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Potable water is vital for our existence. Despite the fact that more than three-quarters 
of the earth is covered by water, only 0.014% of it is potable. Therefore, sustainable, 
safe, cheap, and environment-friendly techniques must be developed to produce 
potable water from salty water. Solar distillation is a promising method that is safe for 
the environment and uses only sustainable energy for its operation.  The productivity 
of a solar still becomes a major challenge and therefore necessitates many 
modifications in design and operation to increase its amount. A solar still with high 
productivity can be achieved when the condensing cover slope is the same as the 
latitude angle of the solar still location. The main problem that occurs in the solar still 
is the fall down of water condensate from the glass cover due to gravity. 

In this study, a new double slope solar still hybrid with rubber scrapers (DSSSHS) and 
a double slope solar still (DSSS) were designed with a 3.0° slope condensing cover. 
The main objective of the study is to obtain the maximum yield of distilled water by 
using the new DSSSHS during daytime. The proposed design of the new solar still 
utilizes the advantage of using a condensing cover with a small slope angle to allow 
the entry of the maximum amount of solar radiation into the still. The disadvantages 
caused by the condensing cover with a small slope were overcome by using rubber 
scrapers. 

In this research, two (2) double slope solar stills one with rubber scrapers and the other 
without rubber scrapers were designed and fabricated. In the two solar stills, the 
condensing cover was placed at 3.0° which is equal to the latitude angle of the 
experiment location. Several experiments were conducted using the newly designed 
solar stills under different climatic conditions. The productivities of the two new solar 
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stills were measured experimentally. For comparison, the saline water used and the 
distilled water produced from the DSSSHS were characterized. Experimental results 
obtained from the DSSSHS were used to construct the prediction models using the 
linear regression method and particle swarm optimization (PSO) algorithm with the 
aid of MATLAB software. The prediction models are the regression model, Particle 
Swarm Optimization Algorithm-Hourly Yield of Solar Still (PSO-HYSS) model, and 
extended PSO-HYSS model. 

In terms of the orientation of the still, there is an increase in daily productivity which 
varies from 12.3% to 13.2% when using east-west orientation compared with the 
north-south orientation. Moreover, the experimental results showed that the daily 
productivity of the DSSSHS (4.24 L/m2.day) is higher than that of DSSS (2.6 
L/m2.day) under the same design, environmental and operational conditions.  This 
result signifies that the use of rubber scrapers had enhanced the productivity of the 
still by 63%. The results showed that the productivity of DSSSHS per unit solar 
radiation is directly proportional to the number of scraper movements per hour (NSM). 
The predicted yields of the three prediction models were compared with their 
corresponding experimental yields to evaluate their accuracy. The results showed that 
the extended PSO-HYSS model is the most accurate, followed by the PSO-HYSS 
model and then the regression model. 
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Air minum sangat penting untuk kewujudan kita. Walaupun pada hakikatnya lebih 
daripada tiga suku bumi diliputi air, hanya 0.014% daripadanya boleh diminum.  Oleh 
itu, teknik-teknik yang mampan, selamat, murah, dan mesra alam mesti dibangunkan 
untuk menghasilkan air minum daripada air masin. Penyulingan suria adalah kaedah 
yang mempunyai harapan yang selamat bagi alam sekitar dan hanya menggunakan 
tenaga lestari untuk operasinya. Produktiviti sesuatu penyuling suria menjadi cabaran 
utama dan oleh itu memerlukan banyak modifikasi dari segi reka bentuk dan operasi 
untuk meningkatkan jumlahnya. Sebuah penyuling suria berproduktiviti tinggi dapat 
dicapai apabila cerun penutup pemeluwapan adalah sama dengan sudut latitud lokasi 
penyuling suria berkenaan. Masalah utama, yang berlaku di penyuling suria 
, ialah keguguran air peluwap dari penutup kaca disebabkan oleh graviti. 

Di dalam kajian ini, satu penyuling suria dwi-cerun baru hibrid dengan pengikis getah 
(DSSSHS) dan penyuling suria dwi-cerun (DSSS) telah direka dengan penutup 
pemeluwapan cerun 3.0°. Objektif utama kajian ini adalah untuk mendapatkan hasil 
maksimum air suling dengan menggunakan DSSSHS baru pada siang hari. Reka 
bentuk yang dicadangkan untuk penyuling suria baru itu menggunakan kelebihan 
penggunaan penutup pemeluwapan bersudut cerun kecil untuk membolehkan 
kemasukan jumlah maksimum sinaran suria ke dalam penyuling. Kelemahan yang 
disebabkan oleh penutup pemeluwapan dengan cerun kecil telah diatasi dengan 
menggunakan pengikis getah. 

