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This research studies the dynamic characteristics change of kenaf/glass fiber 
hybrid composite under low velocity impact damage which can be used as an 
alternative for aircraft radome following the studies conducted by Haris (2014) 
and Jamal (2016) that proves the composite offers good dielectric and impact 
properties. The impact suffered by a composite will bring changes in dynamic 
characteristics. These changes can be used to assess the structural integrity, 
hence preventing catastrophic failure. Three materials (kenaf, glass and 
kenaf/glass fiber hybrid composites) were impacted beforehand with three 
impact levels (3, 6 and 9 Joules). The dynamic characteristics (natural 
frequency, damping and mode shapes) under vertically clamped and 
cantilevered boundary conditions for the materials are studied and compared. 
Experimental modal analysis is carried out with a roving hammer for 20 points 
on a 9.5 ×  11.5 𝑐𝑚 specimen and frequency response function (FRF) graphs 
are obtained to analyze the dynamic characteristics after curve fitting. In 
general, natural frequency decreases while damping increases with increasing 
damage level. Besides, cantilevered condition induced lower modes due to 
gravitational pull. Prior to damage, kenaf composite has highest damping due 
to its cellular structure that acts as a vibration absorber. To eliminate mass and 
geometrical effects on the materials, normalized modes are computed. It is 
found that glass fiber composite has highest frequency which corresponds to 
its high stiffness. Its frequency also decreases the most to a maximum of 35% 
when damage is induced, while kenaf suffered the least decrement at about 1 – 
18%. It can be said that kenaf is useful in stalling damage progression; 
reducing effect of damage. This is proven when the percentage decrement of 
hybrid composite lies between the other two composites. The damping of glass 
fiber composite on the other hand increased significantly to a maximum of 38% 
upon impact. Using the threshold of 0.8 (ranging 0 to 1), modal assurance 
criterion (MAC) presented high correlation between two investigated modes; 
corresponds to the similar mode shapes obtained pre and post impact for all 
materials. This means that up to 9J impact damage, the structures can 
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maintain dynamic characteristics within 20% tolerance. This knowledge is vital 
for damage tolerance evaluation (DTE) which is normally conducted for aircraft 
parts.  Hence, the hybrid composite can be utilized as radome due to its good 
dielectric, impact and dynamic characteristics.  
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Kajian ini mengkaji perubahan ciri dinamik komposit hibrid kenaf / gentian kaca 
di bawah impak halaju rendah yang boleh digunakan sebagai alternatif radome 
pesawat berikutan kajian yang dilakukan oleh Haris (2014) dan Jamal (2016) 
yang membuktikan komposit ini menawarkan sifat dielektrik dan impak yang 
baik. Kesan yang dialami oleh sesuatu komposit disertai perubahan pada ciri 
dinamik. Perubahan ini boleh digunakan untuk menilai integriti struktur, dengan 
itu mencegah kerosakan serius. Tiga bahan (komposit kenaf, kaca dan hybrid 
kenaf/kaca) telah diimpak dengan tiga tahap (3, 6 dan 9 Joule). Ciri-ciri dinamik 
(frekuensi semulajadi, redaman dan bentuk mod) di bawah kondisi menegak 
dan menjulur untuk ketiga-tiga jenis bahan telah dikaji dan dibandingkan. 
Analisis modal eksperimen dilakukan dengan tukul beralih untuk 20 posisi di 
atas spesimen berukuran 9.5 ×  11.5 𝑐𝑚 dan graf fungsi respon frekuensi (FRF) 
diperoleh untuk menganalisis ciri-ciri dinamik setelah proses penyesuaian 
lengkungan graf. Secara umumnya, frekuensi semulajadi menurun dan 
redaman meningkat dengan peningkatan tahap impak. Selain itu, kondisi 
menegak menghasilkan mod lebih rendah disebabkan tarikan graviti. Sebelum 
kerosakan, komposit kenaf mempunyai redaman tertinggi kerana struktur 
selularnya yang bertindak sebagai penyerap getaran. Untuk menghapuskan 
kesan jisim dan geometri, mod normal telah dikira. Komposit serat kaca 
mempunyai frekuensi tertinggi dan ia sepadan dengan kelenturan yang rendah. 
Frekuensinya juga berkurang paling banyak sehingga maksimum 35% apabila 
diimpak, sementara kenaf mengalami penurunan paling sedikit sekitar 1 - 18%. 
Ia boleh dikatakan bahawa kenaf berguna dalam melambatkan proses 
kerosakan. Ini terbukti apabila peratusan penurunan komposit hibrid terletak di 
antara dua komposit yang lain. Redaman komposit serat kaca meningkat 
dengan ketara sebanyak 38% apabila impak dikenakan. Dengan 
menggunakan ambang 0.8 (antara 0 hingga 1), kriteria jaminan modal (MAC) 
memberikan korelasi yang tinggi antara dua mod yang disiasat; sesuai dengan 
bentuk mod yang serupa yang diperolehi sebelum dan selepas impak untuk 
semua bahan. Ini bermakna sehingga kerosakan kesan 9J, struktur dapat 
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mengekalkan ciri dinamik dalam toleransi 20%. Pengetahuan ini penting untuk 
penilaian kerosakan toleransi (DTE) yang biasanya dilakukan untuk bahagian 
pesawat. Oleh itu, komposit hibrid boleh digunakan sebagai radome kerana 
ciri-ciri dielektrik, impak dan dinamiknya yang baik. 
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CHAPTER 1 

