
 
 

UNIVERSITI PUTRA MALAYSIA 
 

MODELING INFILTRATION CAPACITY OF PERMEABLE CHANNELS 
UNDER STATIC AND DYNAMIC HYDRAULIC CONDITIONS 

 

 
 
 

   
 
 
 
 
 

AHMED MOHAMMED SAMI AL-JANABI 
 
 
 
 
 
 
 
 
 
 
  

                    
     
      FK 2018 132 
 

  
 
 

   



© C
OP

UPM

i 

MODELING INFILTRATION CAPACITY OF PERMEABLE CHANNELS 
UNDER STATIC AND DYNAMIC HYDRAULIC CONDITIONS  

By

AHMED MOHAMMED SAMI AL-JANABI 

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, 
 in Fulfillment of the Requirements for the Degree of Doctor of Philosophy  

July 2018 



© C
OP

UPM

ii

COPYRIGHT 

All material contained within the thesis, including without limitation text, logos, icons, 

photographs, and all other artwork, is copyright material of Universiti Putra Malaysia 

unless otherwise stated. Use may be made of any material contained within the thesis 

for non-commercial purposes from the copyright holder. Commercial use of material 

may only be made with the express, prior, written permission of Universiti Putra 

Malaysia. 

Copyright © Universiti Putra Malaysia 



© C
OP

UPM

iii

DEDICATION 

To

My parents 

My parents-in-law 

My lovely family, wife and children 

& 

Everybody who support my journey to obtain 

Degree of Doctor of Philosophy 



© C
OP

UPM

i 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 

of the requirement for the degree of Doctor of Philosophy 

MODELING INFILTRATION CAPACITY OF PERMEABLE CHANNELS 
UNDER STATIC AND DYNAMIC HYDRAULIC CONDITIONS  

By

AHMED MOHAMMED SAMI AL-JANABI 

July 2018 

Chairman : Associate Professor Abdul Halim Bin Ghazali, PhD
Faculty :  Engineering 

Increasing infiltration rate of stormwater is important for improving the control of 

stormwater quantity to foster sustainable urban stormwater management. In the design 

of stormwater channels, the effect of infiltration on the channel flow and the effects 

of hydraulic parameters such as water level, channel cross section, flow velocity, and 

vegetation, on the infiltration capacity of channels are usually ignored. The present 

study aimed to examine the effects of hydraulic parameters on the infiltration capacity 

of permeable channels through laboratory investigation on channel models under 

static and dynamic hydraulic conditions. The study also aimed to develop empirical 

models for the variations of infiltration capacity with flow hydraulic parameters, in 

order to improve the design of permeable stormwater channels. Different channel 

models were constructed for each of the above condition, and different sets of 

hydraulic and channel boundary conditions were used to characterise the channel flow 

considering the effect of infiltration and to develop empirical models for predicting 

infiltration capacity for permeable channels. The effect of channel cross section on the 

flow reduction by seepage and infiltration processes were first examined under static 

or standing water condition, with various initial water levels, channel base widths and 

side slopes. Regression analysis was used to develop an equation for predicting the 

rate of unsteady seepage over time, and the equation was used to examine several 

cases of different flow cross-sectional areas and channel dimensions, and 

subsequently, to determine the section that produced highest infiltration and seepage 

under the unsaturated soil condition. Moreover, five existing infiltration models, 

namely, the Kostiakov, Horton, Modified Kostiakov, Philip, and Soil Conservation 

Service (SCS) models were evaluated, and then they were modified by incorporating 

the cross-sectional flow area parameters (depth y, side slope m, and bottom width b)

into them. Under the dynamic or flowing water condition, the mass-balance method 

was used for the estimation of infiltration rate, and the experimental tests employed 

five inflow rates (Qin = 5.5, 7.5, 9.5, 11.5, 13.5 l/s), with three downstream check dam 
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heights (hw = 10, 15, 20 cm). In addition, two other sets of experiments were conducted 

to investigate the effects of grass cover and subsurface water on infiltration rate. The 

findings were used to quantify and compare the different cases in terms of the 

infiltration rate and cumulative infiltration, and then to develop predictive equations 

that include the effect of hydraulic parameters for estimating the infiltration rate in 

permeable channels. The results indicated that the infiltration and seepage rates 

increase with increasing initial water level irrespective of the base width and side 

slope. Moreover, an increase in the side slope increases both the infiltration and 

seepage rates, with the effect becoming more significant as the initial water level 

increases, while the effect of varying the base width is insignificant. It has also been 

found that increasing the wetted perimeter or top width of a channel enhances the 

infiltration rate if this is achieved by varying the side slope, and not by increasing the 

base width. In the evaluation of the five infiltration models, a comparison using the 

coefficients of determination R2 obtained before and after the parameters were added 

into the models reveals that the difference between the observed and predicted values 

using the modified models was significantly reduced, and R2 increased sharply from 

