The excess concentrations of fluoride in water for human consumption may cause severe health problems. Among several treatment technologies applied for fluoride removal, adsorption process has been explored widely and proven as an efficient method. An agricultural waste, palm kernel shell (PKS) was quartenized in order to improve the adsorption efficiency as an adsorbent for adsorbing fluoride from waste water by batch and fixed bed column process. Commercial palm kernel shell activated carbon (PKSAC) was used as a comparison to the quaternized palm kernel shell (QPKS). Effect of various factors on the fluoride removal was investigated, such as pH, initial concentration, adsorbent dosage and contact time. Adsorption capacity increased with the increased of adsorbent dosage and contact time. Optimum parameters which resulted in maximum adsorption capacity of 1.7 mg/g by QPKS and 1.3 mg/g by PKSAC was achieved at pH 3 with initial concentration of 20 mg/L, an adsorbent dosage of 8 g/L with contact time of 4 h. The adsorption behavior was further investigated using equilibrium isotherms. In batch process, isotherms such as Langmuir, Freundlich, Redlich-Peterson, and Sips were studied, in which Redlich-Peterson, Langmuir and Freundlich fit well with a coefficient correlation (R²), ranged from 0.95 to 0.99. Kinetic studies, such as pseudo first and second order, Boyd’s model, Elovich model, Double Exponential model and Intraparticle Diffusivities model, were investigated and showed parallel transports exist in the adsorption process and intraparticle diffusion is the rate limiting step for both adsorbents. In fixed bed column process, breakthrough time was affected by bed height and initial fluoride concentration and kinetics studies investigated were Adam-Bohart, Thomas and Yoon-Nelson Model. Regeneration study showed that QPKS performance decreased by 63% compared to PKSAC which decreased by 80% after four cycles of adsorption-desorption. These results suggest that quaternized palm kernel shell (QPKS) has the potential to serve as a low-cost adsorbent for fluoride removal from aqueous solutions.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah.

PENGERUSI: Professor Luqman Chuah bin Abdullah, PhD
FAKULTI: Kejuruteraan

Kepekatan fluorida yang berlebihan di dalam air untuk penggunaan manusia boleh menyebabkan masalah kesihatan yang teruk. Di antara beberapa teknologi rawatan yang digunakan untuk penyingkiran fluorida, proses penjerapan telah diterokai secara meluas dan terbukti sebagai kaedah yang cekap. Sisa pertanian tempurung isirong kelapa sawit telah dikuaternisasikan untuk peningkatan kecekapan penjerapan sebagai satu bahan penjerap untuk menjerap fluorida daripada air sisa buangan secara proses kelompok dan proses berterusan. PKSAC telah digunakan sebagai perbandingan kepada QPKS. Kesan daripada pelbagai faktor penyingkiran fluorida telah dikaji seperti pH, kepekatan larutan permulaan, dos bahan penjerap dan masa penjerapan. Kapasiti penjerapan meningkat dengan peningkatan dos bahan penjerap dan masa penjerapan. Parameter optimum yang menghasilkan kapasiti maksimum penjerapan 1.7 mg/g oleh QPKS dan 1.3 mg/g oleh PKSAC telah dicapai pada pH 3 dengan kepekatan awal larutan fluorida 20 mg/L, dos bahan penjerap 8 g/L dengan masa penjerapan 4 jam. Mekanisma aktiviti penjerapan dikaji menggunakan isoterma keseimbangan. Dalam proses kelompok, isoterma Freundlich, Redlich-Peterson, Langmuir, dan Sips telah dikaji dan menunjukkan Redlich-Peterson, Langmuir dan Freundlich sepandah dengan baik dengan nilai R² daripada 0.95 hingga 0.99. Kajian kinetik seperti model pertama dan kedua Pseudo, model Boyd, model Elovich, model Double Exponential dan model Intraparticle Diffusivities telah dikaji dan pergerakan selari wujud dalam proses penjerapan dan penyebaran intrapartikel adalah kadar yang membataskan langkah untuk kedua-dua bahan penjerap. Dalam proses berterusan hasil penyingkiran fluorida dipengaruhi oleh ketinggian turu s dan kepekatan awal larutan fluorida. Kajian kinetik yang digunakan adalah model Adam-Bohart, Thomas dan Yoon-Nelson. Kajian penjanaan semula menunjukkan bahawa selepas empat pusingan penjerapan-penyahjerapan, prestasi QPKS menurun sebanyak 63% berbanding dengan PKSAC yang menurun sebanyak 80%. Keputusan ini menandakan bahawa QPKS mempunyai potensi untuk menjadi bahan penjerap berkos rendah bagi penyingkiran fluorida daripada larutan akueus.
I would like to express my utmost gratitude to my supervisor Prof. Dr. Luqman Chuah Abdullah and co-supervisor Prof. Ir. Dr. Thomas Choong Shean Yaw, Assoc. Prof. Dr. Ma’an Alkhatib and Dr. Mohsen Nourozi for their valuable guidance, support and constructive comments throughout this project. I would like to gratefully acknowledge the technicians in the Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, and my colleagues at UCSI University for their willingness in helping me. A loving thanks to my wonderful husband, kids, family and friends who give me encouragement and support throughout this journey. From the deepest of my heart, I am very grateful with all individual who had contributed in my work. Sincere apologies to any individual I had unintentionally left off.
I certify that a Thesis Examination Committee has met on 27 April 2018 to conduct the final examination of Ayu Haslija bt Abu Bakar on her thesis entitled "Adsorption of Quaternized Palm Kernel Shell for Fluoride Removal" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Suraya binti Abdul Rashid, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Hasfalina binti Che Man, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Salmiaton binti Ali, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Martin A. Hubbe, PhD
Professor
North Carolina State University
United States
(External Examiner)