 

INTRODUCTION 
 
 
 

1.1 Background 
 
 

Owning to their comparable high mechanical properties, natural fibers, 
especially kenaf fibers had been suggested to replace highly hazardous 
synthetic fibers like glass fibers in used for structural loads. However, it is 
studied that the kenaf fibers are unable to fully replaced glass fibers as the 
mechanical properties difference between the two fibers are very high. This is 
why a lot of research works nowadays focused more on the hybridization of 
natural and synthetic fibers (Jawaid et al, 2011; Berhan et al, 2015; Ghani et al, 
2012; Sharba et al, 2015). Hybridization is initiated from the purpose of 
maintaining the advantages of the two fibers and alleviates some of the 
disadvantages. Hence, the idea of hybridizing kenaf fiber with glass fiber is 
believed to be helpful in reducing the hazard issued brought from glass fiber, 
and also enhancing the mechanical properties of kenaf fibers through the aid of 
glass fiber. Since then, a lot of researches were carried out to investigate the 
mechanical properties of the hybrid material. According to these studies, while 
non-hybrid composites exhibit highest or lowest mechanical properties, the 
hybrid composites lies in between, depending on the reinforcement fibers ratio 
(Faruk et al. 2012). This is generally referred as the rule of mixture. Even 
though hybrid composite is less likely to exhibit the highest material properties, 
it is always considered in order to tailor the material to the exact needs of the 
structure under design. These needs revolve around the cost and weight 
factors, and also the biodegradability of material. 
 
 
However, impact damage can act as a limitation to the composites’ widespread 
application in the field. Unlike metal structures that are able to absorb large 
amount of energy, composites can fail in a wide variety of modes and the 
structural integrity of the component would be reduced severely (Richardson 
and Wisheart, 1996). Aircraft for instance may be exposed to a number of 
events that can cause impact damage with majority of the events involve low 
velocity impact damage. Being the most fore part of an aircraft, the radome is 
then expected to suffer most of the impact damages in service.  
 
 
In general, radomes are made of materials with low dielectric constant (Crone 
et al. 1981), this is to ensure that the electromagnetic wave can travel through 
it. Haris (2011) had explored the potential of implementing natural fibers as a 
radome structure as the material is found to be possessing good dielectric 
properties. According to Lang (1994), the radome is susceptible to impact that 
come in various forms: high velocity rain, lightning strikes, rain erosion, static 
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electricity or freeze/thaw cycle. Military Standard (MIL-STD-7705B) had also 
declared that the radome needs to be able to withstand fracture, delamination 
and degradation when subjected to the impact damages. This had driven the 
study conducted by Jamal (2016) where the author conducted a study on the 
impact damage analysis of a composite structure. The main findings of the 
study will be featured in Chapter 2.  The studies conducted by Haris (2011) and 
Jamal (2016) had encouraged this study to be carried out in order to examine 
the feasibility of natural fibers to be implemented into aircraft radome. It is 
important to note that this study is the continuation work of the two mentioned 
studies. 
 
 
Radome can also suffer damage from the dropped tools during maintenance 
routine and in service impacts by foreign objects or debris that can introduce 
out of plane impact on it. These induced damages existed through the mixture 
of matrix cracking, fiber breakage and delamination. Among these failure 
modes, delamination is said to be the most severe as it may reduce the 
stiffness and strength of the composites significantly (Perez et al., 2013). 
Kreculj and Rasuo (2013) had also mentioned that the compressive strength of 
a material will decrease significantly as a response to impact damage. Sharing 
the same conclusion are: Davies et al. (1996) who studied the residual strength 
of woven fabric glass polyester laminates and Ortega and Robles (2016) who 
tested on the residual life of concrete structures post corroded.  
 
