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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 

of the requirement for the degree of Doctor of Philosophy 

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF PLAIN AND                   

NI-REINFORCED POROUS ALUMINA CERAMICS COMPOSITES 

PRODUCED WITH AGRO-WASTE PORE FORMERS 

By 

 

DELE-AFOLABI TEMITOPE THEOPHILUS 

 

May 2018 

Chairperson: Azmah Hanim Mohamed Ariff, PhD 

Faculty: Engineering 

 

The mechanical and corrosion resistance properties of porous alumina ceramics are 

of utmost importance in understanding their operational behavior if they are to stand 

the test of time. Recently, porous alumina systems have been considered suitable for 

application in wide-ranging industrial processes that require extreme service 

conditions such as high temperatures and corrosive mediums due to their satisfactory 

thermal, mechanical and corrosion resistance properties. However, due to the 

inherent brittleness of ceramics and their high sensitivity to thermo-mechanical 

loading, large-scale production of porous alumina components for the above 

applications is constrained. In the present study, the singular effect of different pore 

formers (rice husk and sugarcane bagasse) as well as the joint effect of these pore 

formers and nickel (Ni) reinforcement on the mechanical and corrosion resistance of 

plain and Ni-reinforced porous alumina ceramics composites have been studied 

respectively. Experimental results showed that the mechanical properties of the plain 

porous alumina ceramics decreased with rising pore former content (hardness, tensile 

stress and compressive stress of 529.1-26HV, 20.4-1.5MPa and 179.5-10.9MPa 

respectively). Moreover, higher mechanical properties were observed in the SCB-

graded samples up to the 15wt% PFA mark, while beyond this point, the silica peak 

present in the RH-graded samples favored their relatively higher value. The corrosion 

resistance evaluation of the plain porous alumina ceramics showed that the RH and 

SCB graded samples demonstrated superior corrosion resistance in strong acid and 

strong alkali mediums respectively. For the Ni-reinforced porous alumina 

composites, an inverse relationship was established between the mechanical 

properties and Ni reinforcement. Overall, maximum hardness, tensile stress and 

compressive stress values of 167.3HV, 12.6MPa and 55.3MPa respectively were 

exhibited by the RH-graded porous alumina composite reinforced with 2wt% Ni. 

Relative to the plain porous alumina series, the RH-graded composites exhibited a 

better corrosion resistance in the corrosive mediums as compared with the SCB-

graded counterparts which demonstrated reduced performance in both mediums. 

Moreover, superior corrosion resistance was observed in the RH-graded porous 
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alumina composite reinforced with 2wt% Ni. The Levenberg Marquardt Back 

Propagation Artificial Neural Network (LMBP ANN) was deployed as an artificial 

intelligence model to characterize the plain and Ni-reinforced porous alumina 

ceramics composites developed in the present study. The inputs of the models 

developed include the sample formulation and the corroding time while the outputs 

are the density, porosity, hardness, compressive stress, tensile stress, tensile modulus, 

mass loss in NaOH and mass loss in H2SO4. The accuracy and performance efficiency 

of the developed models (ANN I and ANN II) were confirmed by the large coefficient 

of determinant (≥ 0.95) registered for the plots of all the experimental results against 

their corresponding LMBP ANN predicted results. A Graphical User Interface was 

designed to create a user friendly platform that provides users with real time 

characterization of the plain and Ni-reinforced porous alumina ceramics composites. 
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PENYELIDIKAN BEREKSPERIMEN DAN BERANGKA KE ATAS 

SERAMIK ALUMINA LIANG ASLI DAN DIPERKUAT-NI DIHASILKAN 

MELALUI PEMBENTUK LIANG BAHAN BUANGAN AGRO 

Oleh 

 

DELE-AFOLABI TEMITOPE THEOPHILUS 

 

Mei 2018 

Pengerusi: Azmah Hanim Mohamed Ariff, PhD 

Fakulti: Kejuruteraan 

 

Ciri-ciri mekanikal dan rintangan kakisan seramik alumina berliang adalah sangat 

penting dalam memahami tingkah laku operasinya jika digunakan menentang ujian 

masa. Baru-baru ini, sistem alumina berliang telah dianggap sesuai untuk digunakan 

dalam pelbagai proses perindustrian yang memerlukan keadaan perkhidmatan yang 

mencabar seperti suhu tinggi dan terdedah kepada medium mengakis kerana ciri-ciri 

rintangan haba, mekanikal dan kakisan yang memuaskan. Walau bagaimanapun, 

disebabkan kerapuhan seramik dan sensitiviti yang tinggi kepada pemuatan termo-

mekanik, pengeluaran komponen alumina berliang secara meluas untuk aplikasi di 

atas terkekang. Dalam kajian ini, kesan tunggal pembentuk liang yang berbeza 

(sekam padi dan hampas tebu) serta kesan bersama pembentuk liang dan nikel (Ni) 

sebagai tetulang pada sifat mekanikal dan rintangan kakisan komposit seramik 

alumina liang asli dan diperkuat nickel telah dikaji. Keputusan eksperimen 

menunjukkan bahawa sifat mekanik seramik alumina berliang asli berkurang dengan 

kandungan pembentuk liang yang meningkat (kekerasan, tegasan tegangan dan 

tekanan mampatan 529.1-26HV, 20.4-1.5MPa dan 179.5-10.9MPa masing-masing). 

Lebih-lebih lagi, sifat mekanik yang lebih tinggi diperhatikan dalam sampel yang 

mengandungi SCB sehingga nilai PFA% 15wt, melebihi nilai ini, puncak silika yang 

hadir dalam sampel RH yang dinilai adalah lebih tinggi. Penilaian rintangan kakisan 

seramik alumina berliang asli menunjukkan bahawa sampel RH dan SCB yang dinilai 

memberikan rintangan kakisan yang unggul dalam asid dan medium alkali kuat. 

Untuk komposit alumina berliang yang diperkuat Ni, hubungan songsang telah 

ditubuhkan di antara sifat-sifat mekanik dan kandungan pengukuh Ni. Secara 

keseluruhannya, kekerasan maksimum, tegasan tegangan dan nilai tegasan 

mampatan masing-masing 167.3HV, 12.6MPa dan 55.3MPa dipamerkan oleh 

komposit aluminium berliang RH yang diperkuat dengan 2wt% Ni. Merujuk kepada 

sampel alumina berliang asli, komposit RH yang dinilai mempunyai rintangan 

kakisan yang lebih baik dalam medium hakisan berbanding dengan sampel 

mengandungi SCB yang menunjukkan penurunan prestasi dalam kedua-dua medium. 