Di dalam penyelidikan ini, dua (2) penyuling suria dwi-cerun dengan dan tanpa 
pengikis getah telah direka dan dicipta. Di dalam kedua-dua penyuling suria tersebut 
penutup pemeluwapan diletakkan pada 3.0° yang bersamaan dengan sudut latitud 
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lokasi eksperimen. Beberapa eksperimen telah dijalankan menggunakan penyuling 
suria yang baru direka bentuk itu di bawah keadaan cuaca yang berlainan. Produktiviti 
kedua-dua buah penyuling suria baru itu diukur secara eksperimen. Sebagai 
perbandingan, air garam yang digunakan dan air suling yang dihasilkan dari DSSSHS 
dicirikan. Keputusan eksperimen yang diperoleh daripada DSSSHS digunakan untuk 
membina model-model ramalan menggunakan kaedah regresi linear dan 
pengoptimuman pengkelompokan zarah (PSO) dengan bantuan perisian 
MATLAB. Model-model ramalan adalah model regresi, model Algoritma 
Pengoptimuman Zarah Berkelompok-Hasil Sejam Penyuling Suria (PSO-HYSS), dan 
model PSO-HYSS yang dilanjutkan. 

Daripada segi orientasi penyuling, terdapat peningkatan dalam produktiviti harian 
yang bervariasi dari 12.3% hingga 13.2% apabila menggunakan orientasi timur-barat 
berbanding orientasi utara-selatan. Tambahan lagi, keputusan eksperimen 
menunjukkan bahawa produktiviti harian DSSSHS (4.24 L/m2.hari) adalah lebih 
tinggi daripada DSSS (2.6 L/m2.hari) dengan reka bentuk dan keadaan alam sekitar 
dan operasi yang sama.  Keputusan ini menunjukkan bahawa penggunaan pengikis 
getah telah meningkatkan produktiviti penyuling sebanyak 63%.  Hasil kajian 
menunjukkan bahawa produktiviti DSSSHS seunit sinaran suria berkadar terus dengan 
jumlah pergerakan pengikis sejam (NSM). Hasil ramalan dari tiga model ramalan itu 
dibandingkan dengan hasil eksperimen yang sepadan untuk menilai 
ketepatannya.  Hasil kajian menunjukkan bahawa model PSO-HYSS lanjutan adalah 
yang paling tepat, diikuti dengan model PSO-HYSS dan kemudiannya model Regresi. 
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CHAPTER 1  

 
INTRODUCTION 

1.1 Background  

Water resources are abundant on earth, and water covers 71% of the earth’s surface; 
of this value, 97% is sea water, indicating that only 3% of the world’s water is fresh 
and the rest is undrinkable. Out of the 3% fresh water, 2.5% is frozen and locked up 
in Antarctica, the Arctic, and glaciers, which are rarely available to man. Thus, 
humanity and the ecosystem must rely on the estimated 0.5% for their fresh water 
needs (Aves, 2011; Rahimi et al., 2014). Rain is naturally produced through solar 
desalination and is the main source of fresh water on earth. This natural process is the 
basis for establishing small-scale man-made distillation systems (Barlow and 
Reichard, 2010). 

Desalination plants are used to convert sea water into drinking water in many arid, 
coastal, remote, and rugged regions worldwide. Seawater desalination has the 
potential to produce sufficient potable water to support large populations living near 
the coast. Numerous membrane filtration seawater desalination plants are in existence. 
However, this technology is energy intensive; in this regard, scholars have focused on 
improving its efficiency and reducing its energy consumption (Karuppusamy, 2012). 
Conventional techniques for water desalination can classified into thermal and 
membrane types (Khare et al., 2017).  

Conventional desalination processes require a significant amount of energy to convert 
seawater into potable water for human consumption and industrial needs. Several 
studies were conducted to improve conventional desalination systems. Renewable 
powered desalination has gained increasing attention due to its economic viability, 
technological simplicity, and clean energy source.  

