UNIVERSITI PUTRA MALAYSIA

MECHANICAL AND TRIBOLOGICAL ENHANCEMENT OF AA6063 ALUMINUM ALLOY USING SOLID SPHERE FLY ASH PARTICLES REINFORCEMENT

ALAA MOHAMMED RAZZAQ

FK 2018 130
MECHANICAL AND TRIBOLOGICAL ENHANCEMENT OF AA6063 ALUMINUM ALLOY USING SOLID SPHERE FLY ASH PARTICLES REINFORCEMENT

By

ALAA MOHAMMED RAZZAQ

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

May 2018
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

This thesis is dedicated to:

The sake of Allah, my Creator and my Master,

My great teacher and messenger, Mohammed (May Allah bless and grant him and his family),

The memory of my parents, my late father and my late mother, whose prayers, support and dream.
My humble effort I dedicate to my sweet and loving Wife (Roieda) I am grateful to her support
To my daughter (Wseq) and sons (Mohammed and Reda), whose prayers and wishes.

All the people in my life who touch my heart,

I dedicate this research.
Fly ash (FA) has gathered widespread attention as a potential reinforcement for metal matrix composites (MMCs) to enhance the properties and reduce the cost of production. It is the most inexpensive and low density reinforcement available in large quantities as solid waste by-product. Aluminum alloys have been used in various engineering fields, such as automotive and aerospace industries, due to their low density and good mechanical properties. There is need to improve the performance of these alloys by adding reinforcements to extend their usage in many applications under wider service conditions. In this work, efforts are directed to improve the mechanical and tribological properties of AA6063 with solid sphere FA reinforcements. Relevant works were found to focus only on cenosphere FA particulates. There are many fabrication techniques available to manufacture these composites according to matrix and reinforcement materials. The compocasting technique for the fabrication of the AA6063 matrix composite reinforced with FA particles is the focus of this research. FA content, in the range of 0 – 12 wt. % in increasing increments of 2% were added to the molten AA6063 alloy until they were completely blended and cooled down just below the liquidus to keep the slurry in the semi-solid state. Afterwards, the molten AA6063-FA composites were cast into prepared cast iron molds. Several techniques were used to evaluate the microstructure properties of these composites. The bulk density, porosity percentage and thermal properties of the composites were tested. This study also investigated the effect of FA addition on the mechanical properties of AA6063-FA composites. The effect of FA addition, applied load and sliding speed on the dry sliding frictional and wear behaviour has been considered in this study. Pin on disc test were conducted at different loads (24.5, 49, and 73.5 N) as well as the various sliding speeds using in this test (150, 200, and 250 rmp.) with a constant period time (10 minutes). The microstructural results showed good distribution of FA particles in the AA6063 matrix with interfacial bonding. The AA6063-FA composites exhibited good mechanical and tribological properties than the unreinforced AA6063 aluminum
alloy. The microhardness and the strength significantly increased with increase of FA content. While the impact energy and density decreased with increase in the FA content. The tensile strength of AA6063 alloy increased by 28 % with 10 wt. % of FA, the compression strength improved by 100 % with 10 wt. % of FA. Wear rate decreased with increase of FA content but increased with increase of sliding speed and applied load. The coefficient of friction declined with increase of FA content, sliding speed, and applied load.

The findings from the statistical analysis are the order of significance of the design parameters, which revealed the FA content as having the highest influence on the wear rate and coefficient of friction, followed by applied load and sliding speed. Addition to that, the strongest interaction effects is FA content with applied load. The models produced would be a useful tool in the process of AA6063-FA composites design, and can be used as a replacement for the expensive conventional experimental tests.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENAMBAHBAIKAN MEKANIikal DAN TRIBOLOGI BAGI ALOI ALUMINUM AA6063 DIPERKUKUHKAN DENGAN ZARAH ABU TERBANG BERSFERA PADU

Oleh

ALAA MOHAMMED RAZZAQ

Mei 2018

Pengerusi : Dayang Laila Abang Abdul Majid, PhD
Fakulti : Kejuruteraan

Abu terbang (FA) telah menarik minat ramai sebagai satu potensi pengukuhan terhadap komposit matriks logam (MMC) dalam meningkatkan sifat-sifat dan mengurangkan kos pengeluaran. Ia merupakan bahan pengukuhan yang murah dan berketumpatan rendah yang wujud dalam kuantiti yang banyak sebagai produk sampingan sisa pepejal. Aluminium alloys have been used in various engineering fields, such as automotive and aerospace industries, due to their low density and good mechanical properties. Aloi aluminum telah digunakan dalam pelbagai bidang kejuruteraan seperti industri automotif dan aeroangkasa, kerana ketumpatannya yang rendah dan sifat mekanikalnya yang baik. Terdapat keperluan untuk memperbaiki prestasi aloi ini melalui penambahan pengukuhan untuk meningkatkan penggunaannya dalam banyak aplikasi di bawah keadaan perkhidmatan yang lebih meluas. Dalam kajian ini, usaha ditumpukan untuk memperbaiki sifat mekanikal dan tribologikal AA6063 diperkukuhkan dengan zarah abu terbang bersfera padu. Kajian yang berkaitan menumpukan kepada zarah abu terbang senosfera sahaja. Terdapat pelbagai teknik fabrikasi yang wujud dalam menghasilkan komposit sebegini berdasarkan kepada matriks dan bahan pengukuhan. Teknik penuangan kompo untuk proses fabrikasi komposit matriks AA6063 yang dikuukuhkan dengan zarah FA merupakan fokus dalam kajian ini. Kandungan FA dalam julat berat 0-12 % dengan kenaikan 2% telah digunakan. Zarah FA telah ditambahkan kepada leburan aloi AA6063 sehingga campuran betul-betul sekata dan disejukkan di bawah takat cecair untuk mengekalkan bahan dalam keadaan separa-pepejal. Kemudian, komposit AA6063 yang dileburkan ditempa di dalam acuan besi tempa dan disejukkan di bawah takat cecair untuk mengekalkan bahan dalam keadaan separa-pepejal. Kemudian, komposit AA6063 yang dileburkan ditempa di dalam acuan besi tempa yang telah disediakan, Pelbagai teknik telah digunakan dalam menilai sifat mikrostruktur bagi komposit ini. Ketumpatan pukal, peratusan rongga dan sifat termal bagi komposit ini telah dikaji. Kajian ini turut menyelidik kesan penambahan FA terhadap sifat mekanikal komposit AA6063-FA. Kesan daripada penambahan FA, beban yang dikenakan dan kelajuan gelinciran terhadap gelinciran geseran kering dan kehausan telah dipertimbangkan di

Penemuan dari analisis statistik adalah susunan kepentingan bagi parameter rekabentuk yang menunjukkan bahawa kandungan FA memberikan kesan yang paling tinggi ke atas kadar haus dan pekali geseran, diikuti dengan beban yang dikenakan dan kelajuan gelinciran. Selain itu, kesan interaksi yang paling tinggi/kuat adalah kandungan FA dengan beban yang dikenakan. Model yang dihasilkan akan menjadi alat yang berguna dalam proses rekabentuk komposit AA6063-FA, dan dapat digunakan sebagai pengganti bagi ujian konvensional yang mahal.
ACKNOWLEDGEMENTS

In the Name of ALLAH, the most Merciful and Beneficent

I am very grateful to Allah S.W.T. who has given me blessed, strength, courage, and patience to complete my thesis successfully.

