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PRETREATMENT 

By

NORLAILIZA AHMAD 

January 2018 

Supervisor : Mohd Rafein Zakaria, PhD 
Faculty : Biotechnology and Biomolecular Sciences 

Oil palm mesocarp fiber (OPMF) generated from oil palm processing is available 

abundantly and improper handling of OPMF has lead to serious pollution. High content 

of carbohydrate polymer in OPMF serves as feedstock for fermentable sugars production 

with appropriate pretreatments. The present works aimed to investigate 

xylooligosaccharide (XOs) and fermentable sugar production from OPMF in subcritical 

H2O-CO2 pretreatment at a temperature range of 150- 200°C and 20-60 min with pressure 

vary from 3-5 MPa. The pretreated solids and liquids from this process were separated 

by filtration and characterized. XOs, monomeric sugars, acids, furans and phenols in

pretreated liquids were analyzed by using HPLC. XOs with a degree of polymerization 

DP X2-X4 which is xylobiose, xylotriose, xylotetraose were analysed by using HPAEC-

PAD. Enzymatic hydrolysis was performed on cellulose-rich pretreated solids to study 

the xylose and glucose production. Morphological changes of pretreated solids were 

analyzed by SEM, WAXD and BET surface area.  An optimal condition for XOs 

production was obtained at 180°C, 60 min, 3 MPa with a concentration of 81.60 mg/g 

which corresponded to 36.59% of XOs yield from xylan. On the other hand, the highest 

xylose and glucose yields obtained from conversion of hemicellulose and cellulose were 

29.96% and 84.65%, respectively at cellulase loadings of 10 FPU/g-substrate. The results

obtained clearly indicated that OPMF was a potential material for XOs and fermentable 

sugar production using subcritical H2O-CO2 method.
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memenuhi keperluan untuk Ijazah Master Sains 

PENGHASILAN XYLOOLIGOSAKARIDA DAN GULA YANG DIHASILKAN 
SECARA BIOLOGIKAL DARIPADA MESOKAP KELAPA SAWIT MELALUI 

RAWATAN SUBKRITIKAL AIR-KARBON DIOKSIDA 

Oleh

NORLAILIZA AHMAD 

Januari 2018 

Penyelia : Mohd Rafein Zakaria, PhD 
Fakulti : Bioteknologi dan Sains Biomolekul 

Sisa OPMF terhasil daripada industri kelapa sawit dan ia boleh didapati sepanjang tahun. 

Kandungan karbohidrat polimer yang banyak yang terdapat di dalam sisa OPMF 

digunakan sebagai bekalan untuk menghasilkan gula dengan rawatan yang tertentu. 

Kajian yang sedang dijalankan ini bertujuan untuk mengkaji pengeluaran oligosakarida 

(XOs) dan gula  daripada OPMF melalui rawatan subkritikal air-karbon dioksida pada 

suhu dalam lingkungan 150-200°C selama 20-60 minit dengan tekanan berbeza daripada 

3-5 MPa. Pepejal dan cecair yang telah melalui rawatan awal daripada proses ini telah 

diasingkan dengan kaedah penapisan dan seterusnya diperincikan. XOs, gula monomer, 

asid, furan dan fenol yang terkandung di dalam cecair yang telah melalui rawatan awal 

kemudiannya dianalisa dengan menggunakan HPLC. XOs dengan darjah pempolimeran 

DP X2-X4 iaitu xilobiosa, xilotriosa, xilotatrosa dianalisa dengan menggunakan 

HPAEC-PAD. Hidrolisis enzimatik telah dilakukan ke atas pepejal yang telah melalui 

rawatan awal yang kaya dengan selulosa, untuk mengkaji penghasilan xilosa dan 

glukosa. Perubahan morfologi pepejal yang telah melalui rawatan awal dianalisa dengan 