Solar desalination is another promising method for providing high-quality water to the 
human community by using a sustainable source. A high demand exists for 
miniaturization of desalination technologies for treatment of saline water to potable 
drinking water for consumption in coastal, arid, and remote areas. The development 
of small scale communal systems for water desalination coupled with solar energy 
sources has great potential for tackling water supply problems, especially in remote, 
arid, and coastal areas where sunlight is plentiful. Such systems would also contribute 
significantly to reduce global warming resulting from CO2 emissions (Shatat et al., 
2013; Winter et al., 2011).  

Solar stills use solar radiation to evaporate saline or brackish water. As water 
evaporates, water vapor rises and condenses on a condensing cover and then streams 
down the condensing cover into a collector. Solar stills have undergone extensive 
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transformations since its introduction in 1950s to improve their productivity (Ang et 
al., 2017). Several researchers have investigated various types of solar stills, such as 
weir-type (Sadineni et al., 2008), simple single-basin (Samee et al., 2007), active 
double-slope (Dwivedi and Tiwari, 2010), tubular (Ahsan, 2009), and portable 
thermoelectric solar stills (Rahbar and Esfahani, 2012b). Parameters affecting the 
performance and yield of solar stills have also been investigated (Ahsan et al., 2014a; 
Feilizadeh et al., 2016; Sathyamurthy et al., 2014a). Moreover, theoretical and 
numerical approaches have been used to estimate the productivity and heat transfer 
coefficients of solar stills (Ahsan et al., 2013a; Rahbar and Esfahani, 2012a; Rahbar, 
N. and J. A. Esfahani, 2013; Rahbar et al., 2015). 

The main contributor to low productivity of solar still is the water falling down from 
the cover of the still toward the basin especially in low latitude areas; this limitation 
has yet to be addressed. Several researchers have attempted to solve this issue by 
keeping the inclination angle of the still cover to a minimum of 10° to reduce the 
amount of falling water as well as the amount of reflected solar radiation (Abdallah et 
al., 2008; Aybar et al., 2005; Tiwari and Tiwari, 2008). However, this strategy has a 
negative effect on the productivity of the still because of the decreased amount of solar 
radiation that enters the still. 

To our best knowledge, no study has investigated the use of a mechanical device to 
prevent the fall down of water condensate from the inner side of the condensing cover 
toward the basin of the still. Moreover, improving the collection of water condensate 
and preventing the formation of water film on the inner side of the condensing cover 
have not been considered. The present study overcome the following major factors 
that influence the productivity of solar stills: formation of condensate film on the inner 
side of the cover that reflects a portion of the solar radiation trying to enter the still 
and re-evaporation of a portion of the water film when exposed to solar radiation.  

In this work, two (2) double-slope solar stills one with rubber scrapers and the other 
without rubber scrapers were designed and fabricated. The condensing cover of the 
stills was placed at 3.0°, which is equal to the latitude angle of the experiment location. 
Several experiments were conducted using the newly designed and fabricated solar 
stills under different climatic conditions. Mathematical models depicting the 
characteristic thermal behaviors of the newly designed and fabricated solar still 
systems during the transient operation were studied. Finally, particle swarm 
optimization (PSO) algorithm was employed to optimize the model parameters in 
modeling the solar still yield. Figure 1.1(a) and (b) illustrates conventional solar still 
systems, and Figure 1.1(c) shows the newly designed solar still systems.  

New knowledge from this research can be mainly used to enhance the productivity of 
solar stills and build an accurate hourly yield prediction model especially for solar 
stills installed in low-latitude areas. The findings of the research will help to alleviate 
the scarcity of drinking water in coastal, arid, rugged, and remote regions. 
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                         (a)                                                                (b) 
 

 
(c) 

 
Figure 1.1: Schematic of solar stills: (a) conventional single-slope single-basin 
solar still, (b) conventional double-slope single-basin solar still, and (c) the 
proposed design of double-slope solar still hybrid with rubber scrapers 
(DSSSHS) 
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1.2 Problem Statements 

In the last four decades, alleviating fresh water shortage has become a great challenge 
worldwide. Despite that more than three-quarters of the earth is covered with water, 
only 0.014% of it is potable. Sea water constitutes 97.5% of the global water content 
(UNEP, 2014), as shown in Figure 1.2. In the future, the amount of available fresh 
water must be increased considering the rise in population and living standards and 
the expansion of industrial and agricultural activities (Khawaji et al., 2008). According 
to the new UN-DESA report, “World Population Prospects: The 2015 Revision,” the 
current world population (7.3 billion) is expected to reach 8.5 billion by 2030, 9.7 
billion in 2050, and 11.2 billion in 2100 (UN-DESA, 2015). Therefore, sustainable, 
safe, cheap, and environment-friendly techniques must be developed to produce 
potable water from salty water. Solar distillation is an environment-friendly and 
sustainable technique that can potentially reduce or solve the problem of potable water 
shortage especially in arid, coastal, remote, and rugged areas (Khawaji et al., 2008). 
However, the effectiveness of solar distillation technology to treat saline water is still 
in doubt due to its low productivity which makes the technique not popularly used 
(Dev and Tiwari, 2011). 