0.14, 0.158, 0.164, 0.146 and 0.162 for the Kostiakov, Horton, Modified Kostiakov, 

Philip, and SCS models, respectively, to 0.732, 0.621, 0.735, 0.718 and 0.609. Two 

predictive equations were developed finally using the nonlinear regression analysis 

after introducing the four hydraulic parameters (y, m, b and v) into the Kostiakov and 

Modified Kostiakov models, which were chosen to be improved because they have 

been shown to give better performance than the other models during the previous 

analysis. The latter model with the new parameters was used for the analysis of a 

channel section to determine the best conditions to obtain the highest infiltration rates 

for given flow rates and then to plot graphs of the variation of cumulative infiltration 

F over time for a grassed channel with different check dam heights and inflow rates. 

Cumulative infiltration quantity after 90 min for two cases of channels, with and 

without check dams, were compared and the results reveal that the percentage of total 

infiltrated water volume increased from 8% to 14% when using check dams with 20-

cm height and 10-m spacing compared to the channel without the check dams. 

Modeling the variations of infiltration capacity with hydraulic parameters in 

permeable channels using the models developed in this study therefore promises better 

stormwater management and provides a valuable decision support tool for designing 

the permeable channels. 
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PEMODELAN KEUPAYAAN PENYUSUPAN SALURAN TELAP DI 
DALAM KEADAAN HIDRAULIK STATIK DAN DINAMIK 

Oleh 

AHMED MOHAMMED SAMI AL-JANABI 

Julai 2018 

Pengerusi : Profesor Madya Abdul Halim Bin Ghazali, PhD 
Fakulti : Kejuruteraan 

Meningkatkan kadar penyusupan air larian hujan adalah penting untuk menambah 

baik kawalan kuantiti air larian hujan bagi memupuk pengurusan air larian 

hujan bandar yang lestari.  Dalam mereka bentuk saluran air hujan, kesan penyusupan 

ke atas aliran saluran dan kesan parameter hidraulik, iaitu paras air, keratan rentas 

saluran, halaju aliran dan tumbuh-tumbuhan dalam saluran, ke atas keupayaan 

penyusupan biasanya diabaikan.  Kajian ini bertujuan untuk menilai kesan parameter 

hidraulik ke atas  kapasiti penyusupan saluran telap melalui penyiasatan makmal ke 

atas model saluran di dalam keadaan hidraulik statik dan dinamik. Kajian ini juga 

bertujuan untuk membangunkan model empirikal untuk meramalkan variasi kapasiti 

penyusupan dengan parameter hidraulik, bagi meningkatkan reka bentuk saluran air 

hujan yang telap. Model saluran yang berlainan dibina bagi setiap keadaan di atas, dan 

keadaan hidraulik dan sempadan saluran yang berlainan digunakan untuk 

mencirikan aliran dalam saluran dengan mengambil kira kesan penyusupan serta 

untuk membangunkan model empirikal bagi menjangka keupayaan penyusupan bagi 

saluran telap. Kesan keratan rentas saluran  ke atas pengurangan aliran melalui proses 

resapan dan penyusupan mula-mula dikaji di dalam keadaan statik atau air 

bertakung, dengan pelbagai aras air awal, lebar dasar saluran dan cerun sisi.  Analisis 

regresi digunakan untuk membina satu persamaan bagi meramalkan kadar resapan tak 

mantap melawan masa, dan persamaan itu digunakan untuk meneliti beberapa kes 

saluran dengan luas keratan-rentas aliran dan dimensi saluran yang berbeza, dan 

seterusnya menentukan keratan yang menghasilkan kadar penyusupan dan resapan 

tertinggi di dalam keadaan tanah tak tepu.  Selain itu, lima model penyusupan sedia 

ada, iaitu model Kostiakov, Horton, Modified Kostiakov, Philip, dan Soil 

Conservation Service (SCS)  telah dinilai, dan kemudian model 

tersebut telah diubahsuai dengan memasukkan parameter luas aliran  keratan rentas 

