UNIVERSITI PUTRA MALAYSIA

FUNCTIONAL CHARACTERIZATION OF GIBBERELLIC ACID RELATED GENES FROM OIL PALM IN Arabidopsis thaliana FOR POTENTIAL ROLE HEIGHT REGULATION

MUHAMAD AFIQ BIN ABDUL HALIM

FBSB 2018 35
FUNCTIONAL CHARACTERIZATION OF GIBBERELLIC ACID RELATED GENES FROM OIL PALM IN Arabidopsis thaliana FOR POTENTIAL ROLE HEIGHT REGULATION

By

MUHAMAD AFIQ BIN ABDUL HALIM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

December 2017
COPYRIGHT

All materials contained within the thesis, including without limitation text, logos, icons, photographs and all other artworks, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

FUNCTIONAL CHARACTERIZATION OF GIBBERELLIC ACID RELATED GENES FROM OIL PALM IN Arabidopsis thaliana FOR POTENTIAL ROLE IN HEIGHT REGULATION

By

MUHAMAD AFIQ BIN ABDUL HALIM

December 2017

Chairman : Noor Azmi Shaharuddin, PhD
Faculty : Biotechnology and Biomolecular Sciences

Oil palm is the most important commodity crop in Malaysia with a total planted area of 5.74 million hectares. In general, the economic life of the oil palm is associated with the stature of the tree. At maturity, oil palm trees commonly reach over 15 meters in height making harvesting a challenge as fruit bunches may weigh over 20 kg and become damaged as the bunches fall to the ground hence reduce the quality of fresh fruit bunch (FFB). Height regulation in plant is commonly associated with gibberellic acid (GA), therefore study of genes related to GA biosynthesis and signaling will improve our understanding on height regulation mechanism in oil palm. Thus, the main objective of the research was to isolate GA-related genes from the oil palm (Elaeis guineensis) and characterize their functions in order to study height regulation in oil palm. Due to oil palm long life cycle, it is difficult to study the gene function in vivo, therefore functional characterization of the genes was conducted in heterologous system using model plant Arabidopsis thaliana. Three GA-related genes, EgGA20ox, EgGA2ox and EgGAI were isolated from leaf tissue of clonal oil palm treated with paclobutrazol (GA inhibitor). EgGA20ox and EgGA2ox genes expression were affected by paclobutrazol treatment whereas EgGAI gene was not affected by the paclobutrazol application. EgGA20ox gene was constitutively expressed in most tissues tested except for kernel. EgGA2ox gene was highly expressed in young root of the oil palm. On the other hand, EgGAI gene expression was presence in most tissues except for root and kernel. Prior to genes functional study, six expression constructs were generated consisting of three overexpression (pH2OE-EgGA20ox, pH2OE-EgGA2ox, pH2OE-EgGAI) and three RNAi (pH7RNAi-EgGA20ox, pH7RNAi-EgGA2ox, pH7RNAi-EgGAI) constructs. The constructs were transformed into Arabidopsis via
Agrobacterium-mediated transformation using floral dip method. Phenotypic characterization analysis of the transgenic Arabidopsis showed that EgGA20ox gene promotes vegetative and reproductive growth. Up regulation of EgGA20ox gene increased the height of transgenic Arabidopsis and length of leaf, root and silique. Flower formation of this line was also improved. Down regulation of EgGA20ox gene reduced the height of Arabidopsis and the length of leaf, root and silique. In addition, less flower formation was observed. On the contrary, up regulation of EgGA2ox gene reduced Arabidopsis height, increased leaf length and delayed in flowering. It was found that there was no effect in terms of flower formation, root and silique. Down regulation of EgGA2ox gene generated taller transgenic Arabidopsis, increased root and leaf length, early flowering but produced normal flower and silique formation. Transgenic Arabidopsis lines carrying oil palm GA-Insensitive (EgGAI) gene were also affecting the vegetative and reproductive growth. Overexpressed of EgGAI gene in transgenic Arabidopsis resulted in shorter plant and reduced root and leaf length. Delayed in flowering was also observed however there was no effect on flower and silique formations. Down regulation of EgGAI gene increased the transgenic Arabidopsis height but reduced the root and leaf length. In terms of reproductive growth, fewer flowers were generated but silique length remain similar to control plant. Based on our findings, EgGA20ox, EgGA2ox and EgGAI genes may play an important role in the plant growth and development. This study has shown that Arabidopsis can be utilized for gene functional studies especially genes involve in oil palm height regulation.