Special appreciation goes to my supervisor, Dr. Dayang Laila Abang Abdul Majid for her supervision and constant support. Her invaluable help of constructive comments and suggestions throughout the experimental and thesis works have contributed to the success of this research. Many thanks and gratitude also goes to the supervisory committee, Dr. Mohamad Ridzwan Bin Ishak, and Dr. Uday M. Basheer Al Naib for their guidance and advice. I would like to thank my friends Eng. Qassim, Eng. Ahamed and Eng. Mostafa Malik for their help and support. I would like to thank Dr. Wissam Hashim Jeber for his support.

Also, I would like to express my utmost appreciation and gratitude to UTM-Centre for Low Carbon Transport, Institute for Vehicle Systems and Engineering at Universiti Teknologi Malaysia (UTM) for providing the research facilities. This research work has been supported by the the UTM Research FRGS Grant (No. R.J1300000.7824.4F723). Special thanks to Eng. Eng Ahmad Saifol Abu Samah, Eng. Muhammad Wildan, and Eng. Mohd Saiful for their technical supports. Sincere thanks to the staff of Faculty of Mechanical Engineering, Universiti Teknologi Malaysia Skudai UTM for their help and moral supports upon the completion of casting process with the collaboration of foundry personnel.

Finally, I would like to thank the Oil Products Distribution Company, Iraq Ministry of oil, and Ministry of Higher Education and Scientific Research, Iraq for the scholarship.

Alaa Mohammed Razzaq

February 2018
I certify that a Thesis Examination Committee has met on 24 May 2018 to conduct the final examination of Alaa Mohammed Razzaq on his thesis entitled "Mechanical and Tribological Enhancement of AA6063 Aluminum Alloy using Solid Sphere Fly Ash Particles Reinforcement" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Nasri bin Sulaiman, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Azmin Shaktine bin Mohd Rafie, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Azmah Hanim binti Mohamed Ariff, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Recep Calin, PhD
Professor
Kirikkale University
Turkey
(External Examiner)

[Signature]

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 28 June 2018
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Dayang Laila Abang Abdul Majid, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Mohamad Ridzwan Bin Ishak, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Uday M. Basheer Al-Naib, PhD
Senior Lecturer
Faculty of Engineering
Universiti Teknologi Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: __________________

Name and Matric No: Alaa Mohammed Razzaq (GS40814)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __________________________
Name of Chairman of Supervisory Committee: __________________________

Associate Professor Dr. Dayang Laila Abang Abdul Majid

Dr. Mohamad Ridzwan Ishak
Pensyarah Kanan
Jabatan Kejuruteraan Aeroangkasa
Fakulti Kejuruteraan
Universiti Putra Malaysia
Email: ridzwan@eng.upm.edu.my

Signature: __________________________
Name of Member of Supervisory Committee: __________________________

Dr. Mohamad Ridzwan Bin Ishak

DR. UDAY M. BASHEER AL-NAIB
Faculty of Mechanical Engineering
UTM Centre For Low Carbon Transport
In Cooperation With Imperial College London
Institute For Vehicle Systems and Engineering
Universiti Teknologi Malaysia
81310 Skudai Johor Malaysia
Tel: +607-497 1905 Ext No.: +607-553 6495
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xxii</td>
</tr>
</tbody>
</table>

CHAPTER

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>1.2</td>
<td>Background</td>
</tr>
<tr>
<td>1.3</td>
<td>Problem Statement</td>
</tr>
<tr>
<td>1.4</td>
<td>Objectives</td>
</tr>
<tr>
<td>1.5</td>
<td>Scope and Limitation</td>
</tr>
<tr>
<td>1.6</td>
<td>Thesis layout</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Introductions</td>
</tr>
<tr>
<td>2.2</td>
<td>Aluminum Alloys Series</td>
</tr>
<tr>
<td>2.2.1</td>
<td>AA6063 Alloy</td>
</tr>
<tr>
<td>2.3</td>
<td>Composite Materials</td>
</tr>
<tr>
<td>2.4</td>
<td>Matrix Material</td>
</tr>
<tr>
<td>2.5</td>
<td>AA6063 Alloy Matrix Composites</td>
</tr>
<tr>
<td>2.6</td>
<td>Reinforcing Materials</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Particulate Reinforcement</td>
</tr>
<tr>
<td>2.7</td>
<td>FA as Reinforcement in Aluminum Composites</td>
</tr>
<tr>
<td>2.8</td>
<td>Fabrication Methods of Aluminum Matrix Composites</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Stir Casting Process</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Compocasting Technique</td>
</tr>
<tr>
<td>2.9</td>
<td>Factors Affecting the Casting Process</td>
</tr>
<tr>
<td>2.9.1</td>
<td>Wettability between Reinforcement Material and Matrix Alloy</td>
</tr>
<tr>
<td>2.9.1.1</td>
<td>Wettability Improvement Methods</td>
</tr>
<tr>
<td>2.9.2</td>
<td>Porosity</td>
</tr>
<tr>
<td>2.9.3</td>
<td>Matrix Interface and Chemical Reaction</td>
</tr>
<tr>
<td>2.10</td>
<td>Strengthening Mechanisms</td>
</tr>
<tr>
<td>2.11</td>
<td>Microstructural Features</td>
</tr>
<tr>
<td>2.12</td>
<td>FA Effect on Mechanical Physical Properties of Aluminum Composites Material.</td>
</tr>
</tbody>
</table>
2.13 Wear Performance of Aluminum Matrix Composites