Signature: [Signature]

RUSLI HAJI ABDULLAH, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 30 July 2018
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Luqman Chuah Abdullah, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Thomas Choong Shean Yaw, PhD
Professor, Ir
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Mohsein Nourozi, PhD
Senior Lecturer
Department of Environment
Islamic Azad University Isfahan
(Member)

Ma’an Alkhatib, PhD
Associate Professor
Department of Biotechnology Engineering
International Islamic University Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate students

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: ___________________

Name and Matric No.: Ayu Haslija bt Abu Bakar (GS31549)
Declaration by Members of Supervisory Committee

This is to confirm that:
• the research conducted and the writing of this thesis was under our supervision;
• supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:
Name of Chairman of Supervisory Committee: Prof. Dr. Luqman Chuah Bin Abdullah

Signature:
Name of Member of Supervisory Committee: Prof. Ir. Dr. Thomas Choong Shean Yaw

Signature:
Name of Member of Supervisory Committee: Dr. Mohsein Nourozi

Signature:
Name of Member of Supervisory Committee: Assoc. Prof. Dr. Ma’an Alkhatib
TABLE OF CONTENTS

ABSTRACT i
ABSTRAK ii
ACKNOWLEDGEMENTS iii
APPROVAL iv
DECLARATION v
LIST OF TABLES xi
LIST OF FIGURES xii
LIST OF NOTATIONS/SYMBOLS xiv

CHAPTER

1 INTRODUCTION 1
1.1 Background 1
1.2 Health Effects and Toxicology of Overdose Fluoride Intake 2
1.3 Methods of Fluoride Removal 2
1.4 Problem Statement 3
1.5 Objectives 4
1.6 Scope of Research 5

2 LITERATURE REVIEW 6
2.1 Methods of Fluoride Removal from Aqueous Solutions 6
 2.1.1 Precipitation and Coagulation 6
 2.1.2 Reverse Osmosis 6
 2.1.3 Electrodialysis 7
 2.1.4 Adsorption 7
2.2 Adsorption Theory 16
2.3 Palm Kernel Shell 17
 2.3.1 Palm Kernel Shell as Low Cost Adsorbent 19
 2.3.2 Characteristic of Adsorbents 20
2.4 Quaternization of Agricultural By Products 22
 2.4.1 Quaternization Process 22
 2.4.2 Quaternization of Palm Kernel Shell 24
2.5 Adsorption Isotherms 24
 2.5.1 Langmuir Isotherm 25
 2.5.2 Freundlich Adsorption Isotherms 25
 2.5.3 Sips Adsorption Isotherm 26
 2.5.4 Redlich-Peterson Adsorption Isotherm 26
2.6 Batch Adsorption kinetics 26
 2.6.1 Pseudo First Order and Second Order Model 26
 2.6.2 Elovich’s Model 28
 2.6.3 Double Exponential model 28
 2.6.4 Liquid film Diffusion Model 30
 2.6.5 Intraparticle Diffusivities 31
2.7 Fixed-bed Column Adsorption Kinetic 36
 2.7.1 Yoon – Nelson Model 36
 2.7.2 Thomas Model 37
 2.7.3 Adam-Bohart and Bed Depth Service Time Model 37
3 METHODOLOGY