Selain itu, rintangan kakisan yang lebih tinggi diperhatikan dalam komposit 
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aluminium berliang RH yang diperkuat dengan 2wt% Ni. Levenberg Marquardt Back 

Propagation Network Neural Artificial (LMBP ANN) telah digunakan sebagai model 

kecerdasan buatan untuk mencirikan komposit seramik alumina yang asli dan 

diperkuat Ni yang dibangunkan dalam kajian ini. Data masuk model-model yang 

dibangunkan adalah termasuk rumusan sampel dan masa kakisan manakala data 

keluar adalah ketumpatan, keliangan, kekerasan, tegasan mampatan, tegasan 

tegangan, modulus tegangan, kehilangan berat dalam NaOH dan kehilangan berat 

dalam H2SO4. Ketepatan dan kecekapan prestasi model yang dibangunkan (ANN I 

dan ANN II) telah disahkan oleh pekali penentu yang besar (≥ 0.97) yang diperolehi 

dari mencarta semua keputusan percubaan terhadap keputusan anggaran LMBP 

ANN. Grafik antara muka untuk pengguna direka bentuk untuk mewujudkan pelantar 

mesra pengguna yang menyediakan pencirian antara masa yang nyata untuk 

komposit seramik alumina polos dan tegangan Ni-diperkuat. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

v 

 

ACKNOWLEDGEMENT 

 

My heartfelt gratitude goes to my parents, Prof and Mrs Dele-Afolabi for their 

resolute support, financial backing and the dedicatory prayers bestowed on me 

throughout the course of this work. 

The interesting discussions, constructive comments and profound guidance received 

from the chairman of my supervisory committee, Assoc. Prof. Azmah Hanim 

Mohamed Ariff are heartily treasured. 

I also wish to express my appreciation to the members of my supervisory committee, 

Dr Norkhairunnisa Mazlan, Dr Shafreeza Sobri and Prof Recep Calin for their 

reformative suggestions and supervision. 

Special thanks to Dr Dele-Afolabi Folarin, Mr and Mrs Popoola and Mrs Oludunke 

Ajala for their love, encouragement and support in making this academic pursuit a 

reality.  

And finally, I extend my appreciation to all concerned persons whose support I 

received during my postgraduate studies.  

 

 

 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM



© C
OPYRIG

HT U
PM

vii 

 

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been 

accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The 

members of the Supervisory Committee were as follows: 

  

Azmah Hanim Mohamed Ariff, PhD 

Associate Professor 

Faculty of Engineering 

Universiti Putra Malaysia 

(Chairman) 

 

Norkhairunnisa Mazlan, PhD 

Senior Lecturer 

Faculty of Engineering 

Universiti Putra Malaysia 

(Member) 

 

Shafreeza binti Sobri, PhD 

Senior Lecturer 

Faculty of Engineering 

Universiti Putra Malaysia 

(Member) 

 

Prof Recep Calin, PhD 

Professor 

Kirikkale University 

Turkey 

(Member) 

 

 

 

 

 

 

 

 

 

 

 

 

ROBIAH BINTI YUNUS, PhD 

Professor and Dean 

School of Graduate Studies 

Universiti Putra Malaysia 

 

Date: 



© C
OPYRIG

HT U
PM

viii 

 

Declaration by graduate student 

 

I hereby confirm that: 

 this thesis is my original work; 

 quotations, illustrations and citations have been duly referenced; 

 this thesis has not been submitted previously or concurrently for any other degree 

at any other institutions; 

 intellectual property from the thesis and copyright of thesis are fully-owned by 

Universiti Putra Malaysia, as according to the Universiti Putra Malaysia 

(Research) Rules 2012; 

 written permission must be obtained from supervisor and the office of Deputy 

Vice Chancellor (Research and Innovation) before this thesis is published (in the 

form of written, printed or in electronic form) including books, journals, 

modules, proceedings, popular writings, seminar papers, manuscripts, posters, 

reports, lecture notes, learning modules or any other materials as stated in the 

Universiti Putra Malaysia (Research) Rules 2012; 

 there is no plagiarism or data falsification/fabrication in the thesis, and scholarly 

integrity is upheld according to the Universiti Putra Malaysia (Graduate Studies) 

Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) 

Rules 2012. The thesis has undergone plagiarism detection software.   

 

 

 

Signature:                                                          Date: 

Name and Matric No.: 

 

 

 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM



© C
OPYRIG

HT U
PM

x 

ABSTRACT 

ABSTRAK 

ACKNOWLEDGEMENT 

APPROVAL 

DECLARATION 

LIST OF TABLES 

LIST OF FIGURES 

LIST OF SYMBOLS AND ABBREVIATIONS 

Page 

i 

iii 

v 

vi 

viii 

xiii 

xiv 

xix 

CHAPTER 

1 INTRODUCTION 

1.1 Background of Research 

1.2 Problem Statement 

1.3 Significance of Study 

1.4 Aim and Objectives 

1.5 Scope of Study 

1.6 Thesis Outline 

1 

1 

2 

3 

5 

5 

6 

2 LITERATURE REVIEW 

2.1    Introduction 

2.2     Processing Routes for Developing Porous Ceramics 

2.3  Porosity and Microstructural Evolution in Porous 

Ceramics 

2.4   Overview of Mechanical Property Relationship with 

Porosity in Porous Ceramics 

2.4.1    Research Trend in the Mechanical Properties 

Evaluation  of Porous Ceramics 

2.4.2 Brazilian Disk Test for Tensile Stress 

Measurement of Porous Ceramics 

2.4.3   Compressive Stress Measurement of Porous 

Ceramics 

2.4.4    Hardness Measurement of Porous Ceramics 

2.5    Corrosion Mechanism in Ceramic Materials 

2.5.1    Oxidizing Ambience and Operational 

Capacity of Porous Ceramics 

2.5.2    Microstructural Characterization and 

Mechanical Properties of Corroded Porous 

Ceramics 

2.6 Agricultural Waste Management and Elemental 

Composition 

2.6.1   Physical and Thermochemical Properties of 

Rice Husk 

2.6.2 Physical and Chemical Properties of 

Sugarcane Bagasse 

8 

8 

10 

14 

21 

21 

24 

28 

30 

31 

32 

33 

35 

36 

38 

TABLE OF CONTENTS 



© C
OPYRIG

HT U
PM

xi 

 