The high or low productivity of a solar still depends on many parameters, of which 
condensing cover angle is one of the most challenging. Many researchers reported that 
the optimal cover inclination angle is near (Akash et al., 2000; Baibutaev and Achilov, 
1968; Baibutaev and Achilov, 1970) or nearly equivalent (Al-Hinai et al., 2002a; 
Aybar and Assefi, 2009; Elkader, 1998; Khalifa, 2011; Khalifa and Hamood, 2009a; 
Omri et al., 2005; Samee et al., 2007; Singh and Tiwari, 2004) to the latitude angle of 
the experiment location. However, Tiwari and Tiwari (2008) reported that the 
minimum inclination of the glass cover should be at least 10° to avoid falling and/or 
slowing down the condensate. 

In low-latitude areas (wherein the latitude angle is less than 10°), the amount of solar 
radiation that enters the still increases when the inclination angle for the still cover is 
close to the latitude angle (Khalifa, 2011). This condition significantly increases the 
amount of condensed water falling from the inner side of the condensing cover toward 
the solar still basin, thereby significantly decreasing the productivity of the solar still. 
Several researchers attempted to solve this problem by keeping the inclination angle 
of the still cover to a minimum of 10° to reduce the amount of falling water (Abdallah 
et al., 2008; Aybar et al., 2005; Tiwari and Tiwari, 2008). However, this solution 
negatively affects the productivity due to the decrease in the amount of solar radiation 
that enters the solar still. In nutshell, the falling down of water condensate that 
accumulated on the inner side of the condensing cover toward the basin negatively 
affects the productivity of solar stills with low-slope cover. Moreover, the presence of 
condensate film that formed on the inner side of the cover reduces the amount of solar 
radiation that enters the still, and a portion of the water film re-evaporates upon 
exposure to solar radiation. Predicting the hourly yield of solar still (HYSS) is another 
challenge faced by researchers. Dunkle (1961), presented a full mathematical 
formulation along with a basic theoretical model to predict the mass and heat transfer 
in solar stills. Although Dunkle’s model is based on many simple assumptions, it  has  
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Figure 1.2: World water content  (UNEP, 2014) 

been extensively used for many years as a simple, accurate, and convenient tool for 
predicting the yield of solar stills under normal operational conditions. However, the 
model inaccurately predicts high distillate yield, especially at high average 
temperatures (Tsilingiris, 2009). After modifying this model and introducing new 
assumptions and additional limitations, researchers have established several models 
(Kumar and Tiwari, 1996; Rheinländer, 1982; Tiwari et al., 2003; Tripathi and Tiwari, 
2006; Voropoulos et al., 2000). Most of these proposed models inaccurately estimate 
HYSS as they do not consider the amount of water that falls from the inner surface of 
the condensing cover of the solar still toward the still basin. This falling water, 
irrespective of its amount, is inversely proportional to the inclination angle of this 
condensing cover. Inaccuracy in the experimental HYSS leads to an inaccurate yield 
prediction model. Moreover, previous yield prediction models, such as Dunkle's 
model and Kumar and Tiwari's model exhibit low accuracy because they employ 
conventional trial-and-error procedures to determine different model constants. 
Furthermore, most researchers did not combine the use of an accurate optimization 
technique and accurate experimental yields for building HYSS prediction models. 
They established their models based on conventional trial-and-error methods without 
considering the amount of condensed water falling from the condensing cover toward 
the basin of solar still especially in covers with small slopes. All the aforementioned 
problems can be addressed by the use of rubber scrapers, and an accurate optimization 
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technique i.e., the PSO algorithm to predict the HYSS based on accurate experimental 
yield values, which was achieved by using the rubber scrapers.  