3.1 Introduction 39
3.2 Palm Kernel Shell 41
3.3 Preparation of Quaternized Adsorbent 41
 3.3.1 Pretreatment of Palm Kernel Shell (PKS) 41
 3.3.2 Quaternization of Palm Kernel Shell (PKS) 41
3.4 Adsorbent Analysis
 3.4.1 Functional Group Analysis 42
 3.4.2 Surface Morphology and Elemental Analysis 42
 3.4.3 Porosity and Surface Area Analysis 42
 3.4.4 Crystallinity Analysis 42
 3.4.5 Particle Size Distribution Analysis 42
3.5 Fluoride Solution
 3.5.1 Preparation of Fluoride Stock Solution 43
 3.5.2 Preparation of Initial Fluoride Concentration 43
 3.5.3 Calibration Curve 43
3.6 Batch Equilibrium Study
 3.6.1 Adsorption Isotherm 44
 3.6.2 Surface Chemistry Analysis 44
 3.6.3 Effect of pH 45
 3.6.4 Effect of adsorbent dosage 45
3.7 Batch Kinetics Study 45
3.8 Fixed-Bed Column Adsorption Studies 45
3.9 Desorption Study 46
3.10 Experimental Data Analysis Methods
 3.10.1 Equilibrium Isotherm Modelling 47
 3.10.2 Kinetics Modelling 47
 3.10.3 Desorption Analysis 47

4 RESULTS AND DISCUSSION

4.1 Introduction 48
4.2 Characterization of Adsorbents 48
 4.2.1 Surface Morphology Analysis 48
 4.2.2 Surface Elemental Analysis 49
 4.2.3 Porosity and Surface Area Analysis 51
 4.2.4 Functional Group Analysis 52
4.3 Surface Chemistry Analysis 57
4.4 Batch Adsorption
 4.4.1 Effect of pH 58
 4.4.2 Effect of Adsorbent Dosage 60
 4.4.3 Effect of Initial Concentration and Contact Time 60
 4.4.4 Isotherm Study 62
 4.4.5 Kinetic Study 65
 4.4.6 Summary of Fluoride Removal by Batch Adsorption 80
4.5 Fixed Bed Column Study 81
 4.5.1 Breakthrough Profile 82
 4.5.2 Fixed Bed Adsorption Kinetics 86
4.6 Regeneration Study 95
4.7 Adsorbent Preparation Cost Analysis and Comparison 96