menggunakan SEM, WAXD dan kawasan permukaan BET. Keadaan optima untuk 

penghasilan XOs telah diperolehi pada takat suhu 180°C, 60 minit, 3 MPa dengan 

kepekatan sebanyak 81.60 mg/g, yang bersamaan dengan 36.59% hasil XOs daripada 

xilan. Sebaliknya, hasil xilosa dan glukosa tertinggi yang diperoleh daripada proses 

penukaran hemiselulosa dan selulosa adalah masing-masing sebanyak 29.96% dan 

84.65% pada pemuatan celulase bersamaan 10 FPU/g-substrat. Hasil eksperimen jelas 

menunjukkan XOs dan gula berpotensi dihasilkan daripada OPMF menggunakan 

rawatan subkritikal air-karbon dioksida. 
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INTRODUCTION 

For the past few years, abundant of lignocellulosic biomass materials in the world were 

produced daily from many industries (Relvas et al., 2015). Lignocellulosic biomass can 

be found from many resources including oil palm industry. Currently, Malaysia has 

become the biggest oil palm producer. In the year 2011 alone, 4.92 million hectares of 

oil palm trees were planted in Malaysia. In the year 2016, 19.3 million tons of palm oil 

was produced in Malaysia (Abdullah & Sulaiman, 2013). The increasing demand for oil 

palm has resulted in many biomass generated such as oil palm empty fruit bunch 

(OPEFB), oil palm mesocarp fibre (OPMF), shell and oil palm frond fibre (OPFF) 

(Abdullah & Sulaiman, 2013). There are about 4.94 Mt/y of shell, 18.13 Mt/y OPEFB, 

10.88 Mt/y OPFF and 10.9 Mt/y OPMF were produced. These biomass produced are 

looking for the way out to be managed in a proper way. The current practice of managing 

these biomass raising awareness among the society. For example, the burning of OPMF 

using incineration lead to air pollution and dumping of OPMF lead to water pollution. 

To this extend, each of the biomass are potential and can be further converted to many 

useful products. For example, OPMF are one of the potential and attractive biomass that 

can be used as a substrate to produce many bioproducts such as sugar, biogas, activated 

carbon and biocompost, which can be further used in various industries (Mustapa et al., 

2011).

Generally, OPMF consists of cellulose (23-29%), hemicellulose (21-34%), lignin (21-

32%), extractives and ash (Zakaria et al., 2015; Saidu et al., 2014; Mustapa et al., 2011; 

Iberahim et al., 2013). The high content of carbohydrate polymer in OPMF, which are 

cellulose and hemicellulose, make it a potential and preferable material to be exploited 

for the xylooligosacharide and fermentable sugar production. The advantages of using 

this local biomass as substrate are due to abundant availability throughout the year, low 

cost and solution to biomass disposal problems. OPMF needs to undergo pretreatment 

process to exploit its potential products such as XOs and fermentable sugars. From 

previous study, many experiments were performed on OPMF to study the preferable and 

more effective method for the pretreatment process of OPMF.  

Some pretreatment process that have been done on OPMF are alkaline pretreatment and 

ball milling process to produce fermentable sugar (Zakaria et al., 2014b). There are also 

other method on OPMF pretreatment such as using sodium hydroxide and biological 

pretreatment (Iberahim et al., 2015). However, all these study are using chemical that are 

harmful to the environment.  

In this study, a greener approach are being study that uses only steam and CO2 as catalyst 

in hydrothermal pretreatment. Recently, the addition of CO2 in hydrothermal 

pretreatment becomes attractive technology since it offers more benefits whereby less 

undesired by-product compounds produced and non-toxic gases applied (Benazzi et al., 

2013). The reaction of high-pressure CO2 and water has proven to help in the 



© C
OPYRIG

HT U
PM

2

hemicellulose dissolution in acidic condition. The reaction of CO2 and water is shown 

below in equation/ chemical formula (1). The addition of CO2 will form carbonic acid 

(H3CO+) when reacted  with  water under subcritical condition (Agbor et al., 2011). 