 

 

 

 

 

 

 

 

3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.7 Research Trend in Improving the Mechanical 

Properties of Ceramic   Materials 

2.8    Introduction to Artificial Intelligence Modelling 

2.8.1    Artificial Neural Networks (ANN)    

2.8.2  Back Propagation ANN Architecture and 

Algorithm 

2.9    Summary 

 

MATERIALS AND METHODS 

3.1     Introduction 

3.2 Description of Experimental and Numerical        

Procedures for Developing and Characterizing the 

Plain and Ni-reinforced Porous Alumina Ceramics 

Composites 

3.2.1    Starting Materials 

3.2.2    Agro-Waste Powder Processing and 

Characterization 

3.3    Sample Formulation and Fabrication 

3.4  Metallographic Preparation Technique and General            

Characterization 

3.4.1 Elemental Phases and Microstructural 

Characterization 

3.4.2    Mechanical Properties Testing 

3.4.3    Corrosion Resistance Testing 

3.5  Development of Artificial Neural Network (ANN) 

Models and Graphical User Interface (GUI) for 

Numerical Analysis of Plain and Ni-reinforced Porous 

Alumina Ceramics Composites 

3.5.1    Artificial Neural Network (ANN) Models 

3.5.2    Levenberg-Marquardt Back Propagation         

(LMBP) Algorithm 

3.5.3    The Graphical User Interface (GUI) 

3.6    Summary 

 

RESULTS AND DISCUSSION 

4.1     Introduction 

4.2     Characterization and Thermal Analysis of Agro-

Waste Materials  

4.3     Characterization of Agro-Waste Shaped Plain Porous 

Alumina Ceramics 

4.3.1    Processing and Sintering Behavior of Plain 

Porous Alumina Ceramics  

4.3.2    Elemental Phase Analysis of Plain Porous 

Alumina Ceramics 

4.3.3    Porosity and Microstructure of Plain Porous 

Alumina Ceramics 

4.3.4    Vickers Hardness Results of Plain Porous 

Alumina Ceramics 

40 

 

44 

44 

46 

 

48 

 

50 

50 

50 

 

 

 

53 

54 

 

56 

60 

 

61 

 

64 

68 

69 

 

 

 

71 

73 

 

74 

76 

 

77 

77 

77 

 

81 

 

81 

 

83 

 

85 

 

92 

 

 



© C
OPYRIG

HT U
PM

xii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 

 

 

 

 

4.3.5    Tensile Stress, Tensile Modulus and 

Fracture Morphology Results of Plain 

Porous Alumina Ceramics 

4.3.6    Compressive Stress Results of Plain Porous 

Alumina Ceramics 

4.3.7    Corrosion Resistance Results of Plain 

Porous Alumina Ceramics 

4.4     Characterization of Agro-Waste Shaped Ni-

Reinforced Porous Alumina Ceramics Composites 

4.4.1    Sintering Behavior and Porosity of Ni-

Reinforced Porous Alumina Ceramics 

Composites 

4.4.2    Elemental Phase Analysis of Ni-Reinforced 

Porous Alumina Ceramics Composites 

4.4.3     Microstructural Characterization of Ni-

Reinforced Porous Alumina Ceramics 

Composites 

4.4.4    Vickers Hardness Results of Ni-Reinforced 

Porous Alumina Ceramics Composites 

4.4.5    Tensile Stress, Tensile Modulus and 

Fracture Morphology of Ni-Reinforced 

Porous Alumina Ceramics Composites 

4.4.6    Compressive Stress Results of Ni-

Reinforced Porous Alumina Ceramics 

Composites 

4.4.7    Corrosion Resistance of Results Ni-

Reinforced Porous Alumina Ceramics 

Composites 

4.5   Characterization of Agro-Waste Shaped Plain and                

Ni-Reinforced Porous Alumina Ceramics Composites 

Using Artificial Intelligence Modelling 

4.5.1    Performance of the LMBP-ANN Models 

4.5.2    The Graphical User Interface Components 

and Implementation 

4.6     Summary  

 

CONCLUSIONS AND RECOMMENDATIONS 

5.1    Introduction 

5.2    Concluding Remarks 

5.3    Recommendations 

94 

 

 

104 

 

109 

 

115 

 

115 

 

 

120 

 

122 

 

 

129 

 

131 

 

 

136 

 

 

141 

 

 

149 

 

 

149 

155 

 

160 

 

162 

162 

162 

163 

 

 

REFERENCES 

APPENDICES 

BIODATA OF STUDENT 

LIST OF PUBLICATIONS 

 

 

165 

179 

225 

226 



© C
OPYRIG

HT U
PM

xiii 

 

LIST OF TABLES 

 

 

 

 

 

Table  Page 

2.1 

2.2 

2.3 

 

 

2.4 

 

 

2.5 

 

2.6 

2.7 

2.8 

2.9 

3.1 

 

3.2 

 

4.1 

 

4.2 

 

4.3 

 

 

 

4.4 

 

4.5 

 

 

 

4.6 

 

4.7 

 

4.8 

Silica content in various plants 

Fabrication methods for processing porous ceramics  

Bulk density and linear shrinkage of porous alumina 

ceramics prepared  

with starch PFA 

Microstructural characteristics of as-fired alumina ceramics 

with lycopodium and starch as PFA: starch type (C—corn 

starch, P—potato starch) 

Open porosity and total porosity of porous alumina ceramics 

prepared with starch PFA 

Values of Mechanical Properties 

Chemical constituents of rice husk 

Chemical composition of rice husk ash 

Chemical constituents of sugarcane bagasse 

Summary of plain porous alumina ceramics developed in the 

study 

Summary of Ni-reinforced porous alumina ceramics 

composites developed in the study 

Size and shape characteristics of agro-waste pore formers 

determined by image analysis 

Chemical composition (wt%) of the rice husk ash residue 

(silica) 

