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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfillment of the requirement for the degree of Master of Science 

 

FUNCTIONAL CHARACTERIZATION OF GIBBERELLIC ACID RELATED 
GENES FROM OIL PALM IN Arabidopsis thaliana FOR POTENTIAL 

ROLE IN HEIGHT REGULATION 

 

By  

 

MUHAMAD AFIQ BIN ABDUL HALIM  

 

December 2017 

 

Chairman : Noor Azmi Shaharuddin, PhD 
Faculty  : Biotechnology and Biomolecular Sciences 
 

Oil palm is the most important commodity crop in Malaysia with a total planted 
area of 5.74 million hectares. In general, the economic life of the oil palm is 
associated with the stature of the tree. At maturity, oil palm trees commonly 
reach over 15 meters in height making harvesting a challenge as fruit bunches 
may weigh over 20 kg and become damage as the bunches fall to the ground 
hence reduce the quality of fresh fruit bunch (FFB). Height regulation in plant is 
commonly associated with gibberellic acid (GA), therefore study of genes related 
to GA biosynthesis and signaling will improve our understanding on height 
regulation mechanism in oil palm. Thus, the main objective of the research was 
to isolate GA-related genes from the oil palm (Elaeis guineensis) and 
characterize their functions in order to study height regulation in oil palm. Due to 
oil palm long life cycle, it is difficult to study the gene function in vivo, therefore 
functional characterization of the genes was conducted in heterologous system 
using model plant Arabidopsis thaliana. Three GA-related genes, EgGA20ox, 
EgGA2ox and EgGAI were isolated from leaf tissue of clonal oil palm treated with 
paclobutrazol (GA inhibitor). EgGA20ox and EgGA2ox genes expression were 
affected by paclobutrazol treatment whereas EgGAI gene was not affected by 
the paclobutrazol application. EgGA20ox gene was constitutively expressed in 
most tissues tested except for kernel. EgGA2ox gene was highly expressed in 
young root of the oil palm. On the other hand, EgGAI gene expression was 
presence in most tissues except for root and kernel. Prior to genes functional 
study, six expression constructs were generated consisting of three 
overexpression (pH2OE-EgGA20ox, pH2OE-EgGA2ox, pH2OE-EgGAI) and 
three RNAi (pH7RNAi-EgGA20ox, pH7RNAi-EgGA2ox, pH7RNAi-EgGAI) 
constructs. The constructs were transformed into Arabidopsis via 
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Agrobacterium-mediated transformation using floral dip method. Phenotypic 
characterization analysis of the transgenic Arabidopsis showed that EgGA20ox 
gene promotes vegetative and reproductive growth. Up regulation of EgGA20ox 
gene increased the height of transgenic Arabidopsis and length of leaf, root and 
silique. Flower formation of this line was also improved. Down regulated of 
EgGA20ox gene reduced the height of Arabidopsis and the length of leaf, root 
and silique. In addition, less flower formation was observed. On the contrary, up 
regulation of EgGA2ox gene reduced Arabidopsis height, increased leaf length 
and delayed in flowering. It was found that there was no effect in terms of flower 
formation, root and silique. Down regulation of EgGA2ox gene generated taller 
transgenic Arabidopsis, increased root and leaf length, early flowering but 
produced normal flower and silique formation. Transgenic Arabidopsis lines 
carrying oil palm GA-Insensitive (EgGAI) gene were also affecting the vegetative 
and reproductive growth. Overexpressed of EgGAI gene in transgenic 
Arabidopsis resulted in shorter plant and reduced root and leaf length. Delayed 
in flowering was also observed however there was no effect on flower and silique 
formations. Down regulation of EgGAI gene increased the transgenic 
Arabidopsis height but reduced the root and leaf length. In terms of reproductive 
growth, fewer flowers were generated but silique length remain similar to control 
plant. Based on our findings, EgGA20ox, EgGA2ox and EgGAI genes may play 
an important role in the plant growth and development. This study has shown 
that Arabidopsis can be utilized for gene functional studies especially genes 
involve in oil palm height regulation.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk Ijazah Sarjana Sains  

 