5 CONCLUSION AND RECOMMENDATIONS 99
5.1 Conclusion 99
5.2 Recommendations 99

REFERENCES 101
APPENDICES 115
BIODATA OF STUDENT 120
LIST OF PUBLICATION 121
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Effects of fluoride in water on human health (Meenakshi & Maheshwari, 2006).</td>
</tr>
<tr>
<td>2.1</td>
<td>Optimum Condition for maximum adsorption of fluoride on CSC and CAC (Sivabalan et al., 2003)</td>
</tr>
<tr>
<td>2.2</td>
<td>Comparison of some fluoride removal technologies (Loganathan, Vigneswaran, Kandasamy, & Naidu, 2013)</td>
</tr>
<tr>
<td>2.3</td>
<td>Production of Palm Kernel Shell in metric tonnes (MT) until November 2017 (MPOB, 2017)</td>
</tr>
<tr>
<td>4.1</td>
<td>EDX Analysis of PKS, QPKS, PKSAC</td>
</tr>
<tr>
<td>4.2</td>
<td>Pore Characteristics of Adsorbents</td>
</tr>
<tr>
<td>4.3</td>
<td>Parameters for selected adsorption isotherm models by non-linear regression method for QPKS & PKSAC</td>
</tr>
<tr>
<td>4.4</td>
<td>R_L value for fluoride sorption on QPKS & PKSAC</td>
</tr>
<tr>
<td>4.5</td>
<td>Pseudo first order kinetics data for removal of Fluoride by QPKS & PKSAC at different initial concentration.</td>
</tr>
<tr>
<td>4.6</td>
<td>Pseudo second order kinetics data for removal of Fluoride by QPKS & PKSAC at different initial concentration.</td>
</tr>
<tr>
<td>4.7</td>
<td>Weber-Morris model constants and correlation coefficients for adsorption of fluoride by QPKS and PKSAC</td>
</tr>
<tr>
<td>4.8</td>
<td>Elovich’s constants parameter of fluoride sorption onto QPKS and PKSAC</td>
</tr>
<tr>
<td>4.9</td>
<td>Constant values of Liquid Film Diffusion Model for QPKS and PKSAC</td>
</tr>
<tr>
<td>4.10</td>
<td>Parameters of Double Exponential Model for QPKS and PKSAC at</td>
</tr>
<tr>
<td>4.11</td>
<td>Intraparticle Effective Diffusivity of Fluoride in QPKS and PKSAC</td>
</tr>
<tr>
<td>4.12</td>
<td>Value of pore and surface diffusion parameter for QPKS and PKSAC</td>
</tr>
<tr>
<td>4.13</td>
<td>Summary of isotherm models of Fluoride removal by batch process.</td>
</tr>
<tr>
<td>4.14</td>
<td>Summary of kinetic models of Fluoride removal by batch process.</td>
</tr>
<tr>
<td>4.15</td>
<td>Breakthrough time and exhausted time at different bed height by QPKS and PKSAC</td>
</tr>
<tr>
<td>4.16</td>
<td>Breakthrough time and exhausted time at inlet fluoride concentration of QPKS and PKSAC</td>
</tr>
<tr>
<td>4.17</td>
<td>Adams-Bohart constants at different conditions for the fluoride adsorption by QPKS and PKSAC using linear regression analysis</td>
</tr>
<tr>
<td>4.18</td>
<td>BDST Constants Values for QPKS and PKSAC</td>
</tr>
<tr>
<td>4.19</td>
<td>Yoon Nelson Constant Values at different bed height for QPKS and PKSAC</td>
</tr>
<tr>
<td>4.20</td>
<td>Yoon-Nelson parameters at different inlet fluoride concentration by QPKS and PKSAC</td>
</tr>
<tr>
<td>4.21</td>
<td>Constant values of Thomas Model at different bed height for QPKS and PKSAC</td>
</tr>
<tr>
<td>4.22</td>
<td>Constant values of Thomas Model at different initial fluoride concentration for QPKS and PKSAC</td>
</tr>
<tr>
<td>4.23</td>
<td>Cost Comparison of Adsorbent Production (1 kg)</td>
</tr>
<tr>
<td>4.24</td>
<td>Detail calculation of QPKS production</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Zeta potential of α-Al₂O₃ as a function of pH at 20°C with three different concentrations (Bahena et al., 2002)</td>
</tr>
<tr>
<td>2.2</td>
<td>Zeta potential of α-Al₂O₃ as a function of pH at various temperatures using 0.01 M sodium nitrate, NaNO₃, as the supporting electrolyte (Valdivieso et al., 2006).</td>
</tr>
<tr>
<td>2.3</td>
<td>(a) Adsorption isotherms of fluoride on La-AA and AA (pH = 7.0, T = 25°C) (b) Column filtration results for F⁻ removal from spiked tap water by AA and La-AA (Adsorbent volume = 5 mL, influent F⁻ concentration = 10 mg/L, pH = 7.0 ± 0.2, flow rate = 1 mL/min), (Cheng et al., 2014).</td>
</tr>
<tr>
<td>2.4</td>
<td>Intraparticle diffusion plot for the adsorption of fluoride ion onto graphite (Karthikeyan & Elango, 2008)</td>
</tr>
<tr>
<td>2.5</td>
<td>Possible mechanism of Fluoride removal by PPy/BC (Li et al., 2016)</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic Diagram of Adsorption Process (Viegas et al., 2014)</td>
</tr>
<tr>
<td>2.7</td>
<td>Global Palm Oil Production Country in 2015 in million tonnes (Oil World, 2016)</td>
</tr>
<tr>
<td>2.8</td>
<td>Structures of (a) Oil Palm Fruit (Teoh, 2002) (b) Palm Kernel Shell</td>
</tr>
<tr>
<td>2.9</td>
<td>Schematic Diagram of an Adsorbent (Sushrut Chemicals, 2016)</td>
</tr>
<tr>
<td>2.10</td>
<td>Lignocellulose quaternization reaction scheme: (1) cellulose, (2) N-(3-chloro-2-hydroxypropyl), (3) trimethylammonium chloride epoxide, and (4) quaternized cellulose (de Lima et al. 2012)</td>
</tr>
<tr>
<td>2.11</td>
<td>Adsorption of an adsorptive molecule onto the internal surface of a porous adsorbent pellet. Step 1 is film diffusion, and Step 2 is pore diffusion (Tan & Hameed, 2017).</td>
</tr>
<tr>
<td>3.1</td>
<td>Research flow of Fluoride adsorption using adsorbent derived from Palm Kernel Shell</td>
</tr>
<tr>
<td>3.2</td>
<td>(a) Schematic diagram of column (b) Setup of column</td>
</tr>
<tr>
<td>4.1</td>
<td>(a) Raw Palm kernel shell (b) Palm Kernel Shell Activated Carbon (PKSAC) (c) Quaternized Palm Kernel Shell (QPKS)</td>
</tr>
<tr>
<td>4.2</td>
<td>EDX spectra for (a) PKS (b) QPKS and (c) PKSAC</td>
</tr>
<tr>
<td>4.3</td>
<td>Nitrogen adsorption isotherm of QPKS & PKSAC</td>
</tr>
<tr>
<td>4.4</td>
<td>FTIR spectra of (a) raw PKS and QPKS (b) peak of –CN (c) peak of Cl (d) peak of –COC; ether on QPKS</td>
</tr>
<tr>
<td>4.5</td>
<td>FTIR spectrum of PKSAC</td>
</tr>
<tr>
<td>4.6</td>
<td>XRD peaks of (a) Raw PKS (b) QPKS (c) peak different between raw PKS & QPKS</td>
</tr>
<tr>
<td>4.7</td>
<td>XRD peak of PKSAC</td>
</tr>
<tr>
<td>4.8</td>
<td>Point of Zero Charge (pHₚzc) of PKSAC and QPKS</td>
</tr>
<tr>
<td>4.9</td>
<td>Effect of pH on PKSAC & QPKS (C₀ = 5 mg/L, Dosage = 1 g/L, Contact time = 1 hour)</td>
</tr>
<tr>
<td>4.10</td>
<td>Effect of Adsorbent Dosage on PKSAC and QPKS (C₀ = 5 mg/L, pH = 3, Contact time = 1 hour)</td>
</tr>
<tr>
<td>4.11</td>
<td>Effect of initial concentration and contact time (a) QPKS</td>
</tr>
<tr>
<td>4.12</td>
<td>Equilibrium curve for adsorption of Fluoride onto (a) QPKS</td>
</tr>
</tbody>
</table>
| 4.13 | (a) Pseudo-first order kinetics plots at various initial concentrations of fluoride (QPKS dosage: 8 g/L, pH: 3) (b) Pseudo-second order
kinetics plots at various initial concentrations of fluoride (QPKS dosage: 8 g/L, pH: 3)