Summary of plain porous alumina ceramics and their 

corresponding, % linear shrinkage, density, porosity 

parameters, pore size distribution (median values are in 

boldface) 

Values of mechanical properties for plain porous alumina 

ceramics 

Summary of Ni-reinforced porous alumina ceramics 

composites and their corresponding, % linear shrinkage, 

density, porosity parameters, pore size distribution (median 

values are in boldface) 

Values of mechanical properties for Ni-reinforced porous 

alumina ceramics composites 

Variation of hidden neurons utilized in developing the ANN 

I model  

Variation of hidden neurons utilized in developing the ANN 

II model  

9 

10 

12 

 

 

18 

 

 

18 

 

24 

37 

37 

39 

58 

 

58 

 

78 

 

80 

 

90 

 

 

 

109 

 

125 

 

 

 

140 

 

149 

 

150 



© C
OPYRIG

HT U
PM

xiv 

 

LIST OF FIGURES 

 

Figure  Page 

2.1 

 

2.2 

 

 

2.3 

 

 

 

2.4 

 

2.5 

 

 

2.6 

 

2.7 

2.8 

 

 

 

 

 

 

2.9 

 

2.10 

 

2.11 

2.12 

 

3.1 

 

 

3.2 

 

3.3 

3.4 

 

3.5 

 

 

3.6 

 

Schematic representation of pore-forming agent method for 

porous ceramics fabrication  

Natural organic matters: (a) native potato starch; (b) native 

wheat starch; (c) native tapioca starch; (d) native corn starch;  

(e) native rice starch; (f) poppy seed; (g) lycopodium spores 

SEM micrographs of porous cordierite samples prepared 

with (a) potato starch, (b) cassava starch (Sandoval et al., 

2010), and AT-M composite ceramic prepared with (c) 

10wt% of corn starch, (d) magnified image 

XRD pattern of porous alumina compact fabricated using 

RH and sintered at 1700°C  

Variation of compressive strength (a) and value of parameter 

b derived from the Rice equation (b) with different starch 

additions 

Schematic depiction of a Brazilian disk subjected to a 

compression load 

Typical fracture patterns 

Typical deformation mode of specimen during crushing test. 

Region 1 is the specimen and loading fixture alignment. 

Region 2 corresponds to the elastic region. At the crushing 

point (3), macroscopic cracks propagate with an associated 

load drop (Region 4). Additional deformation of the 

fractured material occurs in Region 5 until finally 

densification occurs in Region 6  

Relationship between materials and operating temperature 

conditions  

Liquid drop on solid substrate under various wetting 

conditions 

Architecture of Artificial Neural Network 

A typical architecture of multilayer perceptron neural 

network 

Flow chart for overall experimental and numerical 

procedures for analyzing the plain and Ni-reinforced porous 

alumina ceramics composites 

FESEM micrographs of (a) alumina (b) nickel (c) rice husk, 

and (d) sugarcane bagasse 

Main steps in processing treated agro-waste materials 

Representative images of (a) acid treatment set-up (b) 

vacuum filtration set-up to obtain the residue 

Flow chart and schematic representations for the procedures 

and methods used in developing the plain and Ni-reinforced 

porous alumina ceramics composites  

Heat treatment profile for developing the plain and Ni-

reinforced porous alumina ceramics composites  

8 

 

11 

 

 

16 

 

 

 

19 

 

22 

 

 

25 

 

28 

29 

 

 

 

 

 

 

41 

 

41 

 

45 

47 

 

52 

 

 

54 

 

55 

56 

 

57 

 

 

59 

 



© C
OPYRIG

HT U
PM

xv 

 

3.7 

3.8 

 

 

3.9 

 

 

3.10 

3.11 

 

3.12 

 

3.13 

 

3.14 

3.15 

 

3.16 

 

3.17 

 

3.18 

3.19 

4.1 

 

4.2 

 

4.3 

4.4 

 

4.5 

 

4.6 

 

 

 

 

4.7 

 

 

4.8 

 

 

4.9 

 

4.10 

 

 

 

Metallographic preparation of porous ceramic samples 

(a) Sputter coater for coating porous ceramic samples, and 

(b) FESEM-EDS set up for surface morphology and 

elemental composition analysis 

(a) Dual beam (FIB_FESEM) system for STEM sample 

preparation, and (b) FETEM-EDX for microstructural and 

elemental distribution analysis 

Dual beam FETEM sample preparation 

(a) Vickers hardness equipment, and (b) sample setup for 

indentation 

(a) Brazilian disk test setup, and (b) geometry of porous 

ceramic sample 

(a) Axial compression test setup and (b) geometry of porous 

ceramic sample 

Corrosion test setup 

Flow chart for developing the artificial neural network 

models 

ANN I model for characterizing the plain porous alumina 

ceramics 

ANN II model for characterizing the Ni-reinforced porous 

alumina ceramics composites 

Pseudocode for LMBP Algorithm 

Flow chart for GUI implementation 

FESEM micrographs of (a) rice husk, and (b) sugarcane 

bagasse powders 

TGA/DTA curves of the (a) rice husk and (b) sugarcane 

bagasse 

XRD pattern for rice husk ash 

Effect of pore former content on (a) linear shrinkage and (b) 

density of the plain porous alumina ceramics 

XRD patterns of plain porous alumina ceramics prepared 

using RH and SCB pore formers and sintered at 1450°C 

Variation of open and total porosities of plain porous 

alumina ceramics with PFA content. Type of PFA: (a) rice 

husk, (b) sugarcane bagasse and comparative plots of 

porosity parameters in all sample grades: (c) open porosity, 

(d) total porosity 

FESEM micrographs showing the morphology of plain 

porous alumina ceramics prepared with (a) 5wt% (b) 10wt% 

(c) 15wt% and (d) 20wt% of rice husk PFA 

FESEM micrographs showing the morphology of plain 

porous alumina ceramics prepared with (a) 5wt% (b) 10wt% 

(c) 15wt% and (d) 20wt% of sugarcane bagasse PFA 

FESEM micrograph of plain porous alumina ceramics 

showing large pore with imbued diminutive pores 

Relationship between hardness values and total porosity for 

plain porous alumina ceramics formed with (a) rice husk, (b) 

sugarcane bagasse and (c) comparative plot of hardness 

values for all sample grades 

60 

61 

 

 