The regression model was developed prior to PSO algorithm to illustrate the importance 
of considering the amount of water falling from the inner side of the condensing cover 
toward the basin of the still "which was not considered in the existing models" and its 
effect on increasing the accuracy of the yield prediction model. The PSO-HYSS model 
was proposed to develop a yield prediction model that combines between considering 
the amount of the falling water and the use of PSO algorithm [which has fewer 
parameters and is easier to implement than a genetic algorithm in addition to showing 
a faster convergence rate than other evolutionary algorithms for solving some 
optimization problems (Kennedy et al., 2001)] for the purpose of finding the optimal 
values of unknown constants to build an accurate yield prediction model, which 
exceeds the method of trial and error followed in the existing models. This provides 
more accuracy than the first model. The extended PSO-HYSS model is a model 
developed from the PSO-HYSS model in order to increase the accuracy of yield 
prediction and to include the effect of the number of rubber scraper movements per 
hour NSM in the yield prediction model. Figure 1.3 illustrates the schematic of the 
problem statement. 

 

 
Figure 1.3: Schematic of the problem statement 
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1.3 Research Objectives 

This study aims to improve the productivity of double slope solar still (DSSS) and 
build an accurate model for predicting the hourly yield of solar still (HYSS). The 
specific objectives are summarized as follows: 

1. To design, fabricate, and perform an experimental investigation on the newly 
developed double slope solar still hybrid with rubber scrapers (DSSSHS) for 
seawater treatment and compare its performance with the performance of the 
double slope solar still (DSSS). 

2. To develop a modified regression model for predicting the hourly yield of the 
DSSSHS using linear regression method. 

3. To develop a hybrid particle swarm optimization (PSO) algorithm for developing a 
statistical yield prediction model which is the particle swarm optimization 
algorithm-hourly yield of solar still (PSO-HYSS) model for predicting solar still 
yield (for a wide range of operating temperatures and different environmental and 
operational parameters). 

4. To evaluate the effect of periodic movements of rubber scrapers on the productivity 
of the DSSSHS and on the accuracy of the yield prediction model. The extended 
particle swarm optimization algorithm-hourly yield of solar still (extended PSO-
HYSS) model was used to represent this effect. 

1.4 Significance of the Study 

New knowledge from this research can be used to enhance the productivity of solar 
stills and build an accurate hourly yield prediction model especially for solar stills 
installed in low-latitude areas. The results will also contribute to elucidate the effects 
of different parameters, such as water temperature, vapor temperature, glass 
temperature, water depth, solar radiation, still orientation, and periodic time of rubber 
scraper movements, on the performance of solar stills. The findings will highlight the 
importance of using rubber scrapers for collecting condensate in solar stills with a 
small slope cover and the effects of the scrapers on the productivity of the still. 
Furthermore, the Nusselt number constants (C and n) and the constants (f and z) related 
to the number of scraper movements per hour (NSM) will be optimized using the PSO 
algorithm to improve the modeling accuracy. Finally, the findings of the research will 
help to alleviate the scarcity of drinking water in coastal, arid, rugged, and remote 
regions. 



© C
OPYRIG

HT U
PM

8 
 

1.5 Research Scope and Limitations 

The different types of operation and design parameters used in enhancing distillation 
performance and efficiency are reviewed and discussed. The present work only 
considered the parameters used to verify the best orientation of solar still and to build 
yield prediction models. In particular, this study focused on distillation using a solar 
energy technology to produce potable water from saline water. Few parameters used 
to build yield prediction models were monitored and discussed. These parameters 
include ambient temperature, solar radiation, water depth, gap distance, saline water 
temperature, glass cover temperature, and temperature of the humid air inside the still. 
Desalination was conducted using a newly developed hybrid solar still. New DSSSHS 
and DSSS were designed, manufactured, and tested. The proposed DSSSHS utilizes 
the advantages of using a condensing cover with a small slope in the still (the slope 
should be equal to the latitude angle of the experiment location) to allow a high amount 
of solar radiation to enter into the still. The disadvantages caused by the small slope 
were overcome using rubber scrapers. The effect of shading occurred from the use of 
rubber scraper is neglected in this study due to its insignificant effect. 