2.13.1 Theory and Mechanism of Wear 40

2.13.2 Effect of Normal Load and Sliding Velocity on the Wear Behaviour. 41

2.13.3 Effect of Ceramic Content and Particle Size on Wear Behaviour 44

2.13.4 Effect of FA on Wear Behaviour 46

2.14 The Coefficient of Friction 48

2.15 Summary 54

3 RESEARCH METHODOLOGY 56

3.1 Introduction 56

3.2 Research Program 56

3.3 Raw Materials 58

3.3.1 AA6063 Alloy 58

3.3.2 Fly ash (FA) 58

3.4 Fabrication of AA6063-FA composites 58

3.4.1 AA6063 alloy Preparation 59

3.4.2 FA Powder Preparation and Physical Characterization 59

3.4.3 Compocasting processes 61

3.5 Cutting Process 65

3.6 Metallographic Specimens Preparation 66

3.7 Material characterizations 67

3.7.1 X-Ray Fluorescence (XRF) Analysis 67

3.7.2 X-Ray Diffraction (XRD) Analysis 68

3.7.3 Particle Size Analysis 68

3.7.4 Microstructural and Morphological Characteristics 69

3.7.5 Thermal Analysis of FA 70

3.8 Physical and Thermal Properties of AA6063-FA Composites 70

3.8.1 Density and Porosity Measurements 70

3.8.2 Thermal Expansion Analysis 71

3.9 Mechanical Properties Analyses 72

3.9.1 Tensile Test 72

3.9.2 Compression Test 74

3.9.3 Hardness Test 75

3.9.3.1 Vickers Microhardness Tests 75

3.9.4 Impact Test 76

3.9.5 Fractography Fracture mechanics studies 78

3.10 Friction and Wear Measurement 78

3.10.1 Sliding Wear Test Apparatus 78

3.10.2 Preparation of Disc and Pins 79

3.10.3 Operating Parameters 80

3.11 Statistical Analysis using surface response method SRM 82

3.12 Mathematical Model on Wear Rate and Coefficient of Friction 83

3.13 Summary 86
4 RESULTS AND DISCUSSION

<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>87</td>
</tr>
<tr>
<td>4.2</td>
<td>Raw Materials Characterization</td>
<td>87</td>
</tr>
<tr>
<td>4.2.1</td>
<td>X-Ray Fluorescence (XRF) Analysis</td>
<td>87</td>
</tr>
<tr>
<td>4.2.2</td>
<td>X-Ray Diffraction (XRD) Analysis</td>
<td>88</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Particle size analysis</td>
<td>90</td>
</tr>
<tr>
<td>4.2.4</td>
<td>FESEM and EDS Mapping analysis</td>
<td>91</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Thermogravimetric Analysis of FA (TGA-DTA)</td>
<td>93</td>
</tr>
<tr>
<td>4.3</td>
<td>Microstructural Observations of AA6063-FA Composites</td>
<td>93</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Microstructure Analysis Obtained by SEM Microscope</td>
<td>94</td>
</tr>
<tr>
<td>4.3.2</td>
<td>SEM-EDS Mapping Analysis</td>
<td>96</td>
</tr>
<tr>
<td>4.3.3</td>
<td>EDX Line Scan Analysis</td>
<td>97</td>
</tr>
<tr>
<td>4.3.4</td>
<td>X-Ray Diffraction (XRD) Analysis of AA6063-FA Composites</td>
<td>98</td>
</tr>
<tr>
<td>4.4</td>
<td>Physical Properties Analysis</td>
<td>99</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Density and Porosity Measurements of AA6063-FA Composites</td>
<td>99</td>
</tr>
<tr>
<td>4.5</td>
<td>Coefficient of Thermal Expansion</td>
<td>101</td>
</tr>
<tr>
<td>4.6</td>
<td>Mechanical Properties Analyses and Fractography</td>
<td>103</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Tensile Test</td>
<td>103</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Compression Test</td>
<td>106</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Vickers Microhardness Test</td>
<td>107</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Impact Test</td>
<td>108</td>
</tr>
<tr>
<td>4.7</td>
<td>Fractography Analysis</td>
<td>109</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Fracture Surface Analysis of Tensile Specimens</td>
<td>109</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Fracture Surface Analysis of Impact Specimens</td>
<td>112</td>
</tr>
<tr>
<td>4.8</td>
<td>Wear Behaviour</td>
<td>113</td>
</tr>
<tr>
<td>4.8.1</td>
<td>Effect of FA Content on Wear Rate</td>
<td>114</td>
</tr>
<tr>
<td>4.8.2</td>
<td>Effect of Applied Load on Wear Rate</td>
<td>116</td>
</tr>
<tr>
<td>4.8.3</td>
<td>Effect of Sliding Speed on Wear Rate</td>
<td>118</td>
</tr>
<tr>
<td>4.9</td>
<td>Frictional Behaviour</td>
<td>120</td>
</tr>
<tr>
<td>4.9.1</td>
<td>Effect of FA content on Coefficient of Friction and Frictional Force</td>
<td>120</td>
</tr>
<tr>
<td>4.9.2</td>
<td>Effect of applied load on Coefficient of Friction and Frictional Force</td>
<td>123</td>
</tr>
<tr>
<td>4.9.3</td>
<td>Effect of Sliding Speed on Coefficient of Friction and Frictional Force</td>
<td>126</td>
</tr>
<tr>
<td>4.10</td>
<td>Worn Surface Analysis</td>
<td>129</td>
</tr>
<tr>
<td>4.11</td>
<td>Statistical Analyses</td>
<td>134</td>
</tr>
<tr>
<td>4.11.1</td>
<td>Modelling and Analysis of Variance of Wear Rate</td>
<td>134</td>
</tr>
<tr>
<td>4.11.1.1</td>
<td>Graphical Results of Wear Rate Model</td>
<td>136</td>
</tr>
<tr>
<td>4.11.2</td>
<td>Modelling and Analysis of Variance for Coefficient of Friction</td>
<td>140</td>
</tr>
<tr>
<td>4.11.2.1</td>
<td>Graphical results of Coefficient of friction</td>
<td>142</td>
</tr>
<tr>
<td>4.12</td>
<td>Validation of the Statistical Models</td>
<td>145</td>
</tr>
<tr>
<td>4.13</td>
<td>Summary</td>
<td>146</td>
</tr>
</tbody>
</table>
5 CONCLUSIONS AND RECOMMENDATIONS 147
5.1 Conclusions 147
 5.1.1 Microstructural Features 147
 5.1.2 Physical and Thermal Properties 147
 5.1.3 Mechanical Properties 148
 5.1.4 Wear Behaviour and Mathematical Models 148
5.2 Recommendation for Future Work 149