63 

 

 

63 

65 

 

66 

 

68 

 

69 

70 

 

72 

 

72 

 

74 

75 

78 

 

79 

 

80 

82 

 

84 

 

86 

 

 

 

 

88 

 

 

89 

 

 

89 

 

93 

 

 

 



© C
OPYRIG

HT U
PM

xvi 

 

4.11 

 

4.12 

 

4.13 

 

4.14 

 

4.15 

 

4.16 

 

 

 

 

4.17 

 

 

 

4.18 

 

4.19 

 

4.20 

 

4.21 

 

 

4.22 

 

 

 

 

4.23 

 

 

 

 

4.24 

 

4.25 

 

 

 

 

 

4.26 

 

 

Tensile stress–tensile strain relationship of plain porous 

alumina ceramics 

Schematic representation of sharp crack-tip in alumina 

matrix and blunt crack-tip in the pore cavities 

(a) Tensile stress and (b) tensile modulus of plain porous 

alumina ceramics as a function of PFA loading 

Variation of parameter b derived from Rice equation with 

different PFA loading 

Typical fracture patterns observed in the plain porous 

alumina ceramics 

Representative FESEM micrographs showing the fracture 

morphologies of plain porous alumina ceramics prepared 

with (a) 5wt% (b) 10wt% (c) 15wt% (d) 20wt% rice husk 

PFA and (e) EDX spectrum of elemental composition of spot 

A 

Representative FESEM micrographs showing the fracture 

morphologies of plain porous alumina samples prepared 

with (a) 5wt% (b) 10wt% (c) 15wt% (d) 20wt% sugarcane 

bagasse PFA. 

Compressive stress – compressive strain relationship of 

plain porous alumina ceramics 

Compressive stress of plain porous alumina ceramics as a 

function of PFA loading 

Variation of parameter b derived from Rice equation with 

different PFA loading 

Mass loss of plain porous alumina ceramics boiled for 

different times in (a) alkali (b) acid solutions and (c) tensile 

stress variation of the samples after corrosion test for 8h 

Representative FESEM micrographs of RH-graded plain 

porous alumina ceramics after corrosion for 8h under 

different conditions: (a) un-corroded (b) 10wt% NaOH and 

(c) 20wt% H2SO4. Subscripts 5, 10 and 15 denote PFA 

loading of 5wt%, 10wt% and 15wt% respectively 

Representative FESEM micrographs of SCB-graded plain 

porous alumina ceramics after corrosion for 8h under 

different conditions: (a) un-corroded (b) 10wt% NaOH and 

(c) 20wt% H2SO4. Subscripts 5, 10 and 15 denote PFA 

loading of 5wt%, 10wt% and 15wt% respectively 

Variation of linear shrinkage with different weight fractions 

of Ni reinforcement 

Variations of density and total porosity of Ni-reinforced 

porous alumina ceramics composites with different weight 

fractions of Ni reinforcement: (a) RH-graded samples, (b) 

SCB-graded samples and comparative plots of porosity 

parameters in all sample grades: (c) open porosity, (d) total 

porosity 

XRD patterns of plain and Ni-reinforced porous alumina 

ceramics composites prepared using RH and SCB pore 

formers and sintered at 1450°C 

96 

 

97 

 

98 

 

100 

 

101 

 

103 

 

 

 

 

104 

 

 

 

105 

 

106 

 

108 

 

110 

 

 

113 

 

 

 

 

114 

 

 

 

 

116 

 

118 

 

 

 

 

 

121 

 

 



© C
OPYRIG

HT U
PM

xvii 

 

4.27 

 

 

 

4.28 

 

 

 

4.29 

 

 

4.30 

 

 

4.31 

 

 

 

4.32 

 

4.33 

 

4.34 

 

4.35 

 

 

 

4.36 

 

4.37 

 

 

4.38 

 

 

 

4.39 

 

 

 

4.40 

 

 

 

 

 

 

 

FESEM micrographs showing the microstructures of the 

RH-graded porous alumina ceramics composites reinforced 

with (a) 0wt% (b) 2wt% (c) 4wt% (d) 6wt% (e) 8wt% Ni 

content and (f) granular microstructures of the composites 

FESEM micrographs showing the microstructures of the 

SCB-graded porous alumina ceramics composites reinforced 

with (a) 0wt% (b) 2wt% (c) 4wt% (d) 6wt% (e) 8wt% Ni 

content and (f) granular microstructures of the composites 

(a) EDS spectrum and SEM image (inset) of the Al2O3-4Ni-

10RH composite and elemental maps of (b) O, (c) Al, (d) Si 

and (e) Ni 

(a) EDS spectrum and SEM image (inset) of the Al2O3-4Ni-

10SCB composite and elemental maps of (b) O, (c) Al and 

(d) Ni 

FETEM images, SAED patterns of the (a) SCB-graded (b) 

RH-graded porous alumina ceramics composites reinforced 

with 4wt% Ni and (c) EDS spectrum of a typical joint 

(magnified FETEM image) in the RH-graded composite 

Effect of different weight fractions of Ni reinforcement on 

the hardness of porous alumina ceramics composites 

Tensile stress–tensile strain relationship of Ni-reinforced 

porous alumina ceramics composites  

(a) Tensile stress and (b) tensile modulus of porous alumina 

ceramics composites as a function of Ni reinforcement 

Representative FESEM micrographs showing the fracture 

morphologies of RH-graded composites having (a) 0wt% (b) 

4wt% Ni reinforcement, and SCB-graded composites having 

(c) 0wt% (d) 4wt% Ni reinforcement 

Compressive stress - compressive strain relationship of Ni-

reinforced porous alumina ceramics composites 

Effect of different weight fractions of Ni reinforcement on 

the compressive stress of the porous alumina ceramics 

composites 

Mass loss of RH-graded Ni-reinforced porous alumina 

ceramics composites boiled for different times in (a) alkali 

(b) acid solutions and (c) tensile stress variation of the 

samples after corroding for 8h 

Mass loss of SCB-graded Ni-reinforced porous alumina 

ceramics composites boiled for different times in (a) alkali 

(b) acid solutions and (c) tensile stress variation of the 

samples after corroding for 8h 

Representative FESEM micrographs of RH-graded Ni-

porous alumina ceramics composites after corrosion for 8h 

under different conditions: (a) un-corroded (b) 10wt% 

NaOH and (c) 20wt% H2SO4. Subscripts 0, 2, 4 and 8 

denote Ni reinforcement of 0wt%, 2wt%, 4wt% and 8wt% 

respectively 

 