CO2 + H2O � HCO3
- + H3CO+; HCO3

- + H2O � CO3
2- + H3O+ (1) 

The carbonic acid produced from the reaction facilitated the hydrolysis of hemicellulose 

and cellulose in biomass. The addition of CO2 in hydrothermal pretreatment produced 

carbonic acid that offers the benefits of acid catalysis without any negative impact to the 

environment as the gas will be neutralized when the pressure released (van Walsum et 

al., 2007). High-pressure CO2 is weak acid helps in penetration of small pores in biomass 

and help in disrupting the biomass structure. Thus, improve the hydrolysis rate of 

hemicellulose in the biomass (Silva et al., 2014). This pretreatment are known as 

physicochemical pretreatment where it combines the mechanism of physical and 

chemical effect during the process. 

This process is also refer as subcritical CO2-H2O pretreatment. Subcritical condition are 

refers to liquid water at temperatures between the atmospheric boiling point and the 

critical temperature (374ºC) of water. The maximum pressure for subcritical condition is 

22 MPa. In this study the temperature used are in the range 150-200ºC and pressure 

below 22 MPa. Thus pretreatment reaction in this study are best refer as subcritical CO2-

H2O pretreatment.  

To measure the intensity reaction of subcritical CO2-H2O pretreatment , combined 

severity factor (CSPCO2) is used to evaluate the influence of temperature, time and high-

pressure CO2 on the hydrolysis of xylan (van Walsum, 2001). The relation between 

severity factor and subcritical CO2-H2O pretreatment process (such as xylan hydrolysis, 

cellulose digestibility) can be found and used to evaluate the pretreatment severity to 

predict the efficiency of the pretreatment process (Pedersen and Meyer, 2010). 

Subcritical CO2-H2O pretreatment is one of the preferable pretreatment methods as it 

uses a greener approach such as compressed hot water with various temperature and time 

to hydrolyze the hemicellulose. XOs are products from hydrolysis of hemicellulose in 

lignocellulosic biomass. XOs are sugar oligomers of xylose from the hydrolysis process 

of xylan in hemicellulose of lignocellulosic biomass. It is made up of β-1,4 bonds that 

mainly consist of xylobiose, xylotriose, xylotetraose and xylopentose. As hot water 

contacts with the xylan-rich substrate, it will result in depolymerization of xylan into a 

shorter form such as xylose and XOs (Garrote et al., 2002). The liquid from this process 

contains soluble products from hemicellulose degradation such as xylooligosaccharides 

(XOs), monomeric sugars, acids, furans and aldehydes (Silva et al., 2014).This shows 

that hydrolysis of hemicellulose in OPMF using subcritical CO2-H2O pretreatment have 

produced xylose monomer and xylooligosaccharides (XOs) in the pretreated liquid 

(Zakaria et al., 2016). A liquid sample of wheat straw from autohydrolysis process with 

CO2 assisted has proven to contain xylooligomer that can be used further.
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The structure, degree of polymerization and yield of XOs depend on the types of biomass 

and the methods used in the production stage. The molecular weight of XOs is affected 

by the pretreatment severity during pretreatment process (Sabiha-Hanim et al., 2011).

XOs can be obtained abundantly in hydrolyzates liquid, therefore it also contains other 

undesired by-products such as acetic acid, furfural, 5-HMF and tannic acid (Zakaria et 

al., 2016). Different types of XOs can be produced from xylans such as xylobiose (X2), 

xylotriose (X3), xylotetraose (X4) and xylopentaose (X5) depending on the pretreatment 

used (Bragatto et al., 2013).