(kedalaman y, cerun sisi m, dan lebar dasar b) ke dalamnya. Di dalam keadaan 

dinamik atau air mengalir, kaedah imbangan-jisim telah digunakan untuk 
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menganggarkan kadar penyusupan, dan ujian telah dilakukan menggunakan lima 

kadar aliran masuk (Qmasuk = 5.5, 7.5, 9.5, 11.5, 13.5 l/s), dengan tiga ketinggian 

empangan penyekat hiliran (hw = 10, 15, dan 20 cm). Di samping itu, dua set 

eksperimen lain telah dijalankan untuk menyiasat kesan kewujudan rumput dan air 

bawah permukaan ke atas kadar penyusupan. Hasil yang diperolehi digunakan untuk 

mengira dan membandingkan saluran telap yang berlainan, dari segi kadar 

penyusupan dan penyusupan kumulatif, dan kemudian untuk membangunkan 

persamaan ramalan yang merangkumi kesan parameter hidraulik untuk 

menganggarkan kadar penyusupan di dalam saluran  telap. Keputusan menunjukkan 

bahawa kadar penyusupan dan kadar  resapan meningkat dengan peningkatan aras air 

awal tanpa mengira lebar dasar dan cerun sisi. Selain itu, peningkatan cerun sisi  

meningkatkan kedua-dua kadar penyusupan dan resapan, dengan kesannya menjadi 

lebih signifikan apabila aras air awal meningkat, manakala kesan perbezaan lebar 

dasar adalah tidak signifikan. Didapati juga bahawa peningkatan perimeter basah atau 

lebar atas saluran dapat meningkatkan kadar resapan sekiranya ia dicapai dengan 

mengubah cerun sisi, dan bukan dengan menambahkan lebar dasar. Di dalam penilaian 

lima model penyusupan, perbandingan menggunakan koefisien penentuan  R2 yang 

diambil sebelum dan selepas parameter ditambah ke dalam model itu menunjukkan 

bahawa perbezaan di antara nilai yang dicerapkan dan nilai yang diramalkan 

menggunakan model yang diubahsuai telah dikurangkan dengan ketara, dan R2

meningkat dengan mendadak daripada 0.14, 0.158, 0.164, 0.146 dan 0.162 masing-

masing bagi model Kostiakov, Horton, Modified Kostiakov, Philip, dan  SCS, kepada 

0.732, 0.621, 0.735, 0.718 dan 0.609. Akhir sekali, dua persamaan ramalan telah 

dibangunkan menggunakan analisis regresi tak linear dengan memperkenalkan empat 

parameter hidraulik (y, m, b dan v) ke dalam model Kostiakov dan 

Modified Kostiakov. Dua model ini telah dipilih untuk diperbaiki kerana kedua-dua 

model itu telah menunjukkan prestasi yang lebih baik daripada model lain semasa 

analisis terdahulu. Model kedua dengan parameter baru digunakan untuk 

menganalisis satu seksyen saluran untuk menentukan keadaan terbaik untuk 

memperolehi kadar penyusupan tertinggi bagi kadar aliran tertentu dan kemudian 

memplot graf variasi penyusupan kumulatif F dengan masa  untuk saluran berumput 

dengan ketinggian empangan sekatan dan kadar aliran masuk yang berbeza.  Kuantiti 

penyusupan kumulatif selepas 90 minit untuk dua kes saluran, dengan dan tanpa 

empangan sekatan, telah dibandingkan dan hasilnya menunjukkan bahawa peratusan 

jumlah  isi padu air penyusupan  meningkat daripada 8% ke 14% apabila 

menggunakan empangan sekatan dengan ketinggian 20-cm dan  jarak 10-m

berbanding saluran tanpa empangan sekatan. Oleh itu, pemodelan variasi kapasiti 

penyusupan dengan parameter hidraulik dalam saluran telap menggunakan model 

yang dibangunkan di dalam kajian ini menjanjikan pengurusan air larian hujan yang 

lebih baik dan mengemukakan suatu alat sokongan keputusan yang berharga dalam 

mereka bentuk saluran telap. 
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        CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

Modern urban development typically creates impervious areas, which reduce the 

infiltration of rainwater and increase the volume of runoff. When combined with 

urbanization, climate change influences the hydrologic variables in urban areas, 

thereby increasing the frequency and magnitude of urban flooding, and negatively 

impacting both humans and the environment (Zhou, 2014).  