 

123 

 

 

 

124 

 

 

 

126 

 

 

127 

 

 

128 

 

 

 

130 

 

132 

 

133 

 

136 

 

 

 

137 

 

139 

 

 

142 

 

 

 

143 

 

 

 

147 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

xviii 

 

4.41 

 

 

 

 

 

4.42 

 

 

 

 

 

4.43 

 

 

 

 

 

4.44 

 

4.45 

 

4.46 

 

4.47 

 

4.48 

Representative FESEM micrographs of SCB-graded Ni-

porous alumina ceramics composites after corrosion for 8h 

under different conditions: (a) un-corroded (b) 10wt% 

NaOH and (c) 20wt% H2SO4. Subscripts 0, 2, 4 and 8 

denote Ni reinforcement of 0wt%, 2wt%, 4wt% and 8wt% 

respectively 

Performance of ANN I in characterizing the plain porous 

alumina ceramics in terms of RMSE value (numbers 1 to 14 

correspond to the network with 4-8, 5-5, 6-6, 5-10, 5-15, 10-

5, 10-6, 10-12, 10-15, 10-20, 12-10, 12-12, 15-20, and 20-20 

hidden neurons in the first and second hidden layers 

respectively) 

Performance of ANN II in characterizing the Ni-reinforced 

porous alumina ceramics composites in terms of RMSE 

value (numbers 1 to 14 correspond to the network with 4-8, 

5-5, 6-6, 5-10, 5-15, 10-5, 10-6, 10-12, 10-15, 10-20, 12-10, 

12-12, 15-20, and 20-20 hidden neurons in the first and 

second hidden layers respectively) 

Comparison between predicted and experimental results for 

the plain porous alumina ceramics 

Comparison between predicted and experimental results for 

the Ni-reinforced porous alumina ceramics composites 

The Graphical User Interface for (a) starting_window and 

(b) about_project interfaces 

The calculating_window Graphical User Interfaces for 

implementing (a) ANN I and (b) ANN II models 

Outlook of the GUI after the implementation of (a) ANN I 

and (b) ANN II models 

148 

 

 

 

 

 

151 

 

 

 

 

 

151 

 

 

 

 

 

153 

 

154 

 

156 

 

157 

 

159 

 

 

 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

xix 

 

LIST OF SYMBOLS AND ABBREVIATIONS 

 

Al2O3 Alumina 

ANN Artificial Neural Network 

ASTM American Society for Testing and Materials 

BF Bright Field 

CMC Ceramic Matrix Composite 

DF Diametral Fracture 

DTA Differential Thermal Analysis 

EDS Energy Dispersive Spectroscopy 

FESEM Field Emission Scanning Electron Microscope 

FETEM Field Emission Transmission Electron Microscope 

FIB Focused Ion Beam 

g Grams 

GUI Graphical User Interface 

GUIDE Graphical User Interface Development Environment 

HCl Hydrochloric Acid 

H2SO4 Sulphuric Acid 

HV Vickers Hardness 

ISO International Organization for Standardization 

Kg Kilogram 

LMBP Levenberg-Marquardt Back Propagation 

LRF Load Region Fracture 

m Meters 

MAE Mean Absolute Error 

MPA Mega Pascal 

MATLAB Matrix Laboratory 

N Newton 

NaOH Sodium Hydroxide 

Ni Nickel 

NiAl2O4 Nickel Aluminate Spinel 

N3Al2SiO8 Nickel Alumosilicate Spinelloid 

Pc Critical Porosity Limit 

PFA Pore-forming Agent 

RH Rice Husk 

RHA Rice Husk Ash 

RMSE Root Mean Square Error 

rpm Revolution Per Minute 

SAED Selected Area Electron Diffraction 

SCB Sugarcane Bagasse 

SiO2 Silicon Dioxide / Silica 

TCF Triple Cleft Fracture 

TGA Thermogravimetric Analyzer 

UTM Universal Testing Machine 

vol% Volume Percent 

wt% Weight Percent 

XRD X-ray Diffractometer 



© C
OPYRIG

HT U
PM

xx 

 

XRF X-ray Fluorescence Spectroscopy 

𝜀𝑡 Tensile Strain 

E Tensile Modulus 

𝜎𝑐 Compressive Stress 

𝜎𝑡 Tensile Stress 

 



© C
OPYRIG

HT U
PM

1 

CHAPTER 1 

INTRODUCTION 

1.1  Background of Research 

In recent times, the utilization of ceramic materials as household hardware, 

industrial use and structural applications has received a tremendous acceptance 

amidst various end users owing to their high thermal stability, corrosion resistance, 

good wear resistance, poor conductivity, excellent mechanical properties and others. 

This group of materials has surged the interest of researchers by delving further into 

advancing the development of ceramic products that can suit other specific 

requirements. 

Thus far, studies have shown the major setback in the use of ceramic materials for 

structural applications to be the constant evolution of pores within the microstructure 

which serves as fracture sites thereby deteriorating the structural integrity of this 

group of materials. However, systematic control of these pores can be channeled 

towards the development of porous ceramic materials suitable for application in 

wide-ranging technologies such as filtration, thermal insulation, food processing, 

biomedical implants and others. 

To a large extent, ample homogenous porous ceramics have been largely 

manufactured through the utilization of state-of-the-art processing methods. One of 

such processes is the employment of pore-forming agents (PFAs) in both solid and 

liquid forms. In spite of the multiplicity of processing technologies, the pore-

forming agent (PFA) approach has far been preferred over other methods for small-

scale fabrication of porous ceramics, owing to its simplicity, economic viability and 

easy accessibility of materials. Moreover, quite a number of agricultural wastes 

(lignocellulosic biomass) have shown remarkable potentials in this regard. 

Therefore, taking into consideration the rise in respiratory health hazards resulting 

from the incessant burning of fields, the ever stricter environmental policy acts can 

be complied with by efficiently utilizing agro-waste materials, thereby enhancing 

adequate health safety and promoting the sustainability of the ecosystem. 