4.14 (a) Pseudo first order kinetics plots at various initial concentrations of fluoride (PKSAC dosage: 8 g/L, pH: 3) (b) Pseudo second order kinetics plots at various initial concentrations of fluoride (PKSAC dosage: 8 g/L, pH: 3)

4.15 Plot of Weber-Morris model for adsorption of Fluoride on

4.16 Plots of Elovich model with various initial concentrations of fluoride (a) QPKS (dosage: 8 g/L, pH: 3) (b) PKSAC (dosage: 8 g/L, pH: 3)

4.17 Plot of Liquid Film Diffusion Model (Boyd’s) for fluoride sorption onto (a) QPKS (b) PKSAC

4.18 Kinetic curve comparison of Experimental data and Double Exponential Model data for $C_o = 20$ mg/L between QPKS & PKSAC

4.19 Plot of uptake data for adsorption of fluoride on (a) QPKS

4.20 Plot of intraparticle effective diffusivities for (a) QPKS

4.21 Schematic diagram of pore and surface diffusion of fluoride adsorption onto adsorbent.

4.22 Effect of Bed Height on Breakthrough Profile

4.23 Effect of Inlet Fluoride Concentration on Breakthrough Profile

4.24 Adam-Bohart model at different bed height (a) QPKS (b) PKSAC; (pH = 3, treated volume = 100ml, flow rate = 4ml/min, initial fluoride concentration = 2mg/L)