 
There are a few studies that analyzed the dynamic behavior of materials tested 
after being low velocity impact damaged. For instance, Shahdin et al (2009a), 
Perez et al (2011) and Nossol et al (2013) utilized carbon fiber to be the 
reinforcement of a composite. In these studies, it is concluded that the natural 
frequency tends to decrease with increasing impact level, while the damping 
increases with it. It is hence crucial to assess the changes in dynamic 
characteristics at early stage through accurate, time and cost effective tool so 
that the service life of the structure can be extended and the coincidence of 
resonant frequencies can be avoided. Vibration testing is one of the tools to 
investigate the damage without the need of knowing the exact location of 
damage. The concept of the test circulates on the physical and mechanical 
properties of a structure; namely the mass, stiffness and damping. The 
changes in these properties can be detected through the testing; hence 
indication of structural integrity can be obtained. The current work is a 
continuation study from previous works (Haris, 2011 and Jamal, 2016) in 
researching the low velocity impact damage properties of kenaf fiber to replace 
synthetic fiber in aircraft radome applications. 
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1.2 Problem Statement 
 
 

It is apparent that the assessment of dynamic characteristics with impact 
damage is widely researched for synthetic fibers and the impact induced varied 
from low velocity, medium velocity and in ballistic form. However, most of the 
research works do not deliver comprehensive studies with all the modal 
parameters changes reported. The problem of illiteracy on the subject then 
surfaced.  
 
 
Besides, there is also an absence in the post impact dynamic characteristics 
studies that involves natural fibers. Since the structural build of natural fibers 
can be helpful in vibration absorption characteristics, the dynamic behavior of 
the material should be explored in order to analyze its feasibility in various 
fields especially in aerospace sector. There are also no studies found on the 
effect of hybridizing natural fiber with synthetic fibers to the modal properties 
after being low velocity impact damaged.  
 
 
Hence, this study is dedicated to study the effect of low velocity impact damage 
on the modal properties of a natural fiber, synthetic fiber and hybrid 
natural/synthetic fiber composites and investigate the difference in dynamic 
response between the materials. Besides, the modal parameters comparison of 
these materials without the effect of damage is also an interest. Last but not 
least, the correlation of undamaged and damaged structures from these 
composites is also to be investigated. 
 
 
 
1.3 Objective of Research 

 
 

The main objectives of the study conducted are as follows: 
a.) To evaluate the modal properties of undamaged Kenaf, Glass, and hybrid 

Kenaf/Glass Fiber composites. 
b.) To determine the effect of damage on material and to compare the 

dynamic characteristics of Kenaf, Glass and hybrid Kenaf/Glass fiber 
composites at energy level of 3, 6 and 9 J for cantilevered and vertically 
clamped boundary conditions. 

c.) To correlate the effect of damage on modal properties to a material through 
Modal Assurance Criterion (MAC). 
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1.4 Scope of Research 
 
 

The scope of work to achieve the objectives stated above is summarized as 
follows: 

1. Frequency range to conduct EMA is set within the range of 0 – 800 
Hz. The range is set to a maximum of 800Hz as the range is 
sufficient to be used to capture the required mode shapes. 

2. Application of experimental modal analysis on cantilevered and 
vertical clamping conditions. Vertical clamping is normally applied 
when studying the dynamic characteristics of a structure. However, 
cantilevered condition is also tested in this study in order to imitate 
the real situation of a structure. For instance, the wing of an aircraft 
is of cantilevered condition. Hence, the boundary condition is 
essential to be studied in order to assess the damage of a 
structure realistically.  

3. The dimensions for all specimens are controlled to the flat plate 
geometry of 10 𝑐𝑚 × 15 𝑐𝑚 (width × length). The geometry and the 
usage of flat plate to represent the curved structure of radome are 
done so to comply with the ASTM standard used (D7136) to 
assess impact damage on a composite structure. Since the 
structure is to be tested for impact damage, the flat plate should be 
used as recommended by the mentioned standard. 

4. All three materials are of aspect ratio of 1.2. This is determined 
from setting 2.5 𝑐𝑚 from the specimen length to be clamped to a 
clamping jig.  

5. Data collected are to be processed through post processing 
software and the comparison with respect to materials and impact 
level can then be established. This allows the comparison of 
materials to be done.  

6. The differences in all modal properties pre and post impact 
damage are also to be determined so that the effect of impact 
damage on a structure can be analyzed.  

 
 
1.5 Thesis Outline 

 
 

This thesis comprises of a total of five chapters. Chapter 2 highlights the 
previous studies done and also the background of modal testing alongside 
some discussion on fiber reinforced composites. The next chapter features the 
methodology which will describe the experimental setup and method of 
extracting data to be analyzed. Chapter 4 will present the results for the modal 
testing and the outputs are then discussed alongside some justifications and 
reasoning. Finally, conclusions will be drawn in Chapter 5 alongside the 
possible future works.  
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