The philosophy of urban stormwater management has therefore shifted away from 

narrow traditional approaches, i.e., 'rapid discharge' or 'collecting and conveying 

stormwater away from urban areas as quickly as possible', to new sustainable 

approaches that leverage more natural methods (Villarreal, 2005). For example, source 

control uses storage and infiltration methods that allow rainfall events to be conveyed 

and infiltrated along the surface rather than in underground pipes (Miguez et al., 2012). 

Reducing the volume of runoff by infiltration through permeable surfaces at the source 

lessens the effort needed to control the remaining runoff at the downstream basin 

(Ferguson, 1994). Moreover, sustainable approaches consider other important aspects

in urban water management, such as reducing the volume of runoff, water quality, 

recreational value, protection of the environment, and multiple water uses (Zhou, 

2014).  

Perceiving these environmental and economic benefits therefore have resulted in the 

growing interest in infiltration to be a sustainable alternative approach or at least with 

conjunction with the conventional drainage practices. Several different terms are used 

to describe these new approaches in different parts of the world, albeit with minor 

differences in concept and practice. Some well-known terms include low impact 

development (LID), sustainable urban drainage systems (SUDS), water sensitive 

urban design (WSUD), and best management practices (BMPs). Numerous studies of 

the differences and applications of these approaches have been conducted (e.g., 

Fletcher et al., 2014; Zhou, 2014; Miguez et al., 2012; Shutes and Raggatt, 2010). 

Permeable channels are commonly used for sustainable urban drainage and 

management of stormwater quantity. The term "Permeable channels" may refer to 

unlined earthen channels, or channels with flexible lining which may consist of grass, 

rip-rap, or gabions (DSD, 2013), as shown in Figure 1.1. Lining should be provided 

to channel bottom and side slopes when flow velocity exceeds 1 to 2 m/s (Chow, 

1959), and hence unlined earthen channels are not preferred for stormwater practices 

because of the concern of soil erosion at high flow velocity.  
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The use of grass, where practical, is the most preferred lining type for stormwater 

channels, because of the low cost of grass lining that is much less than other lining 

types, in addition to grass ability to stabilize the channel bed and sides, prevent soil 

erosion, consolidate the soil mass, and provide water quality benefits (CCSMDM, 

2014). However, some conditions may prevent the use of grass lining such as the high 

flow velocities, standing water or continuous flowing, excessive shade, lack of 

maintenance and inadequate topsoil (CCSMDM, 2014).   

a) Rip-Rap channel b) Gabions channel

c) Grassed channel

Figure 1.1 : Types of permeable channels used for stormwater management 
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Permeable stormwater channels can be categorized under the slow transport group of 

sustainable urban drainage (Figure 1.2) as they link several on-site control systems, 

delay rapid runoff, and reduce the volume of runoff by their infiltration function 

(Stahre, 2008). Permeable channels are also used to enhance the quality of stormwater 

through infiltration, sedimentation, and filtration (Boogaard et al., 2014).  

Infiltration capacity of permeable channels may be influenced by many factors that 

may make the infiltration rate through permeable channel differ from other infiltration 

devices. Therefore, the ability to accurately quantify infiltration rates is very important 

in the design of permeable stormwater channels, because it enables the capability of 

the channels to be assessed to determine if they can perform the required functions. 

Figure 1.2 : The Four Groups of Sustainable Urban Drainage (Stahre, 2008)

1.2 Problem Statement 

The use of permeable stormwater channels introduces the concern about the effects of 

infiltration on the hydraulics behavior of flow in such channels, as well as the effect 

of hydraulics parameters such as water level, base width, side slope, velocity, and 

vegetation, on infiltration rate. However, design methods in most cases, are simplified 

and based on experience and empirical design criteria gained from existing stormwater 

channels (Grinden, 2014).  

Manning’s equation is usually used in the design of a channel cross section at a 

required discharge, and then the design is usually checked either versus the maximum 

allowable velocity for erosion protection and for water quality (e.g. DID, 2012; DPLG, 

2010) or versus the minimum allowable hydraulic residence time for water quality 

design (e.g. Caltrans, 2012; WEF, 2012). However, even when the infiltration rate is 

taken into consideration, the variation of infiltration rate with several factors such as 
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the water depth, flow velocity and channel cross section as well as the variation of 

infiltration capacity with time are usually ignored (e.g. St. Johns River, 2010; 

Wanielista and Yousef, 1993).  