Sawit merupakan tanaman komoditi penting di Malaysia yang meliputi kawasan seluas 5.74 juta hektar. Umumnya, jangka hayat ekonomi sawit berkait rapat dengan ketinggian pokok. Sawit yang matang mampu mencapai ketinggian lebih dari 15 meter menyebabkan proses penuaan mencabar kerana berat buah sawit boleh mencapai 20 kg dan rosak apabila jatuh ke tanah seterusnya mengurangkan kualiti buah sawit. Pengaturan ketinggian pokok sering dikaitkan dengan asid giberelik (AG), oleh hal yang demikian kajian gen berkaitan biosintesis dan pengisyaratan AG akan meningkatkan kefahaman terhadap mekanisme pengaturan ketinggian sawit. Sehubungan dengan itu, kajian ini dijalankan untuk mengkaji gen yang berkaitan dengan pengaturan ketinggian sawit. Tujuan utama penelitian ini adalah untuk memencilkan gen berkaitan AG daripada sawit (Elaeis guineensis) dan mencirikan fungsinya. Disebabkan hayat sawit yang panjang, kajian tentang fungsi gen secara in vivo adalah sukar, oleh hal yang demikian, pencirian fungsi gen telah dijalankan dalam sistem heterologus menggunakan pokok model Arabidopsis thaliana. Tiga gen berkaitan AG, EgGA20ox, EgGA2ox dan EgGAI telah dipencilkan dan dipengaruhi oleh rawatan paclobutrazol. Namun, ekspresi gen EgGAI tidak dipengaruhi oleh kehadiran paclobutrazol. Gen EgGA20ox dan EgGA2ox diuji dalam hampir kesemua tisu kecuali tisu isirung. Gen EgGA2ox diekspresi tinggi dalam tisu akar muda sawit. Manakala, ekspresi gen EgGAI ditemui dalam hampir kesemua tisu kecuali tisu akar dan isirung. Lanjutan dari itu, enam konstruktur ekspresi telah dihasilkan mengandungi tiga konstruktur ekspresi melampau (pH2OE-EgGA20ox, pH2OE-EgGA2ox, pH2OE-EgGAI) dan tiga
konstruk RNAi (pH7RNAi-EgGA20ox, pH7RNAi-EgGA2ox, pH7RNAi-EgGAI). Konstruktur tersebut ditransform dalam Arabidopsis melalui perantaraan Agrobacterium menggunakan kaedah rendaman bunga. Analisis pencirian fenotip pokok Arabidopsis transgenik menunjukkan gen EgGA20ox menggalakkan pertumbuhan vegetatif dan reproduktif. Pengawalaturan tinggi gen EgGA20ox menambah ketinggian Arabidopsis transgenik dan kepanjangan daun, akar dan silikua. Perkembangan bunga juga dipertingkatkan. Pengawalaturan rendah EgGA20ox mengurangkan ketinggian Arabidopsis dan kepanjangan daun, akar dan silikua. Tambahana pula, pertumbuhan bunga berkurangan. Berbeza dengan EgGA2ox, pengawalaturan tinggi merendahkan Arabidopsis, memanjangkan daun dan melewatkan pengeluaran bunga. Namun demikian, tidak mempengaruhi perkembangan bunga, akar dan silikua. Pengawalaturan rendah gen EgGA2ox menghasilkan Arabidopsis transgenik yang tinggi, memanjangkan akar dan daun, mempercepatkan pembungaan namun menghasilkan bunga dan silikua yang normal. Arabidopsis transgenik melibatkan gen EgGAI mempengaruhi perkembangan vegetatif dan reproduktif. Pengawalaturan tinggi gen EgGAI merendahkan Arabidopsis transgenik dan mengurangkan kepanjangan akar dan daun. Pembungaan menjadi lewat namun tiada perubahan terhadap perkembangan bunga dan silikua. Pengawalaturan rendah gen EgGAI menambah ketinggian Arabidopsis transgenik tetapi mengurangkan kepanjangan akar dan daun. Tambahana pula, penghasilan bunga berkurang namun kepanjangan silikua adalah sama seperti pokok kawalan. Sebagai rumusan, gen EgGA20ox, EgGA2ox dan EgGAI berperanan penting dalam pertumbuhan dan perkembangan pokok. Kajian ini menunjukkan bahawa Arabidopsis boleh diolah untuk kajian fungsi gen terutama gen yang terlibat dalam pengaturan ketinggian sawit.
ACKNOWLEDGEMENTS

