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By 

NOR MUSTAIQAZAH BINTI MOHAMAD JURI 

November 2017 

Chairman : Noor Azmi Bin Shaharuddin, PhD 
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Salinization of rice cultivation land is progressively enlarged thus negatively impair the 

world‘s rice bowl. Due to the polygenic nature and complexity of salinity tolerance 

mechanisms in plants, the development of new rice varieties with better adaptation to 

salinity has become a great challenge. Regarding this, transcriptomic profiling was seen 

as a promiseable technology for a holistic understanding of salinity tolerance 

mechanisms in rice. Here, by using Illumina HiSeq 2000 sequencing platform, 

transcriptomes of salt-tolerant Malaysian rice variety MR211 and salt-sensitive MR220 

were analyzed after nine hours of severe salinity stress (12 dS/m) treatment, labeled as 

S211 and S220, respectively. After trimming, a total of 76,456,236 (S211) and 

57,323,996 (S220) high-quality reads were obtained. The assembly of these reads 

resulting a total of 20,853 (S211) and 19,315 (S220) genes. Through comparative 

expression between both samples, 252 significant genes were differentially expressed 

and were dominated by variety-induced genes (n=235; 93.3%) with majority of them 

(n=221; 88%) were categorized as uniquely expressed in salt-tolerant MR211. Further 

pathway based analysis on the DEGs that were categorized as ―uniquely‖ and ―higher 

expressed‖ in S211 when compared to S220 had assigned them to 33 KEGG pathways 

with the highest number of DEGs were accounted in purine metabolism and thiamine 

metabolism pathways. The functional annotation of these group of DEGs also revealed 

the presence of regulatory genes such as transcription factors (TFs), protein kinases and 

protein phosphatases, as well as functional genes that involves in various adaptation 

mechanisms such as mechanical support, ROS-scavenging system, ion exclusion and 

intracellular compartmentalization thus suggest how this salt tolerant genotype 

(MR211) gains its salt adaptation trait. The expression accuracy and reproducibility of 

the 252 DEGs identified from the RNA-seq experiment were further verified through 

RT-PCR followed by qRT-PCR analysis. Nine genes were selected as the 

representative with 4 of them namely FER2, Thaumatin, VI and UBC were in line with 

data generated from the RNA-seq analysis. The other 2 (MT and HOX16) showed a 

contradict trend of expression as compared to the RNA-seq data, whereas the other 

three candidate genes (PSII, SAPK6 and PAO) had exhibited a similar (no difference) 
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level of expressions between S211 and S220. Next, the incorporation of control 

(untreated) cDNA samples (C211 and C220) in the expression analyses had revealed 

the expression of the genes in untreated plants as compared to after being subjected to 

salt stress. The expression analyses had highlighted UBC and SPK6 genes as the most 

responsive towards salinity stress in MR211 and MR220, respectively thus might 

represent their uniqueness in response to salinity stress. 
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MALAYSIA (Oryza sativa L. ssp. indica) TERHADAP KEJUTAN KEMASINAN 

 

Oleh 

NOR MUSTAIQAZAH BINTI MOHAMAD JURI 

November 2017 

Pengerusi : Noor Azmi Bin Shaharuddin, PhD 

Fakulti  : Bioteknologi dan Sains Biomolekul 

 

Proses pemasinan tanah berlaku dengan progresif di kawasan-kawasan penanaman padi 

dan telah menjejaskan bekalan beras dunia. Walaubagaimanapun, penghasilan varieti 

padi yang mempunyai sifat ketahanan yang tinggi terhadap kemasinan telah menjadi 

satu cabaran yang besar disebabkan oleh mekanisme ketahanan tumbuhan yang bersifat 

poligenik dan kompleks. Oleh itu, pemprofilan transkriptom dilihat sebagai satu 

teknologi baru yang menjanjikan pemahaman terhadap mekanisme pertahanan padi 

secara holistik. Dalam kajian ini, transkriptom dua varieti padi Malaysia, MR211 yang 

mempunyai ketahanan yang tinggi terhadap kemasinan dan MR220 yang sensitif 

terhadap kemasinan telah dianalisa selepas diberikan rawatan kemasinan yang tinggi 

(12 dS/m) selama 9 jam dan masing-masing dilabel sebagai S211 dan S220. Sejumlah 

76,456,236 (S211) dan 57,323,996 (S220) bacaan berkualiti tinggi telah diperoleh, dan 

perhimpunan bacaan ini menghasilkan sejumlah 20,853 (S211) dan 19,315 (S220) gen. 