REFERENCES 151
APPENDICES 175
BIODATA OF STUDENT 178
LIST OF PUBLICATIONS 179
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Properties of AA6063 alloy[59-61]</td>
</tr>
<tr>
<td>2.2</td>
<td>The AA6063 matrix alloy</td>
</tr>
<tr>
<td>2.3</td>
<td>Common Reinforcement Materials [117]</td>
</tr>
<tr>
<td>2.4</td>
<td>Effect FA on physical and mechanical properties of Al-FA composites</td>
</tr>
<tr>
<td>2.5</td>
<td>Investigations regarding wear behavior of Al-FA composites</td>
</tr>
<tr>
<td>3.1</td>
<td>Levels of Factors</td>
</tr>
<tr>
<td>3.2</td>
<td>Design summary of the problem (Design-Expert V10.0)</td>
</tr>
<tr>
<td>4.1</td>
<td>Chemical composition of tested AA6063 in wt. %</td>
</tr>
<tr>
<td>4.2</td>
<td>Chemical composition of FA in wt. %</td>
</tr>
<tr>
<td>4.3</td>
<td>Relevant parameters of FA before calcination from XRD results</td>
</tr>
<tr>
<td>4.4</td>
<td>Relevant parameters of FA after calcination from XRD results</td>
</tr>
<tr>
<td>4.5</td>
<td>Wear Rate Model Summary Statistics</td>
</tr>
<tr>
<td>4.6</td>
<td>Coefficient of Friction Model Summary Statistics</td>
</tr>
<tr>
<td>4.7</td>
<td>ANOVA for Response Surface Quadratic model of Wear Rate</td>
</tr>
<tr>
<td>4.8</td>
<td>ANOVA for Response Surface Quadratic model (coefficient of friction model)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Types of composites reinforcements [98]</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>The FA powder used for synthesis of AL-FA composites (a) as-received condition, (b) after heat treatment condition [125]</td>
<td>20</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic diagram of Stir casting technique for the fabrication MMCs [143]</td>
<td>23</td>
</tr>
<tr>
<td>2.4</td>
<td>Contact angles between gas, solid, and liquid phases [5]</td>
<td>25</td>
</tr>
<tr>
<td>2.5</td>
<td>Schematic representation of the particle distribution during solidification: a-grain growing freely in the liquid; b-particle-grain interaction occurs; c-some particles are pushed by the interface, while some others are engulfed; d-the final distribution [5]</td>
<td>30</td>
</tr>
<tr>
<td>2.6</td>
<td>(a) Effect of FA content on microhardness (b) tensile strength and (c) elongation of AA6061-FA composites [32]</td>
<td>32</td>
</tr>
<tr>
<td>2.7</td>
<td>Wear volume against load and speed, time = 10 min: (a) 9% FA, 53–75 µm particle size and (b) 9% FA, 103–150 µm particle size [230]</td>
<td>43</td>
</tr>
<tr>
<td>2.8</td>
<td>Wear volume against FA content and particle size, time = 10 min: (a) load 30 N, speed 4 m/s and (b) load 20 N, speed 2 m/s [230]</td>
<td>43</td>
</tr>
<tr>
<td>2.9</td>
<td>Bar chart showing improvement in wear resistance in composites with particle size [236]</td>
<td>45</td>
</tr>
<tr>
<td>2.10</td>
<td>Effect of reinforcement size on abrasive wear rate [237]</td>
<td>45</td>
</tr>
<tr>
<td>2.11</td>
<td>Worn surface at 82 N, 0.3 m/s of (a) Al - 25 vol.% of 44 SiC, (b) Al - 25 vol.% of 88 µm SiC [237]</td>
<td>46</td>
</tr>
<tr>
<td>2.12</td>
<td>Wear rate of AA 6061 alloy-based MMCs as a function of (a) normal load applied; (b) wt. % FA [126]</td>
<td>47</td>
</tr>
<tr>
<td>2.13</td>
<td>Wear resistance of AA 6061 alloy-based MMCs as a function of (a) normal load applied; (b) wt. % FA [128]</td>
<td>48</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow Chart of Research Methodology for Synthesis and Characterization of AA6063-FA Composite</td>
<td>57</td>
</tr>
<tr>
<td>3.2</td>
<td>FA as received from the thermal power plant</td>
<td>58</td>
</tr>
<tr>
<td>3.3</td>
<td>AA6063 aluminum alloy</td>
<td>59</td>
</tr>
<tr>
<td>3.4</td>
<td>Carbolite furnace HTF-18/8</td>
<td>60</td>
</tr>
<tr>
<td>3.5</td>
<td>a) FA after calcination, b) Auto sieve shaker</td>
<td>60</td>
</tr>
<tr>
<td>3.6</td>
<td>Density Powder measurement Machine, Accupyc II 1340</td>
<td>61</td>
</tr>
<tr>
<td>3.7</td>
<td>The control panel induction furnace melting unit</td>
<td>61</td>
</tr>
<tr>
<td>3.8</td>
<td>Flow Process Chart for Compocasting</td>
<td>63</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>3.9</td>
<td>Schematic diagram of casting technique (Induction Melting Furnace)</td>
<td>63</td>
</tr>
<tr>
<td>3.10</td>
<td>Pouring the Composite Slurry Mixture in Permanent Metallic Mould with Cast of Composite</td>
<td>64</td>
</tr>
<tr>
<td>3.11</td>
<td>Probe Thermometer</td>
<td>65</td>
</tr>
<tr>
<td>3.12</td>
<td>Sodick AQ537L Wire-cut EDM machine</td>
<td>65</td>
</tr>
<tr>
<td>3.13</td>
<td>Specimens Preparation for metallographic procedure</td>
<td>67</td>
</tr>
<tr>
<td>3.14</td>
<td>Particle Size measurement Machine, Malvern particle Mastersizer</td>
<td>68</td>
</tr>
<tr>
<td>3.15</td>
<td>FESEM Machine</td>
<td>69</td>
</tr>
<tr>
<td>3.16</td>
<td>Electronic Densimeter MD-300S</td>
<td>71</td>
</tr>
<tr>
<td>3.17</td>
<td>Schematic diagram and dimensions of tensile test specimen (all dimensions in mm)</td>
<td>73</td>
</tr>
<tr>
<td>3.18</td>
<td>(a) Image of Universal testing machine, (b) Test layout for tensile test</td>
<td>74</td>
</tr>
<tr>
<td>3.19</td>
<td>Schematic diagram and dimensions of compression test specimen</td>
<td>75</td>
</tr>
<tr>
<td>3.20</td>
<td>a) Picture of Instron universal testing machine, b) installed test coupon</td>
<td>75</td>
</tr>
<tr>
<td>3.21</td>
<td>Vickers hardness tester</td>
<td>76</td>
</tr>
<tr>
<td>3.22</td>
<td>Schematic diagram and dimensions of Impact test specimen (all dimensions in mm)</td>
<td>77</td>
</tr>
<tr>
<td>3.23</td>
<td>Picture of Gunt Impact Tester</td>
<td>77</td>
</tr>
<tr>
<td>3.24</td>
<td>Dry sliding tribological test – experimental setup (pin-on-disc apparatus)</td>