XOs have novel applications in many industries such as food, pharmaceutical, and health 

industries. It was reported that the production of XOs was obtained from bamboo shoot, 

almond shells, corn cob (Garrote & Parajó, 2002), cotton stalk, tobacco stalk, sunflower 

stalk, wheat straw (Akpinar et al., 2009a), mushroom cultivation waste (Sato et al., 

2010), wheat bran, sugarcane bagasse (Bian et al., 2013), OPFF (Sabiha-Hanim et 

al.,2011) and OPEFB (Ho et al., 2014). XOs with a shorter degree of polymerization 

range DP X1-X6 obtained are beneficial and advantageous to function as prebiotics in 

food related products (Reddy & Krishnan, 2016). XOs are a potential compound that can 

behave as prebiotics when ingested as it can stimulate good bacteria inside the colon 

(Moure et al., 2006). Xylobiose has been found to be an important oligosaccharide in the 

food industry. Xylobiose was found to have 30% sweetness of sucrose, while other XOs 

exhibited less sweetness. This caused xylobiose to be the main target in the food related 

product (Vázquez et al., 2000).

On top of that, fermentable sugar can also be produced from subcritical CO2-H2O

pretreatment process. Fermentable sugar is sugar monomer with empirical formula 

(C6H12O6) from the hydrolysis process of glycan in cellulose. It consist of C6 sugars 

(glucose, mannose, galactose) and C5 sugars (xylose and arabinose). The removal of 

hemicellulose makes the cellulose more accessible to enzymatic attack for fermentable 

sugar production. The saccharification or enzymatic hydrolysis of cellulose constituents 

from OPMF after pretreatment can produce fermentable sugar or known as glucose. 

Many different types of pretreatments are performed to disrupt the hemicellulose 

structure and give maximum access of enzyme on cellulose. Higher treatment severity 

with higher carbon dioxide pressure will resulted to higher removal of hemicellulose and 

provide more accessibility for enzyme to attack on the cellulose to produce sugar 

(glucose) yield. This show that higher pressure will help CO2 penetration better into the 

cellulose in the biomass (Zheng et al., 1998). The penetration cause distruption of 

cellulose and help better enzymatic attack by cellulase as the surface area of the solid 

biomass increased. 

Apart from XOs that have high potential value in industry fermentable sugar are widely 

used in sugar platform globally. Fermentable sugar can be potentially exploited as 

renewable carbon sources to produce biofuel which included bioethanol and biobutanol. 

Fermentable sugar also used to produce chemical such as succinic acid, lactic acid, 

sorbitol, furfural and xylitol. These chemical and polymer are widely used to produce 

many products in industry. The main application of fermentable that are currently used 

in industry is as a fermentation feedstock for production many biobased products such 

as bioplastic (Zahari et al., 2014). 
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Problem Statement

OPMF is one of the massive biomass generated from oil palm industry. The massive 

production of OPMF has led to many environmental problem as it is not managed 

properly. For example, the burning of OPMF using incineration lead to air pollution and 

dumping of OPMF cause water pollution. Thus, in this study, utilization of OPMF as 

feedstock for XOs and fermentable sugar production will help to reduce the OPMF 

generated and solve the environmental issues.  

Secondly, the conventional methods approach to produce XOs and fermentable sugars 

are using chemical pretreatments such as acid and alkali hydrolysis. These method 

approach which are not recommended as it will lead to environmental issue post 

discharged. The chemical disposed in the river will cause water pollution. Another 

approach is using biological pretreatment that uses fungi as addition in pretreatment are 

costly and not economic friendly. This kind of pretreatment will later pollute the water 

and environment if we fail to manage them carefully and wisely. To that extent, this 

study was carried out by using greener approach subcritical H2O-CO2 pretreatment or 

known as physicochemical pretreatment that combined the effectiveness of physical and 

chemical reaction to overcome this problem. This method is preferable as it only uses 

steam and CO2 as catalyst. However, the XOs and fermentable sugars yield produced 

using hydrothermal without CO2 is not a promising method. Thus, in this study, carbon 

dioxide (CO2) was added to improve the method and as a result, XOs and high sugar 

yield were obtained at optimal condition. 

Objectives

The objectives of the study are: 

1) To obtain optimal XOs production from OPMF by subcritical H2O-CO2

pretreatment. 

2) To produce glucose and xylose yield from subcritical H2O-CO2 pretreated 

OPMF solids. 
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