PENCIRIAN FUNGSI GEN BERKAITAN ASID GIBERELIK DARIPADA 
SAWIT DALAM Arabidopsis thaliana UNTUK PENGATURAN 

KETINGGIAN SAWIT 

 

Oleh  

 

MUHAMAD AFIQ BIN ABDUL HALIM  

 

Disember 2017 

 

Pengerusi : Noor Azmi Shaharuddin, PhD 
Fakulti  : Bioteknologi and Sains Biomolekul 
 

Sawit merupakan tanaman komoditi penting di Malaysia yang meliputi kawasan 
seluas 5.74 juta hektar. Umumnya, jangka hayat ekonomi sawit berkait rapat 
dengan ketinggian pokok. Sawit yang matang mampu mencapai ketinggian lebih 
daripada 15 meter menyebabkan proses penuaian mencabar kerana berat buah 
sawit boleh mencecah 20 kg dan rosak apabila jatuh ke tanah seterusnya 
mengurangkan kualiti buah sawit. Pengaturan ketinggian pokok sering dikaitkan 
dengan asid giberelik (AG), oleh hal yang demikian kajian gen berkaitan 
biosintesis dan pengisyaratan AG akan meningkatkan kefahaman terhadap 
mekanisme pengaturan ketinggian sawit. Sehubungan dengan itu, kajian ini 
dijalankan untuk mengkaji gen yang berkaitan dengan pengaturan ketinggian 
sawit. Tujuan utama penyelidikan ini adalah untuk memencilkan gen berkaitan 
AG daripada sawit (Elaeis guineensis) dan mencirikan fungsinya. Disebabkan 
hayat sawit yang panjang, kajian tentang fungsi gen secara in vivo adalah sukar, 
oleh hal yang demikian, pencirian fungsi gen telah dijalankan dalam sistem 
heterologus menggunakan pokok model Arabidopsis thaliana. Tiga gen 
berkaitan AG, EgGA20ox, EgGA2ox dan EgGAI telah dipencilkan daripada 
genom sawit. Gen tersebut dipencilkan daripada tisu daun yang dirawat 
paclobutrazol (perencat AG). Ekspresi gen EgGA20ox dan EgGA2ox 
dipengaruhi oleh rawatan paclobutrazol. Namun, ekspresi gen EgGAI tidak 
dipengaruhi oleh kehadiran paclobutrazol. Gen EgGA20ox diekspres dalam 
hampir kesemua tisu yang diuji kecuali tisu isirung. Gen EgGA2ox diekspres 
tinggi dalam tisu akar muda sawit. Manakala, ekspresi gen EgGAI ditemui dalam 
hampir kesemua tisu kecuali tisu akar dan isirung. Lanjutan dari itu, enam 
konstruk ekspresi telah dihasilkan mengandungi tiga konstruk ekspresi 
melampau (pH2OE-EgGA20ox, pH2OE-EgGA2ox, pH2OE-EgGAI) dan tiga 
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konstruk RNAi (pH7RNAi-EgGA20ox, pH7RNAi-EgGA2ox, pH7RNAi-EgGAI). 
Konstruk tersebut ditransform dalam Arabidopsis melalui perantaraan 
Agrobacterium menggunakan kaedah rendaman bunga. Analisis pencirian 
fenotip pokok Arabidopsis transgenik menunjukkan gen EgGA20ox 
menggalakkan pertumbuhan vegetatif dan reproduktif. Pengawalaturan tinggi 
gen EgGA20ox menambah ketinggian Arabidopsis transgenik dan kepanjangan 
daun, akar dan silikua. Perkembangan bunga juga dipertingkatkan. 
Pengawalaturan rendah EgGA20ox mengurangkan ketinggian Arabidopsis dan 
kepanjangan daun, akar dan silikua. Tambahan pula, pertumbuhan bunga 
berkurangan. Berbeza dengan EgGA2ox, pengawalaturan tinggi merendahkan 
Arabidopsis, memanjangkan daun dan melewatkan pengeluaran bunga. Namun 
demikian, tidak mempengaruhi perkembangan bunga, akar dan silikua. 
Pengawalaturan rendah gen EgGA2ox menghasilkan Arabidopsis transgenik 
yang tinggi, memanjangkan akar dan daun, mempercepatkan pembungaan 
namun menghasilkan bunga dan silikua yang normal. Arabidopsis transgenik 
melibatkan gen EgGAI mempengaruhi perkembangan vegetatif dan reproduktif. 
Pengawalaturan tinggi gen EgGAI merendahkan Arabidopsis transgenik dan 
mengurangkan kepanjangan akar dan daun. Pembungaan menjadi lewat namun 
tiada perubahan terhadap perkembangan bunga dan silikua. Pengawalaturan 
rendah gen EgGAI menambah ketinggian Arabidopsis transgenik tetapi 
mengurangkan kepanjangan akar dan daun. Tambahan pula, penghasilan 
bunga berkurang namun kepanjangan silikua adalah sama seperti pokok 
kawalan. Sebagai rumusan, gen EgGA20ox, EgGA2ox dan EgGAI berperanan 
penting dalam pertumbuhan dan perkembangan pokok. Kajian ini menunjukkan 
bahawa Arabidopsis boleh diolah untuk kajian fungsi gen terutama gen yang 
terlibat dalam pengaturan ketinggian sawit. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Research background 