<td>79</td>
</tr>
<tr>
<td>3.25</td>
<td>Pictures and dimensions of (a) rotating disc, (b) Pins (specimens)</td>
<td>80</td>
</tr>
<tr>
<td>3.26</td>
<td>Flow Chart of Wear Test</td>
<td>81</td>
</tr>
<tr>
<td>3.27</td>
<td>Graphical result from pin-on-disc tester, (a) - Height loss (µm) Vs time(s), (b) coefficient of friction Vs time(s), (c) Frictional Force(N) Vs time(s)</td>
<td>82</td>
</tr>
<tr>
<td>4.1</td>
<td>XRD pattern of (a) FA powder before calcination and (b) FA after calcination</td>
<td>88</td>
</tr>
<tr>
<td>4.2</td>
<td>The XRD spectrum of AA6063 alloy</td>
<td>90</td>
</tr>
<tr>
<td>4.3</td>
<td>Particle size distribution of FA</td>
<td>90</td>
</tr>
<tr>
<td>4.4</td>
<td>FESEM micrograph showing the morphology of FA particles</td>
<td>91</td>
</tr>
<tr>
<td>4.5</td>
<td>FESEM Micrograph of AA6063 alloy grains</td>
<td>91</td>
</tr>
<tr>
<td>4.6</td>
<td>EDS elemental Mapping of the raw FA powder (a) SEM image (b) EDS spectrum of FA and (c) The corresponding elemental mapping of Si, Al, O, K, Ti, Ca and Fe respectively</td>
<td>92</td>
</tr>
<tr>
<td>4.7</td>
<td>Thermal analysis (TGA-DTA) of FA powder</td>
<td>93</td>
</tr>
</tbody>
</table>
4.8 The microstructure of the AA6063-FA composite with 6 wt. % FA observed under FE-SEM: (a) 500X and (b) 5000X
4.9 The microstructure of the AA6063-FA composite with 10 wt. % FA observed under VP-SEM at magnification 3000X
4.10 The microstructure of the AA6063-FA composite with 12 wt. % FA observed under VP-SEM at (a) 1000X and (b) 300X
4.11 SEM-EDS Mapping of AA6063-FA composite with 10 wt. % FA
4.12 FESEM microstructure of AA6063-FA composite interface with EDX line scan results
4.13 XRD diffraction pattern of the AA6063-FA composite with different weight fraction of FA: (a) 0 wt. %, (b) 4wt. %, (c) 8 wt. % and (d) 12 wt. %
4.14 Bulk density and apparent porosity of AA6063–FA composites as a function of FA percentage content
4.15 VP-SEM micrograph of the FA grains with group of pores in the surface of AA6063-FA composite (12wt% FA)
4.16 Coefficient of thermal expansion of the AA6063 alloy, FA powder and AA6063-FA composites as a function of temperature for different weight fraction of FA
4.17 \(\frac{d l}{l_0} \) of the AA6063-FA composites, FA and AA6063 alloy
4.18 Tensile specimens (a) before and (b) after the test
4.19 Effect of weight percentage of FA on (a) Yield strength, (b) ultimate tensile strength, and (c) % elongation of AA6063–FA composites
4.20 Effect of weight percentage of FA on ultimate compression strength
4.21 Effect of weight percentage of FA on microhardness of AA6063–FA composites
4.22 Charpy impact energy of AA6063-FA composites as a function of FA percentage content
4.23 VPSEM images of AA6063 alloy fracture surface after tensile test (a) 300X and (b) 1000X
4.24 VPSEM images of AA6063-FA composite fracture surface with 8 wt. % FA after tensile test (a) 300X and (b) 1000X
4.25 VPSEM images of AA6063-FA composite fracture surface with 10 wt. % FA after tensile test (a) 300X and (b) 1000X
4.26 VPSEM images of AA6063-FA composite fracture surface with 12 wt. % FA after tensile test (a) 300X and (b) 1000X
4.27 VP-SEM fractography of pure cast AA6063 alloy without added FA
4.28 VP-SEM fractography of AA6063-FA composite with 6 wt. % FA
4.29 VP-SEM fractography of AA6063-FA composite with 12 wt. % FA
4.30 Wear rate of AA6063 alloy-based AMCs as a function of wt. % FA: (a) variant load with 150 rpm, (b) variant load with 200 rpm, (c) variant load with 250 rpm
4.31 Wear rate of AA6063 alloy-based MMCs as a function of applied load: a) variant FA content with 150 rpm, (b) variant FA content with 200 rpm, (c) variant FA content with 250 rpm
4.32 Wear rate of AA6063 alloy-based MMCs as a function of sliding speed; a) variant FA content with 24.5 N, (b) variant FA content with 49 N, (c) variant FA content with 73 N
4.33 Coefficient of friction of AA6063 alloy-based MMCs as a function of wt. % FA
4.34 Frictional Force of AA6063 alloy-based MMCs as a function of wt. % FA
4.35 Coefficient of friction of AA6063 alloy-based MMCs as a function of applied load; a) variant FA content with 150 rpm, (b) variant FA content with 200 rpm, (c) variant FA content with 250 rpm
4.36 Frictional Force of AA6063 alloy-based MMCs as a function of normal load applied; a) variant FA content with 150 rpm, (b) variant FA content with 200 rpm, (c) variant FA content with 250 rpm
4.37 Coefficient of friction of AA6063 alloy-based MMCs as a function of sliding speed; a) variant FA content with 24.5 N, (b) variant FA content with 49 N, (c) variant FA content with 73 N
4.38 Frictional Force of AA6063 alloy-based MMCs as a function of sliding speed; a) variant FA content with 24.5 N, (b) variant FA content with 49 N, (c) variant FA content with 73.5 N
4.39 VPSEM of worn surface of AA6063 alloy under the load of 73.5 N and sliding velocity 200 rpm
4.40 VPSEM of worn surface of AA6063-FA composite with 4 wt. percentage of FA
4.41 VPSEM micrograph of the worn surface of AA6063-FA composite with 6 wt. percentage of FA under the load of 73.5 N and sliding velocity 200 rpm
4.42 VPSEM micrograph of the worn surface of AA6063-FA composite with 12 wt. percentage of FA
4.43 VPSEM micrographs of worn surface of AA6063- 8 wt. % FA composites at applied load (a) 24.5 N, (b) 49 N, (c) 73.5 N
4.44 VPSEM micrographs of worn surface of AA6063- 10 wt. % FA composites at applied load 24.5 N, sliding velocity (a) 150 rpm, (b) 250 rpm
4.45 Experimental verses predicted wear rate mm³/m
4.46 Perturbation plot of the effect of Fly ash content, sliding speed and applied load on wear rate of AA6063-FA composites.