4.25 Adam-Bohart model at different Initial Fluoride Concentration

4.26 Plot of BDST model (a) QPKS (b) PKSAC

4.27 Yoon-Nelson model at different bed heights

4.28 Plot of Yoon-Nelson model at different initial fluoride concentration (a) QPKS (b) PKSAC

4.29 Plot of Thomas model at different bed height (a) QPKS

4.30 Plot of Thomas model at different initial fluoride concentration

4.31 Regeneration of adsorbents

LIST OF NOTATIONS/SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Activated carbon</td>
</tr>
<tr>
<td>C_0</td>
<td>Initial concentration of solute in solution</td>
</tr>
<tr>
<td>C_e</td>
<td>Concentration of solute in solution at equilibrium</td>
</tr>
<tr>
<td>CHMAC</td>
<td>N-(3-chloro-2-hydroxypropyl)trimethylammonium chloride</td>
</tr>
<tr>
<td>EFB</td>
<td>Empty fruit bunch</td>
</tr>
<tr>
<td>FFB</td>
<td>Fresh fruit bunch</td>
</tr>
<tr>
<td>PKS</td>
<td>Palm kernel shell</td>
</tr>
<tr>
<td>PKSAC</td>
<td>Palm kernel shell activated carbon</td>
</tr>
<tr>
<td>QPKS</td>
<td>Quaternized palm kernel shell</td>
</tr>
<tr>
<td>q_e</td>
<td>Amount of adsorbate adsorbed per gram of adsorbent at equilibrium</td>
</tr>
<tr>
<td>q_m</td>
<td>Maximum adsorption capacity per gram of adsorbent</td>
</tr>
<tr>
<td>q_t</td>
<td>Amount of adsorbate adsorbed per gram of adsorbent in time t</td>
</tr>
<tr>
<td>R^2</td>
<td>Correlation coefficient</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Fluoride, a salt of the element fluorine, occurs mainly as sellaite (MgF₂), fluorspar (CaF₂), cryolite (Na₃AlF₆), and fluorapatite [3Ca₃(PO₄)₂·Ca(F,Cl₂)]. It is an essential constituent for both humans and animals depending on the total amount ingested or its concentration in drinking water. Fluoride in drinking water is known for both beneficial and detrimental effects on health. An appropriate concentration of fluoride in drinking water is required to prevent dental cavities but long-term ingestion of water that contains more than a suitable level of fluoride causes bone disease and mottling of the teeth.

The presence of fluorine in drinking water, within permissible limits of 0.5–1.5 mg/L, is beneficial for the production and maintenance of healthy bones and teeth. Meanwhile, excessive intake of fluoride causes dental or skeletal fluorosis, which is a chronic disease manifested by mottling of teeth in mild cases, softening of bones, and neurological damage in severe cases (Liu, Guo, & Shan, 2010). In fact, there has been an escalation in daily fluoride intake via the total human food and beverage chain (Roy & Dass, 2013). Carbonated soft drinks have considerable amounts of fluorides. Fluoride is also present in most of everyday needs; for example, toothpaste, drugs, cosmetics, chewing gums, mouthwashes (Tikki, 2014).

Recently, an increase in industrial activities and water bodies with excess levels of fluoride has become a matter of great concern. Besides, high fluoride level wastewater is produced every day from industries using hydrofluoric acid as a cleaning agent such as the semiconductor, solar cell or metals manufacturing industries or as a reactant or catalyst in the plastics, pharmaceutical, petroleum refining, and refrigeration industries. Untreated high fluoride level wastewater is also one of the key contributors to groundwater and surface water pollutions (Malakootian, Fatehizadeh, Yousefi, Ahmadian, & Moosazadeh, 2011).

Fluoride contamination in groundwater also has been recognised as one of the serious problem worldwide. Fluoride is classified as one of the contaminant of water for human consumption by the World Health Organisation (WHO), in addition to arsenic and nitrate, which cause large-scale health problems (WHO, 2006). Elevated fluoride concentrations in the groundwater occur in various parts of the world such as Kenya, Poland, China, Tanzania, Mexico, and Argentina (Bhatnagar, Kumar, & Sillanpää, 2011). Furthermore, fluoride is widely distributed in the geological environment and generally released into the groundwater by slow dissolution of fluorine-containing rocks. Various minerals; e.g., fluorite, biotites, topaz, and their corresponding host rocks such as granite, basalt, syenite, and shale contain fluoride that can be released into the groundwater. Thus, groundwater is a major source of fluoride intake among humans.
In addition, Hanumantharao (2011) reported that in Nalgonda District, Andhra Pradesh, India, maximum fluoride content in the groundwater was found to be 4.5 mg/L. This high concentration of fluoride affected the villagers which most of the residents suffer from dental discoloration, early tooth decay and bone deformations.