 

Palm oil is the most traded oil in the world. The demand of the palm oil from the 
world’s oils and fats market has been steadily increasing over the years (MPOB, 
2017). Malaysia as one of the palm oil producing countries accounting for over 
one third of the total palm oil production in world export trade. The oil palm 
planted area across the nation covers almost 5.74 million hectares in 2016 
(MPOB, 2017).  

 

Despite vast plantation of the oil palm, the industry in Malaysia is facing the 
falling of fresh fruit bunches (FFB) productivity. The decrease of the yield and 
productivity are partly determined by the height of the oil palm tree. Management 
of tall oil palm tree is costly and will potentially damage the quality of the fruit 
upon harvesting. Current oil palm planting materials increase at the rate of 40-
75 cm/year (Kushairi et al., 1999). The palms will be too tall thus replanting 
programs after 25 to 30 years is required.  

 
Plant height is often associated with gibberellic acid (GA). GA is one of the 
phytohormones that regulates many vital plant growth and developmental 
processes which includes seed germination, leaf expansion, induction of 
flowering and plant height (Yamaguchi, 2008). Previous studies showed that 
regulating gibberellins biosynthesis and signaling altered the height of many 
plants species (Li et al., 2016; Liang et al., 2014). Therefore, regulating plant 
height especially in oil palm by manipulating the gibberellins biosynthesis and 
signaling can be significant.  

 

1.2 Problem Statements and Objectives 

 

Numerous efforts have been done to study the height regulation in many plant 
species. Previous studies reported that manipulating GA-related genes affected 
the stature of various species of plant such as Triticum aestivum (Pearce et al., 
2015), Oryza sativa (Gebre et al., 2013), Solanum lycopersicum (Chen et al., 
2016) and Panicum virgatum (Wuddineh et al., 2015). Genes that are involved 
in height regulation in GA biosynthesis and signaling from the oil palm are yet to 
be revealed. Comprehensive researches which are related to the 
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characterization of the genes functions associated with GA is important to 
improve our understanding on height regulation mechanism in oil palm.  
 

In planta characterization of genes function is often limited by time and cost 
constraints. Therefore, characterization of genes functions using heterologous 
system, Arabidopsis thaliana was opted to observe and evaluate the functions 
of the genes. The model plant Arabidopsis provides a convenient in vivo system 
for performing functional analysis of genes as better approach for cost and time 
efficiencies (Zubaidah et al., 2017).  

 

Thus, this research was conducted to study genes that are related to height 
regulation in oil palm. The main objective of the research was to isolate GA-
related genes from the oil palm (Elaeis guineensis) and characterize their 
functions. 
 
Therefore, the objectives of this study are: 

1. To study the effects of PBZ on the growth pattern of clonal oil palm 
physiologically and morphologically. 

2. To isolate and perform in-silico characterization of gibberellic acids 
related genes from clonal oil palm. 

3. To profile the expression of gibberellic acids related genes in different 
oil palm tissues using RT-PCR and PBZ treated leaf tissue using qPCR. 

4. To generate transgenic Arabidopsis lines (overexpression and RNAi) 
carrying GA-related genes and perform functional charaterization 
analysis.  
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