Disregarding the infiltration effect on flow in design procedures of permeable 

stormwater channels often results in overdesign them for a given flow rate and 

channels become bigger than required (Grinden, 2014).  

Thus, it is essential to investigate the factors affecting the infiltration process through 

the beds and sides of permeable channels and then to relate the infiltration rate with 

the channel flow to improve the design of permeable stormwater channels as an 

infiltration device.  

1.3 Research Objectives 

The study aims to investigate factors affecting infiltration process and flow reduction 

in permeable open channels under static and dynamic hydraulic conditions, and 

subsequently to develop empirical models for the variations of infiltration capacity 

with flow hydraulic parameters, in order to improve the design of permeable 

stormwater channels.

The specific objectives of the study are: 

1. To examine the effect of the channel cross section on seepage and infiltration rates 

in permeable channels under static condition. 

2. To evaluate the performance of five existing infiltration models for estimating the 

infiltration rate in permeable open channels under static condition. 

3. To examine the effect of flow hydraulic parameters on infiltration capacity of 

permeable stormwater channels under dynamic condition. 

4. To develop empirical models for predicting the infiltration capacity for permeable 

stormwater channels with considering various channel flow characteristics. 

1.4 Significance of the Study 

This study provides more insight on the effect of the hydraulic parameters on the flow 

with infiltration in permeable channels. To improve the efficiency of a permeable 

stormwater channel, the channel section that, within the design criteria, maximizes 

infiltration and seepage through the channel bed and side slope should be chosen. A

good understanding of how infiltration rates are affected by flow hydraulic conditions 

helps to choose the optimal channel cross section and height of check dams that allow 

the maximum possible infiltration rate. Although some studies show how the 

infiltration rate is affected by the ponding depth of the water and surface slope, they 
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were limited to overland flow and the effect of the channel cross section on the 

infiltration rate has largely been ignored. While the ponding depth and slope may not 

be significant infiltration factors in some hydrologic models, the water level and side 

slope in a channel may prove important when seeking to maximize the infiltration rate 

in a particular channel with a given flow rate. Modeling the variations of infiltration 

rate with flow hydraulic parameters in permeable channels promises best stormwater 

management and provide a valuable decision support tool in designing permeable 

channels. Moreover, the application of the findings of this study to the design of a 

stormwater channel promises to reduce the length of the channel and occupied land, 

thereby decrease the construction and maintenance costs. 

1.5 Scope and Limitations 

The scope of this research is to investigate experimentally the effects of flow 

hydraulics parameters, which are water level, base width, side slope, and velocity on 

infiltration rate in a permeable channel and their effectiveness in flow reduction.  

For better understanding the characteristics of flow with infiltration in permeable open 

channels, flow hydraulics parameters were studied using different sets of hydraulic 

and soil conditions, and the study involved the determination of infiltration rate 

through permeable channels in two flow conditions, namely, static and dynamic, and 

hence different physical channel models were developed in the laboratory for each 

condition.

Under the static condition, the ponding method was used for the infiltration and 

seepage tests under unsaturated soil conditions. Physical channel models were used to 

investigate the effects of the channel section on the infiltration and seepage rates in a 

permeable channel, and determine the section that maximizes water reduction by 

infiltration and seepage under the unsaturated soil condition. The experimental tests 

includes four initial water depths (y = 0.15, 0.25, 0.35, and 0.45 m), three base widths 

(b = 1, 0.5, and 0.2 m), and three side slopes (m = 2, 3, and 4). The physical channel 

models were also used to evaluate the performance of five infiltration models, namely, 

the Kostiakov, Horton, Modified Kostiakov, Philip, and Soil Conservation Service 

(SCS), for estimating the infiltration rate in permeable stormwater channels versus the 

measured values.  

Under the dynamic condition, the mass-balance method was used for infiltration rate 

estimation, and the experimental tests includes five inflow rates (Qin = 0.0055, 0.0075, 

0.0095, 0.0115, 0.0135 m3/s), with three downstream check dam heights (hw = 10, 15, 

and 20 cm). In addition, two other sets of experiments were conducted to investigate 

the effects of grass cover and subsurface water on infiltration rate. The results were 

used to quantify and compare the different cases in terms of the infiltration rate and 

cumulative infiltration for better surface water reduction. All comparisons focused on 
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the hydraulic considerations of channel design rather than economic analysis of 

different alternatives. 