More so, with the rising metric tons of lignocellulosic biomass deposit in fields of 

agriculture dependent countries, studies (Irfan et al., 2014; Ahmed et al., 2015) in 

recent times have focused on the eradication of the hazardous methods for 

agricultural waste management and boosting the economic benefit from this group 

of materials. Hence, it is imminent to tap into this abundantly available agro-waste 

materials like the rice husk and sugarcane bagasse which can be channeled towards 

the fabrication of valuable porous ceramics owing to the significant silica content in 
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these waste materials. Similarly, with the groundbreaking advances made thus far in 

the field of material science, it is important to maximize the use of material 

properties efficiently, in order to achieve high reliability and maintain an acceptable 

level of performance efficiency. In recent years, the conventional means of 

achieving such feat has being through the addition of alloying elements which often 

brings improvement to the properties of the matrix material. Appropriate selection 

of the reinforcement material could desirably upgrade the intrinsic properties of 

porous ceramic systems. 

With alumina (Al2O3) as the matrix, nickel (Ni) as the reinforcement as well as 

sugarcane bagasse (SCB) and rice husk (RH) as the pore-forming agents, both plain 

and Ni-reinforced porous alumina ceramics composites with formulations Al2O3-

PFA and Al2O3-Ni-PFA were developed in the present study. Thereafter, the 

samples were subjected to series of conventional laboratory testing to obtain the 

mechanical and corrosion resistance properties. 

1.2 Problem Statement 

Over the past decades, highly porous ceramic membranes have made rapid progress 

in broad-based and strategic industrial technologies such as thermal insulation, bone 

tissue engineering, molten metal filtration, wastewater treatment and others. 

Meanwhile, the utilization of pore-forming agent processing technique, continues to 

dominate the manufacturing space in this field of study due to its production 

sustainability, ease of handling and economic feasibility. However, porous ceramic 

materials shaped with natural organic matters such as starch have exhibited a 

constrained pore geometry within a range of <100μm (mean particle sizes of approx. 

5, 14 and 50μm for rice, cassava and potato starch particles respectively) (Sandoval 

et al., 2012; Sandoval et al., 2017). For this reason, it becomes necessary to seek 

more flexible alternatives under the natural organic PFA category for the 

development of porous ceramic materials. 

Meanwhile, alumina has been the most widely used ceramic material in the 

fabrication of porous ceramic components due to the exceptional mechanical and 

corrosion resistance properties demonstrated by this group of ceramics. However, 

investigations have shown that the inherent brittleness and high sensitivity to post-

fabrication processes are obstacles restraining the extensive application of porous 

alumina ceramics especially in separation membrane units where the infiltration of 

hot corrosive slurry at marked transmembrane pressure is a major concern (Li et al., 

2013; Qin et al., 2015). For these reasons, it is imperative for researchers and 

industrial experts to explore the composite approach in revamping the traditional 

porous alumina ceramics so they can thrive well under extreme service conditions.  
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Recently, nickel (Ni) has been well acknowledged as an excellent reinforcement for 

suppressing the brittleness of ceramics due to its high tensile strength and toughness, 

superior corrosion resistance, high melting temperature among others (Lu et al., 

2000; Fung and Wang, 2014). The exceptional combination of properties between 

the alumina matrix and the nickel particulates in the investigations above resulted in 

the enhancement of mechanical properties and microstructural refinement of the 

composites relative to the plain counterpart. However, these investigations only 

focused on fully dense Al2O3/Ni composites fabricated either through preform 

infiltration or hot isostatic pressing. Moreover, drawbacks such as matrix 

deformation and pore blockage constrain the utilization of the fabrication techniques 

mentioned above for the development of porous ceramic composites. Meanwhile, 

most of the published literatures to date have reported the preparation of porous 

ceramics composites by using multi-phasic ceramics approach (Sun et al., 2017), 

polymer reinforcements (Fu et al., 2018) and fibre reinforcements (Ritcher and 

Peters, 2016; Han et al., 2017). Nonetheless, constraints such as difficulty in 

reinforcement dispersion, impaired mechanical properties and pore size limitation 

impede the implementation of these conventional routes in the development of 

porous ceramics composites designed for emerging technologies, where large pores 

and high mechanical performance are required. 

Therefore, in view of achieving the requisite properties needed for porous ceramics 

to thrive under robust service conditions, the present study presents the utilization 

of agro-waste pore-forming agents (rice husk and sugarcane bagasse) and nickel 

reinforcement in developing plain and Ni-reinforced porous alumina ceramics 

composites; an approach which is lacking in the existing literature.  Through the 

incorporation of rice husk (RH) and sugarcane bagasse (SCB) powders as pore-

forming agents as well as nickel (Ni) as the metal phase reinforcement in the alumina 

(Al2O3) matrix, it is expected that the exceptional properties derived from the cluster 

of these materials will go a long way in eliminating the drawbacks affecting 

traditional porous ceramic materials. 

1.3 Significance of Study 

 

 

Ongoing comprehensive overview of the impact of greenhouse gas emissions on 

climate change has heightened the sensitization and interest of researchers from all 

academic spheres in channeling their resources towards the sustainability of the 

planet by adopting the “Going green” revolution. With a view to promoting safe 

management practices, materials experts have successfully recycled and reused 

agricultural wastes in several production areas. Therefore, unlocking further revenue 

generation for countries that depends highly on agriculture for revenue generation 

and also enhances the zero waste concept in particular for developing nations that 

are yet to comply with safe waste management practices. 
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Meanwhile, owing to the all year round cultivation, high demand and abundant 

availability, residues from the monocotyledon group (e.g. rice, wheat, sugarcane 

etc.) are preferred candidates in the plant kingdom for reuse. However, these by-

products are littered in the open fields constituting environmental hazard by either 

burning them in open air or utilizing them for lesser applications such as; low-grade 

fuels, plant manure compost, stockbreeding floors, landfilling materials etc. 

Moreover, investigations (Mohanta et al., 2014; Nkayem et al., 2016) so far have 

revealed a high concentration of silicon dioxide (SiO2) in monocot plant tissues 

which is a vital raw material in ceramic technology. Therefore, in order to comply 

with global best practices of managing waste materials, it is essential to 

resourcefully channel these agro-waste materials into the production of valuable 

ceramic components.  