Outdoor experiments were carried out at the Faculty of Engineering, University Putra 
Malaysia, Selangor, Malaysia (latitude N 3° 0′ 27.71″, longitude E 101° 43′ 15.24″ 
and 45 m height from sea level) between 9:00 to 19:00. Experiments were performed 
with saline water at different depths (10, 19, and 30 mm). A total of 262 data sets were 
collected during daytime within 24 days. Data were collected to construct and verify 
the proposed models. The data sets were classified into the construction and 
verification groups. Hourly and accumulated total solar radiation, yield, and 
temperatures were recorded.  

In this study, three different models were constructed for predicting the hourly yield 
of the DSSSHS, based on the experimental yields obtained from the experiments. 
These models are the regression, PSO-HYSS, and extended PSO-HYSS models. The 
regression model was developed by using linear regression method to illustrate the 
importance of considering the amount of water falling from the inner side of the 
condensing cover toward the basin of the still "which was not considered in the 
previous existing models" and its effect on increasing the accuracy of the yield 
prediction model. The other two models which are the PSO-HYSS, and extended PSO-
HYSS models were developed using the particle swarm optimization (PSO) algorithm. 
In the current study, the PSO algorithm was applied for the first time for estimating 
the optimal values of the unknown set of coefficients for the construction of the PSO-
HYSS, and extended PSO-HYSS models for estimating the hourly yield of solar still 
(HYSS). Three major points were considered before optimizing these models: 
formulation of all objective functions, use of the PSO algorithm to optimize the model, 
and use of the convergence criteria. 

Three objective functions were used in this study: mean absolute error (MAE), mean 
absolute percentage error (MAPE), and root mean square error (RMSE). Moreover, 
the convergence of the current model was determined by terminating the search 
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process after identifying the set of coefficients that was able to minimize the objective 
function. For the current study, two commonly used convergence criteria were 
selected: the maximal number of iterations of the PSO algorithm and the minimal error 
required for estimating the optimal values of the objective function.  MATLAB 
software was used to simulate and optimize the PSO-HYSS, and extended PSO-HYSS 
models for DSSSHS. The PSO-HYSS was proposed for the purpose of developing a 
yield prediction model combines between considering the amount of the falling water 
and the use of PSO algorithm for the purpose of finding the optimal values of unknown 
variables to build the yield prediction model, which exceeds the method of trial and 
error followed in the previous existing models. This provides more accuracy than the 
regression model. The extended PSO-HYSS model is a model developed from the 
PSO-HYSS model in order to increase the accuracy of yield prediction and to include 
the effect of the number of rubber scraper movements per hour (NSM) in the prediction 
model.  

1.6 Thesis Structure 

Chapter 1 INTRODUCTION: This chapter presents the study background, problem 
statements, objectives of the study, significance of the study, scope of the study, and 
thesis structure. 

Chapter 2 LITERATURE REVIEW: This chapter describes the history of desalination 
systems, types of desalination technologies, overview on solar stills, parameters 
affecting the productivity of solar still, and comprehensive discussion on different 
types of desalination enhancement techniques. This section also explains different 
types of models and thermal enhancement techniques to improve the performance of 
solar still. 

Chapter 3 MATERIALS AND METHODS: This chapter describes the experimental 
works conduced to achieve the objectives of the study and fill the knowledge gaps 
identified in literature. This chapter also describes the experimental rig for the 
DSSSHS and its testing procedure under different environmental conditions. 
Moreover, this chapter describes the measurement tools employed in this study. The 
laboratory tests, procedures, and instruments used for testing the quality of saline and 
distilled water are also described in this chapter. 

Chapter 4 THEORETICAL ANALYSIS: This chapter provides details regarding the 
mathematical equations that describe the performance of the DSSSHS. Mathematical 
computation is performed using MATLAB software. This chapter also describes the 
proposed regression model, hybrid PSO–HYSS model, and extended model of PSO–
HYSS, which considers the effect of scraper movements. Furthermore, this chapter 
describes the calculations of error of the yield prediction models with the calculations 
of the efficiency and cost analysis of the DSSSHS. 
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Chapter 5 RESULTS AND DISCUSSION: This chapter presents and discusses the 
experimental and theoretical results, including the optimum orientation of the DSSS 
that gives the highest productivity, productivities of the DSSS and DSSSHS, and the 
theoretical yields obtained from the HYSS prediction models. The modified 
mathematical models are validated using the experimental results of this study and 
other existing relevant models in literature. 

Chapter 6 CONCLUSIONS AND RECOMMENDATIONS: This chapter concludes 
the research investigations performed. This chapter highlights the research findings 
and recommendations for future work. 
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