Praise be to Allah, the Almighty and All-Knowing, for I could not have done this without His Mercy and Compassion.

I would like to acknowledge the supports from Dr Zubaidah Ramli and Dr Noor Azmi Shaharuddin. They had relentlessly advises and put a great effort to help me as far as they could. All the lessons will be treasured neatly forever. I thank them for aiding me in making it this far. May Allah repays them for their kindness and perseverance. Also, not to forget Dr. Zarina Zainuddin and Dr. Noor Baity Saidi who had supervised and given me generous guidance and assistance.

I am also grateful to my father Abdul Halim Bin Konting who gave me physical and mental supports. Unknowingly, he has always given me reasons to go further and to strive for my future. Thanks also to my mother, Azainun Binti Kamarudin who had never failed to encourage me to pursue this study. Their loving kindness and successful parenthood in nurturing my felicitous family has been driving me to success. They have been advising and motivating me to do my best. My brothers and sisters, who always see me as their role model, pursue in what you all believe in with great effort and determination. A word of thank is due to my wife, Nur’Adila Mohd Akhir and my daughter Dahlia Adlina, for their unconditional patience, love and encouragements that they have always granted upon me.

I would also wish to convey my sincere gratitude to Malaysian Palm Oil Board (MPOB) for scholarship and financial supports as well providing me with all the necessary instruments and facilities. Thanks are also given to Gene Functional Group lead by Dr Zubaidah and all lab assistants for their endless helps and advices during this project. Their valuable contributions were such a great support for me in completing this project.

May Allah blesses. Jazakumullahu khairan jaza’.
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement of the degree of Master of Science. The members of Supervisory committee were as follows:

Noor Azmi Shaharuddin, PhD
Senior Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Noor Baity Saidi, PhD
Senior Lecturer
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Zarina Zainuddin, PhD
Assistant Professor
Kulliyyah of Science
International Islamic University Malaysia
(Member)

Zubaidah Ramli, PhD
Senior Research Officer
Advanced Biotechnology and Breeding Centre (ABBC)
Malaysian Palm Oil Board (MPOB)
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceeding, popular writings, smonar papers, manuscripts, posters, lecture notes, learing modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _________________________ Date: __________________

Name and Matric No: Muhamad Afiq Bin Abdul Halim, GS 42622
Declaration by Members of Supervisory Committee

This is to confirm that:
• the research conducted and the writing of this thesis was under our supervision;
• supervision responsibilities as stated in the Universiti Putra Malaysia (Graduates Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature : __________________________
Name of Chairman of Supervisory Committee : Dr Noor Azmi Shaharuddin

Signature : __________________________
Name of Members of Supervisory Committee : Dr Zubaidah Ramli