Considering the drawbacks experienced in other inorganic counterparts such as 

metals and polymers operating in aggressive chemical contacting applications, 

ceramics offer promising reliability in such medium owing to their high stability 

when subjected to chemical attacks. More so, with increasing sensitivity of 

researchers towards recent technological trends, porous ceramic materials have been 

extensively implemented as critical components in diverse hazardous industrial 

processes and pollution treatment technologies. In the meantime, studies (Striegler 

et al., 2018; Han et al., 2018) have shown both strong acidic and strong alkaline 

operating media as the major unfavorable service conditions encountered by the 

ceramic components. 

Focusing on the wide-ranging separation technologies attainable, membrane 

filtration systems have emerged as one of the fastest growing alternatives to other 

conventional techniques owing to their cost effectiveness, ease of use and excellent 

separation efficiency. The ceramic membranes have been employed in acidic water 

treatment containing heteroatoms like Cl, S and P which are capable of oxidizing to 

form strong acids. Correspondingly, a recent study has showcased porous ceramics 

as having great potentials for soil salinity treatment in arid and semi-arid 

Mediterranean countries (Jalila et al., 2016). With the intent to seek advanced 

technologies for upgrading and optimizing existing industrial processes, ceramic 

heat exchangers and tubings are currently utilized in thermal storage facilities to 

avert hydrothermal corrosion hazards. In light of the aforementioned, the service 

environment pH for porous ceramic components should be of utmost concern to 

researchers.  

So far, matrix grains incompatibility with processing additives and grain boundary 

defects have high disintegrating effect on ceramic components operating under 

corrosive media. Quite a number of studies (Curkovic et al., 2008; Muller et al., 

2015) have highlighted impurities (silicon, magnesium etc.) originating from the 

starting materials as the primary cause for the dissolution of amorphous and 

impurity-rich grain boundaries in ceramic components. As a result, the morphology 

and mechanical properties of the structures are degraded. For now, corrosion studies 
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for porous ceramic materials have been less comprehensive and the results 

documented thus far have shown a great level of inconsistency. Hence, considering 

the essentials of the current study, it is worthy of note to conduct an extensive 

corrosion study on porous ceramic materials operating under harsh service 

environment.  

1.4 Aim and Objectives 

This study aims at developing plain and Ni-reinforced porous alumina ceramics 

composites with agricultural wastes and nickel as the pore former and reinforcement 

respectively. In order to test the feasibility of the hypothesized porous ceramic 

systems, the following objectives are highlighted: 

1) To analyze the mechanical and corrosion resistance properties of plain porous 

alumina ceramics as a function of porosity level and different agro-waste 

pore-forming agents. 

 

 

2) To analyze the mechanical and corrosion resistance properties of Ni-

reinforced porous alumina ceramics composites as a function of porosity 

level and different agro-waste pore-forming agents. 

 

 

3) To develop Artificial Neural Network for predicting the mechanical and 

corrosion resistance properties of plain and Ni-reinforced porous alumina 

ceramics composites having formulations within the range of those employed 

in the experimental process through data training, validation and testing. 

 

1.5 Scope of Study 

In the current study, the mechanical properties evaluated for the plain and Ni-

reinforced porous alumina ceramics composites include the hardness, tensile stress, 

tensile modulus and compressive stress. More so, the choices of pore former content 

(5, 10, 15, 20wt%) and nickel reinforcement content (2, 4, 6, 8wt%) utilized in 

developing the plain and composite samples respectively were made based on 

factors such as criterion sampling which serves as an ideal reference point from 

which the objectives of the study can be achieved. Furthermore, the discovery 

garnered during the trial fabrication process as well as the general decline observed 

in the densification, mechanical and corrosion resistance properties of the samples 

with increasing PFA or Ni reinforcement content support the choice of the sample 

formulations selected. More so, from the literature (Hammel et al., 2014; Mohanta 

et al., 2014; Nkayem et al., 2016), a similar trend made towards the choice of pore 
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former content in the characterization of porous ceramics yielded information rich 

results which therefore justifies the interchange in sampling themes.  

Meanwhile, the choice of the pore former content for developing the composites was 

determined having considered the experimental results obtained for the plain porous 

alumina ceramics. In particular, the mechanical and corrosion resistance properties 

of the plain porous alumina ceramics exhibited a sharp decline after exceeding the 

10wt% PFA mark due to the intensified PFA agglomeration and the subsequent 

alumina grains dislocation prior the sintering process. Hence, the 10wt% PFA 

content was used to develop the Ni-reinforced porous alumina ceramics composites. 

1.6 Thesis Outline 

The first chapter in the thesis contains sub-sections that give a broad insight on the 

study as a whole. These include the background of research, the problem statement, 

the significance of study and the research objectives. The scope of study covers the 

mechanical properties investigated as well as the choices of pore former content and 

nickel reinforcement employed in developing the plain and Ni-reinforced porous 

alumina ceramics composites. 

A critical review of relevant investigations on the various research themes in this 

study is presented in chapter two, including trends and overview of the important 

concepts in the present work. Overviews of theories, processing techniques and 

characterization methods are presented in order to aid the procedural steps embarked 

upon in this study towards meeting the standards set aside for the evaluation of the 

plain and Ni-reinforced porous alumina ceramics composites. 

An experimental documentation of the steps and procedures employed in the data 

collection for the different aspects of this work are described in chapter three. Here, 

overview and discussions on the processing materials, sample processing techniques 

and microscopic/spectroscopic properties of the materials are presented. The various 

characterization theories and techniques including microstructural analysis, 

mechanical properties testing and corrosion resistance study for the evaluation of 

the developed plain and composite samples are discussed. More so, the methods 

employed for the development of artificial neural network models are highlighted in 

the chapter.  

Chapter four contains the results obtained in the course of this study and the 

discussion of the data in relation with the research objectives and the existing 

investigations highlighted in Chapter two. The discussion for the results obtained 

for the Ni-reinforced porous alumina composites was made relative to the plain 

counterpart. More so, the predictive accuracy of the artificial neural network models 
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(integrated by means of Graphical User Interface) which was trained with the results 

obtained for the plain and Ni-reinforced porous alumina ceramics composites is 

presented in the chapter. 

In chapter five, the conclusion of the whole work and a summary of the results are 

presented, including major findings as well as the recommendation. 
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