The difference between desirable and toxic doses of fluoride is ill-defined, and fluoride may, therefore, be considered as an essential mineral with a narrow margin of safety (WHO, 2011). The fact that the problems associated with the excess fluoride in drinking water are highly endemic and widespread in the third world countries has prompted many researchers to explore quite a good number of organic and inorganic materials by adopting various processes from coagulation, precipitation through adsorption, and ion exchange. Some are good under certain conditions, while others are good in other conditions.

1.2 Health Effects and Toxicology of Overdose Fluoride Intake

The standards prescribed by various regulatory bodies for fluoride concentration in drinking water are different according to their climatic conditions. According to WHO, the standard prescribed for fluoride ion concentration in drinking water is 1.5 mg/L. Fluoride in smaller doses (0.8-1.0 mg/L) helps to prevent dental caries particularly among children below eight years of age. Fluoride in higher concentration causes dental fluorosis (1.5-2.0 mg/L) and skeletal fluorosis (>3.0 mg/L) (WHO, 2011). Table 1.1 shows the effect of prolonged exposure to higher fluoride concentrations from dental fluorosis progresses to skeletal fluorosis.

<table>
<thead>
<tr>
<th>F(^-1) concentration, (mg/L)</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td><1.0</td>
<td>Safe limit</td>
</tr>
<tr>
<td>1.0-3.0</td>
<td>Dental fluorosis (discoloration, mottling and pitting of teeth)</td>
</tr>
<tr>
<td>3.0-4.0</td>
<td>Stiffened, brittle bones and joints and skeletal fluorosis</td>
</tr>
<tr>
<td>4.0-6.0 and above</td>
<td>Deformities in knee and hip bones and finally paralysis making the person unable to walk or stand in straight posture, crippling fluorosis</td>
</tr>
</tbody>
</table>

Chemically, fluorine is the most electronegative element and is always present in a combined state as fluoride due to its high chemical reactivity. Fluoride is a great calcium-seeking element and can affect the calcified structure of bones and teeth in the human body at higher concentration, resulting in dental fluorosis or skeletal fluorosis. Fluoride toxicity can also cause non-skeletal diseases like aches and pain in the joints, non-ulcer dyspepsia, Polyurea (tendency to urinate more frequently) and polydipsia (excessive thirst), muscle weakness, fatigue, and anemia with very low haemoglobin levels (Roy & Dass, 2013).
1.3 Methods of Fluoride Removal

Over the years, many techniques and processes have been developed and used in the treatment and removal of fluoride from the contaminated water effluent. These techniques include coagulation and flocculation, chemical precipitation, the use of membranes for membrane separation, aerobic and anaerobic degradation using various microorganisms, chemical oxidation, ion exchange, electrodialysis, reverse osmosis, foam flotation, electrolysis, and adsorption (Onyango & Matsuda, 2006). Some of these techniques have been proven to be effective, although they displayed some limitations such as the excess amount of chemical usage or accumulation of highly concentrated sludge causing disposal problems, lack of effective fluoride reduction, and sensitivity towards various wastewater inputs (Santhy & Selvapathy, 2006).

Amongst the processes mentioned above, the use of adsorption has been the most prominent and widely used because of its cost-effectiveness, efficiency, and technology readiness due to the fact that it produces effluents containing very low levels of dissolved organic compounds (Chandra, Mirna, Sudaryanto, & Ismadji, 2007). In addition, many adsorption techniques have been employed for the treatment of drinking water as reviewed in the work reported by Tikki (2014).