4.47 View of the interactive effect of FA and S on Wr, a) contour lines 2D, b) 3D

4.48 View of the interactive effect of S and L on the Wr a) contour lines 2D, b) 3D

4.49 FA and L contour showing the interactive effect on Wr, a) contour lines, b) 3D

4.50 Actual versus predicted scattering of the data points

4.51 Perturbation plot of the process control variables’ effects on the coefficient of friction

4.52 View of the interactive effect of FA and S on Fr, a) contour lines 2D, b) 3D

4.53 FA and L contour showing the interactive effect on the Fr, a) contour lines 2D, b) 3D

4.54 View of the interactive effect of S and L on Fr, a) contour lines 2D, b) 3D

4.55 SRM predicted wear rate verses experimental results

4.56 SRM predicted coefficient of friction verses experimental results
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolution per minute</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society For Testing and Materials</td>
</tr>
<tr>
<td>FA</td>
<td>Fly ash</td>
</tr>
<tr>
<td>Al</td>
<td>Aluminum</td>
</tr>
<tr>
<td>AA6063</td>
<td>AA6063 aluminum alloy</td>
</tr>
<tr>
<td>AA6063-FA</td>
<td>AA6063 aluminum alloy-fly ash composites</td>
</tr>
<tr>
<td>MMCs</td>
<td>Metal matrix composites</td>
</tr>
<tr>
<td>AMCs</td>
<td>Aluminum matrix composites</td>
</tr>
<tr>
<td>AMMCs</td>
<td>Aluminum metal matrix composites</td>
</tr>
<tr>
<td>Al-FA</td>
<td>Aluminum – fly ash</td>
</tr>
<tr>
<td>CTE</td>
<td>Coefficient of thermal expansion</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>Aluminum Oxide</td>
</tr>
<tr>
<td>SiC</td>
<td>Silicon Carbide</td>
</tr>
<tr>
<td>SiO₂</td>
<td>Silicon dioxide</td>
</tr>
<tr>
<td>B₄C</td>
<td>Boron carbide</td>
</tr>
<tr>
<td>Graphite</td>
<td>Gr</td>
</tr>
<tr>
<td>Cubic boron nitride</td>
<td>CBN</td>
</tr>
<tr>
<td>Hexagonal boron nitride</td>
<td>HBN</td>
</tr>
<tr>
<td>Titanium diboride</td>
<td>TiB₂</td>
</tr>
<tr>
<td>Carbon nanotubes</td>
<td>CNT</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray Diffraction</td>
</tr>
<tr>
<td>XRF</td>
<td>X-ray fluorescence</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>VPSEM</td>
<td>Variable Pressure Scanning Electron Microscope</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy-dispersive X-ray</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field-Emission Scanning Electron Microscopy</td>
</tr>
<tr>
<td>RSM</td>
<td>Response surface method</td>
</tr>
<tr>
<td>DRAMCs</td>
<td>Discontinuously reinforced aluminum matrix composites</td>
</tr>
<tr>
<td>CFA</td>
<td>Fly ash cenosphere</td>
</tr>
<tr>
<td>PFA</td>
<td>Fly ash precipitator</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetric Analysis</td>
</tr>
<tr>
<td>UTM</td>
<td>Universal Testing Machine</td>
</tr>
<tr>
<td>MTS</td>
<td>Material testing system</td>
</tr>
<tr>
<td>LVDT</td>
<td>Linear variable differential transformer</td>
</tr>
<tr>
<td>YS</td>
<td>Yield tensile strength (MPa)</td>
</tr>
<tr>
<td>UTS</td>
<td>Ultimate tensile strength (MPa)</td>
</tr>
<tr>
<td>UCS</td>
<td>Ultimate compression strength (MPa)</td>
</tr>
<tr>
<td>SS</td>
<td>Semisolid-semisolid</td>
</tr>
<tr>
<td>SL</td>
<td>Semisolid-liquid</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ</td>
<td>The contact angle measurement of the liquid-solid (Wettability)</td>
</tr>
<tr>
<td>γ_{sg}</td>
<td>Interfacial energies between solid and gas phase</td>
</tr>
<tr>
<td>γ_{sl}</td>
<td>Interfacial energies between solid and liquid phase</td>
</tr>
<tr>
<td>γ_{lg}</td>
<td>Interfacial energies between liquid, and gas phase</td>
</tr>
<tr>
<td>W_{ad}</td>
<td>Energy required to separate a unit area (J/m2)</td>
</tr>
<tr>
<td>BHN</td>
<td>Brinell Hardness Number</td>
</tr>
<tr>
<td>F_n</td>
<td>The normal force</td>
</tr>
<tr>
<td>V_r</td>
<td>Relative velocity</td>
</tr>
<tr>
<td>T_o</td>
<td>The initial temperature</td>
</tr>
<tr>
<td>T_p</td>
<td>Thermal properties</td>
</tr>
<tr>
<td>M_p</td>
<td>Mechanical properties</td>
</tr>
<tr>
<td>Ch_p</td>
<td>Chemical properties</td>
</tr>
<tr>
<td>HRD</td>
<td>Rockwell Hardness</td>
</tr>
<tr>
<td>V_f</td>
<td>Volume fraction</td>
</tr>
<tr>
<td>A_n</td>
<td>Nominal contact area of the wearing source (mm2)</td>
</tr>
<tr>
<td>H_o</td>
<td>Room-temperature hardness of the softer sliding member</td>
</tr>
<tr>
<td>A</td>
<td>Thermal diffusivity (mm2 S$^{-1}$)</td>
</tr>
<tr>
<td>r_o</td>
<td>The radius of the circular nominal contact area (mm)</td>
</tr>
<tr>
<td>W</td>
<td>Volume lost per unit area of surface per unit slide distance slide (mm3)</td>
</tr>
<tr>
<td>P_n</td>
<td>Normal pressure applied between the surface (N/mm2)</td>
</tr>
<tr>
<td>H</td>
<td>The hardness (MPa)</td>
</tr>
</tbody>
</table>
The Archard’s wear coefficient is dimensionless, always less than unity

\(W_r \) Wear rate (mm\(^3\)/m)

\(F_r \) Coefficient of friction

\(D_m \) Dry mass

\(S_m \) The mass of the test specimen after soaking

\(M_s \) Saturated mass

\(V_e \) Exterior volume

\(B \) Bulk density

\(\rho \) Apparent porosity

\(\rho_{FA} \) Al-fly ash composites density (gram/cm\(^3\))

\(M \) Composite sample mass in air (gram)

\(m_1 \) Composite sample mass in distilled water (gram)

\(\rho_{H2O} \) Distilled water density

\(\Delta l \) Change in length (mm)

\(L_0 \) Original test piece length (mm)

\(\alpha \) Mean linear thermal expansion coefficient (K\(^{-1}\))

\(W_i \) Wear rate function

\(T_1 \) Reference temperature (°C or °K)

\(T_2 \) Test temperature (°K)

\(\sigma_t \) Tensile strength (MPa)

\(F_t \) Tensile force N

\(A \) Cross sectional area (mm\(^2\))