Melalui perbandingan pengekspresan yang dibuat di antara S211 dan S220, sebanyak 

252 gen yang signifikan telah diekspres secara berbeza (DEGs). DEGs ini secara 

keseluruhannya telah didominasi oleh gen-gen yang dikspres secara spesifik pada satu 

variati sahaja (n=235, 93.3%) dengan majoriti daripadanya diekspres secara unik hanya 

pada MR211. Analisis lanjutan yang dibuat terhadap DEGs yang diekspres secara 

"unik" dan "lebih tinggi" pada S211 apabila dibandingkan dengan S220 telah 

menunjukkan bahawa kumpulan gen ini terlibat di dalam 33 laluan KEGG, dengan 

bilangan gen yang tertinggi terlibat di laluan metabolisme purin dan tiamin. Anotasi 

fungsian kumpulan DEGs ini juga menunjukkan kehadiran gen-gen pengawalaturan 

seperti faktor transkripsi (TFs), protein kinase dan protein fosfatase, serta gen berfungsi 

yang terlibat dalam pelbagai mekanisme penyesuaian terhadap tekanan seperti 

sokongan mekanikal, sistem penghapus ROS, pengeksklusian ion dan pemetakan 

intrasel, yang dengan itu memberi petunjuk bagaimana pokok MR211 memperoleh ciri 

kerintangan terhadap tekanan kemasinan. Ketepatan dan kebolehulangan 

pengekspresan 252 DEGs yang diperoleh dari analisis RNA-seq disahkan melalui 

analisis RT-PCR dan qRT-PCR. Sembilan gen wakilan dipilih dengan 4 daripadanya 

iaitu FER2, Thaumatin, VI dan UBC menunjukkan pengekspresan yang sejajar dengan 



© C
OPYRIG

HT U
PM

 

iv 

 

data yang dihasilkan dari analisis RNA-seq. MT dan HOX16 walaubagaimanapun 

memperlihatkan trend pengekspresan yang bercanggah berbanding dengan data RNA-

seq, manakala tiga lagi gen (PSII, SAPK6 dan PAO) memperlihatkan tahap ekspresi 

yang sama (tidak ada perbezaan) antara S211 dan S220. Seterusnya, penggabungan 

sampel cDNA yang tidak dikenakan rawatan kemasinan (kawalan) (C211 dan C220) 

dalam analisis pengekspresan melalui RT-PCR dan qRT-PCR telah menonjolkan UBC 

dan SPK6 masing-masing sebagai gen yang paling responsif terhadap tekanan 

kemasinan oleh MR211 dan MR220, sekali gus mewakili keunikan tindak balas kedua-

dua varieti padi Malaysia ini terhadap tekanan kemasinan. 
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CHAPTER 1 

INTRODUCTION 

1.1 General Introduction 

Rice (Oryza sativa L.) is a critical crop for global food security. It is ranked as one of 

the most important crops of the world, primarily in Asian and certain part of Latin 

America and African countries (Muthayya et al., 2014). It feeds almost half of world 

population which represented by more than 3.5 billion of peoples, as well as an 

important source of employment and incomes for the rural farmers. Over the years, a 

massive growth of world population has led to the increment of global rice demand. It 

has been estimated that an additional of 114 million tons of rice is required in order to 

meet global rice demand in 2035 (FAO, 2016; Mohanty et al., 2013).  

Unfortunately, rice is prone to a wide range of environmental constraint. A stagnation 

of rice yield in many Asian countries has been recorded due to various abiotic stress 

factors (Redfern et al., 2012). Among them, salt stress has been represented as a 

significant threat for rice growth and development (Munns 2011; Kumar and Khare, 

2016), accounted in 30% to 50% (Islam et al., 2007; Joseph and Mohanan, 2013) or 

even higher losses of rice yield (Michael et al., 2004; Zeng and Shannon, 2000).   

Soil is categorized as saline once its Electrical Conductivity (EC) reading reached 4 

dS/m or higher, with pH less than 8 and Exchangeable Sodium Percentage (ESP) less 

than 15 (Allotey et al., 2008). A continuous salinization process is naturally occurring 

through release of soluble salts from parental rocks and deposition of oceanic salts 

carried in wind and rain in coastal areas. In agricultural land, application of chemical 

fertilizer and irrigation of brackish water itself are the common source of salinization 

(FAO, 2005; Petronia 2011; Munns and Tester, 2008). More than that, the effect of 

climate change such as increasing of annual temperature, decreasing of rainfall and rise 

in global sea level have led to a tremendous effect of soil salinization (Brinkman 1980; 

Hakim et al., 2013). 