There are many factors that may influence the infiltration capacity of permeable 

channels, however, it is difficult to consider all these factors. In this study, the flow 

hydraulics parameters which are the water level, channel section, and flow velocity 

were taken into account in the investigation, while the other factors were considered 

as fixed parameters.  

Soil used to form the permeable layer in the test channels was natural soil collected 

from the farm of the Universiti Putra Malaysia, which was homogeneous and 

isotropic, and represented only one type of soil. Hence, the analysis and development 

of predictive equations throughout this study are applicable for this type of soil, and 

further investigations should be conducted to confirm their suitability for other types. 

Moreover, only one texture of top-soil and one type of grass, which known as Cow

grass, were used for the channel under the dynamic phase of the study.

The rate of seepage through the natural unsaturated soil is significantly influenced by 

the infiltration rate from the surface to the top soil when water stands, that is the water 

is not flowing in a channel. Therefore, seepage was studied under the static condition 

only, while it was considered insignificant and thus ignored under the dynamic 

condition. 

The model scales were limited according to the space available for the permeable 

channel fabrication in the hydraulic laboratory at the Faculty of Engineering, 

Universiti Putra Malaysia. Experiments were limited to the laboratory temperature, 

and the filed capacity of soil saturation.  

Channel model for dynamic condition was placed inside an existed concrete flume 

which has a length of 16 m after the flow inlet, width of 1.5 m and height of 1.2 m. 

The reason of placing the model inside the concrete flume was to use its facilities such 

as pumping and draining water, measuring inflow and outflow, supporting water level

measurement tools, and placing the movable current meter.

The study considered only one longitudinal slope of a channel, and did not cover the 

effect of longitudinal slope variations on infiltration capacity of channels. Moreover, 

initial water level of flow was reached very fast comparing to the case of rainfall on 

permeable stormwater channels, and water for dynamic condition was re-circulated 

during the experiment by collecting both conveyed and infiltrated water at the end of 

channel and pumping it to the overhead tank and re-circulating again. 
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The analysis throughout the study was based on statistical approach using IBM SPSS 

Statistics software (version 21). Moreover, SPSS software was used for developing 

predictive equations and fitting their parameters because of that the mathematical basis 

of all available software does not consider the variations of infiltration rate with the 

hydraulic parameters in stormwater channels. While numerical analysis is highly 

relevant in this work, it was not used due to time limitation. 

1.6 Thesis Layout 

This thesis is composed of five chapters. Chapter One presents an overview of  the use 

of permeable channels for sustainable stormwater management and their functions,

the problems accompanying such channels, and the objectives of the study, together 

with the significance, scope and limitations of the current research. 

Relevant literature is reviewed in Chapter Two. This Chapter reviews the 

characteristics of flow in open channels and the variables governing the flow in 

permeable stormwater channels. The Chapter also reviews extensively the previous 

studies on the effect of channel cross section on seepage and infiltration rates in 

different conditions and practices. Moreover, this Chapter reviews the design 

procedures of permeable stormwater channels, the methods for estimating infiltration 

rate through permeable channels, and summarises the formulas of five infiltration 

models, namely, the Kostiakov, Horton, Modified Kostiakov, Philip, and Soil 

Conservation Service (SCS). Finally, a summary of the literature review and the 

research gaps related to flow with infiltration in a permeable channel is presented in 

this chapter. 

Experimental setup, channel material, experimental method, and data collection for 

the two hydraulic conditions, namely, static and dynamic conditions, are described in 

the third Chapter. Moreover, Chapter Three also comprises a description of the two 

separate laboratory pre-tests that conducted to examine how the placement of soil on 

an open to the atmosphere boundary condition may affect the infiltration and seepage 

rates, and how the results would differ if the experiments were performed in a native 

channel.  

Chapter Four presents the results of the experiments from the two phases. Discussion 

in Chapter Four was based on the comparisons among different cases and their effect 

on the flow with infiltration in permeable channels under static and dynamic hydraulic 

conditions using graphs, tables and empirical equations. An example of modelling 

flow with infiltration with two cases in a grassed channel was detailed at the end of 

Chapter Four. 

Finally, Chapter Five presents a summary and conclusions of the study, as well as 

suggestions for some future studies.
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