\(\varepsilon \) Strain

\(\sigma_c \) Compression strength (MPa)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_c</td>
<td>Compression force N</td>
</tr>
<tr>
<td>H_v</td>
<td>Vickers microhardness (MPa)</td>
</tr>
<tr>
<td>W_p</td>
<td>Weight of pendulum (Kgf)</td>
</tr>
<tr>
<td>g</td>
<td>Gravitational acceleration (m/s^2)</td>
</tr>
<tr>
<td>r</td>
<td>Distance from axis of rotation to center of gravity of pendulum (m)</td>
</tr>
<tr>
<td>α_f</td>
<td>Angle of fall of pendulum</td>
</tr>
<tr>
<td>β</td>
<td>Angle of rise of pendulum in its swing after breaking test sample</td>
</tr>
<tr>
<td>μ</td>
<td>The coefficient of friction</td>
</tr>
<tr>
<td>F_T</td>
<td>Tangential force (N)</td>
</tr>
<tr>
<td>F_N</td>
<td>Normal force (N)</td>
</tr>
<tr>
<td>V</td>
<td>Volume loss (mm^3)</td>
</tr>
<tr>
<td>S</td>
<td>Sliding speed (rpm)</td>
</tr>
<tr>
<td>L</td>
<td>Applied load (N)</td>
</tr>
<tr>
<td>W_{rp}</td>
<td>Predicted wear rate</td>
</tr>
<tr>
<td>F_{rp}</td>
<td>Predicted coefficient of friction</td>
</tr>
<tr>
<td>W_{re}</td>
<td>Experimental wear rate</td>
</tr>
<tr>
<td>F_{re}</td>
<td>Experimental coefficient of friction</td>
</tr>
<tr>
<td>W_{ra}</td>
<td>Average of experimental wear rate</td>
</tr>
<tr>
<td>F_{ra}</td>
<td>Average of experimental coefficient of friction</td>
</tr>
<tr>
<td>Vol.%</td>
<td>Percentage of volume fraction</td>
</tr>
<tr>
<td>Wt. %</td>
<td>Percentage of weight fraction</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Over the past decades, the demand for light weight structural materials has increased rapidly, especially in the automotive and aerospace industries. In recent times, aluminum alloys have gained wide acceptance in such applications owing to its properties and comparative advantages such as lightweight, good machinability, and energy efficiency-low power consumption. Aluminum AA6063 alloy is widely employed for construction and transportation applications [1]. As a base line material, it possesses good formability, weldability, machinability, and corrosion resistance, as well as a medium strength relative to other grades of aluminum alloys [2, 3]. However, with a view to implementing them as high performance materials for use in the aerospace, automobile, chemical and transportation industries it is essential to improve the strength, elastic modulus and wear resistance of the AA6063 alloy over the conventional base [4].

In spite of their attractive properties, AA6063 alloy has not been able to completely satisfy the overall requirements in applications such as automotive industry. For instance brake discs drums and rotors, pistons, automobile drive shafts, brake discs for railway applications, fan exit guide vanes, and blade sleeves for aerospace applications, are required to withstand high mechanical, thermal stresses during their service lives and also under tribological conditions. In order to overcome these drawbacks and to meet the ever increasing demand of modern day technology, composite materials have been proposed as the most promising candidate. With the inclusion of high strength and high modulus refractory particles such as SiC, TiC, B4C, Al2O3, MgO, TiO2, etc.to a ductile metal matrix, a material whose mechanical property lies between that of the matrix alloy and the ceramic reinforcement is generated [5-8].

Among the liquid phase processing methods, the stir casting is an attractive processing method to produce aluminum matrix composites (AMCs). It has salient features, a cost-effective manufacturing processes (relatively inexpensive) and offers a wide selection of materials, and processing conditions and fit for mass production without damaging the reinforcement particles [9]. Compocasting technique is adopted over the stirring process as this eliminates wettability problem of particles and results in better properties of AMCs [10].
1.2 Background

Specific material property requirements for application have highly increased, making several conventional alloy systems inappropriate. Metal matrix composites (MMCs) are new generation materials with a strong ceramic reinforcement incorporated into the metal matrix to improve its properties. MMCs combine metallic properties of matrix alloys (ductility and toughness) with ceramic properties of reinforcements (high strength and high modulus), leading to greater strength in shear and compression and higher service-temperature capabilities [11, 12]. In contrast to monolithic alloys, MMCs possess significantly improved properties such as high specific strength, high stability at elevated temperatures, lower coefficients of thermal expansion and good wear resistance [13]. Moreover, the remarkable physical and mechanical properties of the aluminum metal matrix composites (AMMCs) have made these materials attractive for applications in the aerospace and automotive industries, thermal management areas and industrial products etc. [13-15].

Meanwhile, out of the various types of MMCs, particulate reinforced composites in particular, the particulate reinforced aluminum matrix composite have aroused the interest of experts in the field owing to their low cost with advantages like isotropic properties and the possibility of secondary processing facilitating fabrication of secondary components [16]. Ceramic materials such as Al$_2$O$_3$, SiC, SiO$_2$, and B$_4$C have been reported as suitable reinforcement particles. Then seen from recent research endeavors and increasing awareness towards nurturing a green environment, fly ash (FA) has aroused the interest of researchers as promising reinforcement candidate due to its low density, economic viability and availability in commercial quantity.

In their work, Ramachandra, M. and Radhakrishna [17] observed an increase in the wear resistance of AMCs with increasing FA content, but decreases with increase in normal load and sliding velocity. More so, they observed that the corrosion resistance decreased with increasing FA content. FA as a filler has proven suitable for mechanical, physical and tribological properties enhancement including hardness, stiffness, wear and abrasion resistance as well as decrease density. Furthermore, it also improves the maintainability, damping capacity, and coefficient of friction which are most desirable in automotive and industrial applications [16, 18-23].

Notably, the mechanical properties of composites can be controlled by the properties of the constituent phases, relative amount and dispersed phase geometry including particle size, shape and orientation in the matrix [14, 24, 25]. Meanwhile, it has been observed thus far, that the particle size and weight fraction of the reinforcement phase in metal matrix composites influences the formation of dislocations due to thermal mismatch and the concurrent development of residual and internal stresses. Also worthy of note is that the metal matrix composites have remarkable benefits owing to the combined metallic and ceramic properties, thereby yielding improved physical and mechanical properties [26-28].
From the existing literature, the casting technique has been showcased as the most preferred choice for aluminum MMCs fabrication. In particular, the stir casting technique is economically viable and also promotes the distribution of the particulate reinforcement along the grain boundaries of aluminum melt. With a view to homogenizing the matrix material with the reinforcement particles, mechanical stirring of the composite is performed by a stirring bars, and then poured in a mould for solidification. By investigating the effect of the three different stir casting methods on the properties of FA reinforced Al-7Si-0.35Mg alloy, Rajan et al. [29] reported that the dispersion of FA particles were more effective in compocasting method than in liquid metal stir casting due to the shearing of FA particles by the solid primary phases existing in semisolid slurry. Using the stir casting method, Shirvanimoghaddam et al. [30] investigated the influence of processing temperature on the mechanical properties of aluminum composites reinforced with micron-sized particles. They observed significant improvement 125% increase in the hardness and 52% in tensile strength.