In a scientific assessment conducted by Yuen & Kong in 2009, the coastlines of 

Southeast Asia that made up of the regions which serve as ‗world rice bowl‘ are highly 

vulnerable to the effects of climate change. In Malaysia, Indonesia and Vietnam for 

example, thousands square kilometer (km
2
) loss of land were expected due to the 30-50 

cm increment of sea level (Wassmann et al., 2004; UNEP, 2006; IPCC, 2001). For 

granary lands which especially located on delta and coastal areas (Nguyen et al., 2014; 

Brinkman 1980), rising of sea level will lead into sea water intrusion and submersion of 

the fertile fields under sea thus makes it unsuitable for rice planting. Depending on its 

concentration and duration, salinity stress invokes various changes in physiological and 
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metabolic events in plants, in which, ultimately inhibit their production and survival 

(Rahnama et al., 2010; Rozema & Flowers, 2008).  

The destructive effect of soil salinity is caused by two major factors known as osmotic 

and ionic effects (Kosová et al., 2013). Osmotic effect occurs when high levels of salt 

ion in soil around plant root are triggered into the decreasing of cellular osmotic 

potential and ultimately lead to cell dehydration. Meanwhile ionic effect occurs when 

the salt ion penetrate and accumulate in cell cytoplasm via plasma membrane (James et 

al., 2011; Rahnama et al., 2010; Kosová et al., 2013). These effects will result in the 

interruption of intracellular enzyme activities, disruption of membrane structures and 

functions, nutrient imbalance, accumulation of reactive oxygen species (ROS), 

decreased photosynthetic activity, decrease in stomatal aperture and reduction of cell 

division and expansion (Munns, 2002; Rahnama et al., 2010; Zhu, 2007).  

As in other plant species, responses of rice plant to salt stress vary with varieties and 

growth stages. It has been stated that rice is very sensitive to salinity throughout young 

seedling growth stage (Heenan et al., 1988; Lutts et al., 1996). Based on standard 

evaluating score (SES) in rating the visual symptoms of salt toxicity (IRRI, 2002; 

Gregorio et al., 1997), varieties of rice can be differentiated as highly tolerant, tolerant, 

moderately tolerant and susceptible. As being applied by Hakim et al., (2010), the 

screening of eight Malaysian rice varieties using the SES had identified MR211 as the 

most tolerant while MR220 as the most susceptible variety among others varieties.  

Salinity tolerance is a quantitative trait controlled by many genes that involve in 

different pathways. Therefore, a full understanding on the molecular responses of rice 

plants to varying conditions and identification of genes that involved in salinity stress 

response is crucial to serve as a foundation in developing rice with better adaptation to 

salinity. In this prospect, identification of salt stress related genes is a promising 

approach in crop improvement program through development of rice varieties with 

higher harvestable yield during environmental stresses (Amudha and Balalubramani, 

2011). Although the conventional breeding has been playing a crucial role in rice 

improvement, it is somewhat a slow process as it is time consuming (Miah et al., 

2012). 

Plant biotechnology through genetic engineering and molecular breeding approaches 

offers much rapid development in a crop improvement program under stressful 

environments. Recently, the attention on utilizing modern high-throughput genetic 

approach such as transcriptomics and proteomics has extensively grown. As plants vary 

in their response to stresses, the application of these ―omicss‖ method in comparative 

studies between related plant species enables the identification of various functional 

genes, their transcript and protein products, including the novel ones that are 

responsible for stress responses and adaptation (Kosová et al., 2013). 

Here in present work, using Illumina RNA-Seq method, transcriptomes of two 

contrasting Malaysian rice varieties, salt-tolerant MR211 and salt-sensitive MR220 in 

responses to salt stress treatment were analysed. Transcriptomes analysis using Tuxedo 
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package enabled the identification of significant genes that were differentially 

expressed between both varieties where further analyses had identified candidate genes 

related to salt tolerant.  

The data generated from this study will serve as an invaluable genomic reference to 

further our knowledge on the molecular and cellular events that specifically occur in 

rice seedlings during their early response to severe salinity stress. Not only constricted 

as the candidate genes for rice improvements through genetic engineering, the potential 

salt-tolerant genes can also be utilized as DNA markers to fasten the selection process 

in conventional breeding.  

1.2 Research objectives 

The main aim of this project is to study salt-shock adaptation pathways exhibited by 

Malaysian rice varieties, MR211 and MR220 in response to severe salinity stress 

treatment. Therefore the specific objectives of this work were: 

1. To identify the early responses salt-shock differentially expressed genes

(DEGs) of MR211 and MR220 seedlings via comparative RNA-seq

transcriptomic analysis.

2. To validate the expression profile of salt-shock DEGs in MR211 and MR220

identified from the RNA-seq analysis through semi-quantitative reverse

transcription-PCR and quantitative real-time PCR analyses.
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