Signature : __________________________
Name of Members of Supervisory Committee : Dr Zarina Zainuddin

Signature : __________________________
Name of Members of Supervisory Committee : Dr Noor Baity Binti Saidi
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABREVIATIONS</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

1 **INTRODUCTION**
1.1 Research background
1.2 Problem statement and objectives

2 **LITERATURE REVIEW**
2.1 The origin and development of oil palm
2.2 Classification and morphology of the oil palm
2.3 Oil palm industry and distribution in Malaysia
2.4 Challenges in the industry
2.5 Height regulation in plant
2.6 Phytohormone: Gibberellic Acid (GA)
 2.6.1 GAs inhibitors
 2.6.2 GAs biosynthesis pathway
 2.6.3 Gibberellins (GAs) oxidase genes
 2.6.4 *Gibberellin 20-oxidases (GA20oxs)* genes
 2.6.5 *Gibberellin 2-oxidases (GA2oxs)* gene
 2.6.6 GAs signaling pathway
 2.6.7 *Gibberellic Acid-Insensitive (GAI)* gene
2.7 Gene functional studies in plant
2.8 Model plant: *Arabidopsis thaliana*

3 **MORPHOLOGICAL AND PHYSIOLOGICAL CHANGES IN RESPONSE TO PACLOBUTRAZOL (PBZ) TREATMENT AND EXPRESSION PROFILING OF GA-RELATED GENES IN CLONAL PALM**
3.1 Introduction
3.2 Materials and Methods
 3.2.1 Plant material and growth condition
 3.2.2 Treatments
 3.2.3 Morphological measurement
 3.2.4 Physiological measurements
 3.2.5 Statistical Analysis
 3.2.6 Identification and analysis of putative GA-related genes
 3.2.7 RNA extraction
3.2.8 RNA purification 38
3.2.9 cDNA synthesis 39
3.2.10 Isolation of the \(\text{EgGA20ox}, \text{EgGA2ox} \) and \(\text{EgGAI} \) genes coding regions 39
3.2.11 Real-time PCR (qPCR) 40

3.3 Results

3.3.1 Oil palm growth and PBZ treatment 41
3.3.2 Impact of PBZ treatment on chlorophyll index and photosynthetic rate of clonal oil palms 44
3.3.3 Isolation and sequence analysis of putative \(\text{EgGA20ox}, \text{EgGA2ox} \) and \(\text{EgGAI} \) genes from the oil palm tissues 50
3.3.4 \textit{In-silico} analysis of putative \(\text{EgGA20ox} \) 55
3.3.5 \textit{In-silico} analysis of putative \(\text{EgGA2ox} \) 61
3.3.6 \textit{In-silico} analysis of putative \(\text{EgGAI} \) 67
3.3.7 Expression profiling of putative \(\text{EgGA20ox}, \text{EgGA2ox}, \text{EgGAI} \) genes in different tissues of the oil palm using RT-PCR 75
3.3.8 Expression profiling of putative \(\text{EgGA20ox}, \text{EgGA2ox}, \text{EgGAI} \) genes in PBZ treated clonal oil palm using qPCR 77

3.4 Discussion

3.4.1 Oil palm growth pattern after PBZ treatment 81
3.4.2 Impact of PBZ on chlorophyll index and photosynthetic rate of the clonal oil palm 82
3.4.3 \textit{In-silico} analysis of putative \(\text{EgGA20ox}, \text{EgGA2ox}, \text{EgGAI} \) from the oil palm tissues 84
3.4.4 Expression pattern of putative \(\text{EgGA20ox}, \text{EgGA2ox}, \text{EgGAI} \) genes in different tissues of the oil palm 87
3.4.5 Expression pattern of putative \(\text{EgGA20ox}, \text{EgGA2ox}, \text{EgGAI} \) genes in PBZ treated tissues 88