Anilkumar et al. [20] prepared Al6061 reinforced with FA through the utilization of the stir casting technique and concluded that the tensile strength increased with increasing weight percentage of FA. Their finding was attributed to the role played by the hard FA particles during sample failure as barriers to the advancing dislocation front, thus strengthening the matrix. Similarly, the good bonding of smaller size FA particles with the matrix was also reported as an additional factor for this behaviour. However, the authors observed a decrease in the tensile strength beyond the 15 wt% mark of FA reinforcement due to the poor wettability of the reinforcement with the matrix in this sample formulations. Meanwhile, the particle size increase of the FA has been reported to promote mechanical property deterioration in AMCs [31]. By employing the compocasting technique, Ervina et al. [13] successfully incorporated FA into the semi-solid state of LM6 melt to fabricate FA reinforced aluminum composites. Selvam et al. [32] observed that the addition of FA particles enhanced the microhardness and tensile strength of the AMCs. Moreover, FA ash particles are thermodynamically stable at the applied casting temperature. Hence, the interface between the aluminum matrix and FA particle was clear and the bonding was proper. More so, no interfacial reaction was observed between FA particles and aluminum matrix during the casting process. The processing temperature for the compocasting method is considerably low as compared to the stir casting method which is insufficient to initiate interfacial reactions. In addition the incorporation of FA particles into semi-solid aluminum alloy was observed to have improved the wettability.

Recently, most of the existing literature in this field of study have focused more on the aluminum alloy based composites, such as A357, A359, 2618, 2214, 6061 and 7075 [33-35]. However, the use of AA6063 as a base material for the development of Al matrix composites is rarely reported [36, 37]. Relative to other aluminum alloys, the AA6063 alloy is often available in commercial quantity in the metal markets of most developing countries [38]. However, one of the major drawbacks of these materials is their low strength and wear resistance. This limitation is due to the fact that AA6063 alloy undergo extensive plastic deformation and material removal under
sliding wear conditions[39]. The FA particles collected by electrostatic precipitators from the exhaust gases in thermal power stations[40]. Solid FA particles can be used as reinforcement material. Relevant works [41, 42] were found to focus only on cenosphere FA particulates. Hence, this research investigates the physical, thermal, mechanical, and tribological properties of AA6063-FA composite after fabrication with the compocasting method.

1.3 Problem Statement

The AA6063 alloy doesn’t always provide the required properties under all service conditions which is overcome by reinforcing this alloy with ceramic particles. Meanwhile, the high cost and limited supply of conventional ceramic materials are the major setbacks encountered especially in most developing countries where the development of discontinuously reinforced aluminum matrix composites [43] is yet to be fully explored. Despite their potential benefits in weight reduction, increased composites life and improved recyclability, the high cost of the present day MMCs compared to aluminum alloys has inhibited the large scale production of these composite materials in areas such as the automotive industry and specialized applications [26, 42, 44]. Hence, it becomes imperative to promote the economic viability of these group of materials by utilizing cheaper reinforcements. With a view to overcoming this limitation, several research and development programs have focused on the improvement of aluminum-based MMCs using low cost industrial wastes as the reinforcement particulate [45, 46].

Currently, waste materials from rice husk ash, red mud, FA has attracted the interest of several researchers as inexpensive reinforcement particles for the fabrication of AMCs [13, 43, 47]. Meanwhile, FA a solid waste byproduct during the combustion of coal has been considered as one of the most inexpensive and low density reinforcement available in commercial quantity [13, 16, 48]. So far, many studies have reported that the Al-FA composites can adequately increase the hardness, strength, and stiffness while decreasing the density of an unreinforced alloy [13, 32, 49-51]. More so, they are also capable of improving the wear resistance and coefficient of friction which are desirable parameters in automotive and industrial applications [52]. This also solves the storage problems of FA as well as brings down the production cost, giving an economical and eco-friendly solution. Thus far, studies on aluminum–FA composites have shown great prospects in various applications.

Literature reveals that most of the researchers are using AA6063 alloy matrix reinforced with several types of reinforcement for high properties whereas, insufficient information is available on reinforcement of FA particles in AA6063 alloy matrix. Hence, it becomes imperative to study the effect of FA addition on the physical, thermal, mechanical, tribological properties of AA6063 alloy and also to develop a benchmark of property data which can be employed in evaluating these materials for future use.
1.4 Objectives

The main objective of this experimental research work is to develop AA6063-FA composite and investigate the effect of FA as a particulate reinforced AA6063 alloy matrix composites produced by compocasting technique. The specific objectives are as follows:

- To analyze the microstructural features and particulate distribution uniformity of FA particles in the AA6063-FA composite using VPSEM.
- To investigate the physical, thermal, and mechanical properties such as bulk density, apparent porosity, thermal expansion, tensile strength, compressive strength, hardness, and impact, for AA6063 alloy and AA6063-FA composite with different percentage of FA.
- To evaluate the FA addition, applied load and sliding speed on tribological behaviour of AA6063 alloy and AA6063-FA composite.
- To perform fracture mechanics studies and hence analyze the metallurgical and fracture surface as well as to characterize interfacial bonding.
- To develop mathematical models (wear rate, and coefficient of friction) and predict the relationship between the FA content, applied load, sliding speed and wear behavior.

1.5 Scope and Limitation

In this research, AA6063 alloy is used as a matrix material due its better fluidity and castability with good mechanical properties. AA6063 belongs to aluminium 6000 series which contains Silicon as a major alloying element in the aluminium metal matrix and therefore, this study is limited within these range of aluminium alloy only. With regard to FA particulate types, this work only focus on fly ash with solid sphere as the major component. The present investigation has been focused on utilization of different weight fraction of waste FA as reinforcement material. The range of weight fraction of 2% up to 12% were considered due to research findings that suggested higher percentages will pose agglomeration problems, reduction in toughness and impact performance.

The compocasting is employed without agents to manufacture the composite material by addition of FA after preheated at 900°C and the casting process temperature reduced to 600°C a stirring speed of 300 rpm were found to be best in order to produce uniform distributions of FA.

This research is interested in the measurement of physical properties, thermal properties, mechanical properties and tribological behaviour of AA6063 the as well as microstructure of the raw and composite materials.
1.6 Thesis layout

This thesis is divided into five chapters that cover systematically the whole work as follows:

- Chapter 1; provides a general overview of current research efforts to produce inexpensive aluminum composites with short background of the AL-FA composites with possibly, the motivation of the research, the statement of problem, the objectives of the research, and the layout of this thesis.
- Chapter 2; presents a scientific literature review and previous work focused on the researches dealing with the issue of Al-FA composites and its production. It also discusses FA effect on physical, mechanical and tribological properties of aluminum metal matrix composites (MMCs).
- Chapter 3; presents materials, experimental procedures and statistical methods.
- Chapter 4; this chapter is divided into two main sections. The first, discusses the experimental results obtained from this work, and second, describes the development of the mathematical models with ANOVA of wear rate and coefficient of friction.
- Chapter 5; summarizes the conclusions emanating from the results presented in Chapter 4, looking back at the various topics touched upon this thesis, attempting to objectively evaluate the results obtained. The recommendations for future work in terms of both possible improvements and new research directions are described.
REFERENCES