1.4 Problem Statement

Source of fluoride and several health problems caused by fluoride has been discussed in detail in previous section. As conclusion, it can be stated that high concentrations of fluoride ions in water mainly affected by natural minerals and industrial activities. Lv et al. (2007) reported that concentration of fluoride in the wastewater from Zhejiang Juhua Fluorine Chemical Co. Ltd. exceeded 1000 mg/L (pH = 5-7). Meanwhile, one of the wastewater treatment plant in Malaysia produced 1.35 mg/L of fluoride from its boiler effluent which exceeded Malaysian Drinking Water Quality Standard, in which the acceptable limit is 0.4 - 0.6 mg/L, as shown in Appendix A2. According to Ruan et al. (2017), most natural rocks and minerals contain large quantities of fluoride which are released as fluoride ions into water, thus, contributing to levels of fluoride concentrations rise in water that exceed the acceptable limit set by WHO, 1.5 mg/L. Therefore, fluoride content in wastewater and drinking water should be reduced in order to improve the health quality.

In order to solve the excess of fluoride concentration in water, adsorption process is chosen due to the cost-effectiveness and its efficiency as stated by Chandra et al. (2007). In adsorption process, activated carbons are the most widely used adsorbents due to their excellent adsorption abilities for organic pollutants. Activated carbon has a high-surface-area, pore volume, and porosity which resulted in higher adsorption capacities. Many researchers have shown that activated carbon is an effective adsorbent for removing pollutants. However, its high initial cost resulted from the thermal activation process that consumes high energy making it less economical as an adsorbent (Ahmaruzzaman, 2008; Robinson, McMullan, Marchant, & Nigam, 2001). Reflecting to this issue, a more economic and efficient technique, which lead to the application of chemically-treated agricultural waste as adsorbents, is favored. The advantage of chemically-treated adsorbents is of their low production cost in terms of
energy saving which will reduce the total production cost as compared to the production of activated carbon.

Palm kernel shell waste from oil palm mill was chosen as the adsorbent in this study because it is a locally available as abundant material. Since millions of kilograms of palm kernel shells are produced annually, the production of chemically-treated palm kernel shell to produce high value added adsorbent has become an attractive waste reduction solution. Chemical modification on palm kernel shell, such as quaternization to produce adsorbent, is considered. Only few researchers were reported in studying the chemically-treated adsorbent specifically through quaternization process on palm kernel shell for anion removal. Koay, et al. (2014) quaternized PKS to remove reactive dye and Bashir, et al. (2015) quaternized PKS to remove fluoride and nitrate. In their study, potassium hydroxide (KOH) was used instead of sodium hydroxide (NaOH) in mercerization process. Moreover, different ranges of operation parameters are applied from current study.

1.5 Objectives

This study aims to synthesise and analyse quaternized palm kernel shell (QPKS) as an adsorbent to remove fluoride from aqueous solution and commercial palm kernel shell activated carbon (PKSAC) as the control adsorbent.

The specific objectives of this work are described as follows:

1. To synthesise quaternized palm kernel shell as an adsorbent via quaternization process using N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHMAC) as quaternization agent.

2. To investigate the effect of initial pH, the dosage of PKSAC and QPKS and initial fluoride concentration in batch process of fluoride removal and reusability of QPKS and PKSAC.

3. To evaluate the adsorption isotherm and kinetics for removal of fluoride from aqueous solution by both PKSAC and QPKS.

4. To investigate the adsorption process of fluoride removal using QPKS in a fixed bed continuous column with different bed height and initial concentration.
1.6 Scope of Research

The scope of this research covered the chemical modification process of the adsorbent which is the palm kernel shell (PKS). PKS was first mercerized using NaOH then chemically modified using quaternizing agent, N-(3-chloro-2-hydroxypropyl) trimethyl ammonium chloride (CHMAC) to produce quaternized palm kernel shell (QPKS). In order to verify the QPKS efficiency, batch and continuous (column) adsorption processes by removing fluoride from the solution were done in UPM laboratories. Parameters such as pH, contact time, adsorbent dosage, initial concentration, and bed height were varied. Data obtained from the experimental work were analysed using isotherm models such as Langmuir, Freundlich, Redlich-Peterson, Sips, Adam-Bohart, Yoon-Nelson, and Thomas. Meanwhile, kinetic studies were analysed using models of Pseudo First and Second Order, Weber-Morris, Elovich, Boyd’s, Double Exponential and Intraparticle Diffusivity. The regeneration of the adsorbent was also studied to analyse the reusability of the adsorbents.

All results for QPKS were compared with control adsorbent which was Palm PKSAC, a commercial activated carbon originated from Palm Kernel Shell.
REFERENCES

Nwabanne, J., & Igbokwe, P. (2012). Kinetic modeling of heavy metals adsorption