3.5 Conclusion 90

4 FUNCTIONAL CHARACTERIZATION OF GA-RELATED GENES (\(\text{EgGA20ox}, \text{EgGA2ox} \) and \(\text{EgGAI} \)) FROM THE OIL PALM USING OVEREXPRESSION AND RNAI-KNOCKDOWN STRATEGIES IN MODEL PLANT (\textit{Arabidopsis thaliana})

4.1 Introduction 92
4.2 Materials and Methods 94
4.2.1 Generation of expression constructs 94
4.2.1.1 Entry clones construction 96
4.2.1.2 Plasmid extraction 96
4.2.1.3 Validation of entry clones 97
4.2.1.4 Preparation of competent \textit{E.coli} 98
4.2.1.5 Expression clones construction 98
4.2.2 Generation of transgenic \textit{Arabidopsis} homozygous lines carrying the expression constructs 99
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.2.1</td>
<td>Preparation of competent Agrobacterium tumefaciens (C58)</td>
</tr>
<tr>
<td>4.2.2.2</td>
<td>Transformation of competent A. tumefaciens (C58)</td>
</tr>
<tr>
<td>4.2.2.3</td>
<td>Preparation of Arabidopsis and growth condition</td>
</tr>
<tr>
<td>4.2.2.4</td>
<td>Transformation of Arabidopsis with overexpression and RNAi constructs</td>
</tr>
<tr>
<td>4.2.2.5</td>
<td>Screening of transgenic Arabidopsis carrying overexpression and RNAi constructs</td>
</tr>
<tr>
<td>4.2.2.6</td>
<td>Genomic DNA extraction from Arabidopsis</td>
</tr>
<tr>
<td>4.2.2.7</td>
<td>Validation of putative transgenic Arabidopsis</td>
</tr>
<tr>
<td>4.2.2.8</td>
<td>Generation of homozygous transgenic Arabidopsis</td>
</tr>
<tr>
<td>4.2.2.9</td>
<td>Phenotypic characterization analysis of the homozygous transgenic Arabidopsis</td>
</tr>
<tr>
<td>4.2.2.10</td>
<td>Expression profiling of the homozygous transgenic Arabidopsis</td>
</tr>
</tbody>
</table>

4.3 Results

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.1</td>
<td>Generation of entry clones</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Generation of overexpression and RNAi constructs</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Mobilization of expression constructs into A. tumefaciens (C58)</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Generation of putative transgenic Arabidopsis</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Overexpression and RNAi homozygous lines generation</td>
</tr>
<tr>
<td>4.3.6</td>
<td>Phenotypic characterization analysis and expression profiling of transgenic Arabidopsis carrying pH2OE-EgGA20ox and pH7RNAi-EgGA20ox constructs</td>
</tr>
<tr>
<td>4.3.6.1</td>
<td>Morphology comparison of leaves, siliques and flowers of transgenic Arabidopsis carrying pH2OE-EgGA20ox and pH7RNAi-EgGA20ox constructs</td>
</tr>
<tr>
<td>4.3.7</td>
<td>Phenotypic characterization analysis and expression profiling of transgenic Arabidopsis carrying pH2OE-EgGA2ox and pH7RNAi-EgGA2ox constructs</td>
</tr>
<tr>
<td>4.3.7.1</td>
<td>Morphology comparison of leaves, siliques and flowers of transgenic Arabidopsis carrying pH2OE-EgGA2ox and pH7RNAi-EgGA2ox constructs</td>
</tr>
</tbody>
</table>
4.3.8 Phenotypic characterization analysis and expression profiling of transgenic Arabidopsis carrying pH2OE-EgGAI and pH7RNAi-EgGAI constructs

4.3.8.1 Morphology comparison of leaves, siliques and flowers of transgenic Arabidopsis carrying pH2OE-EgGAI and pH7RNAi-EgGAI constructs

4.4 Discussion

4.4.1 Generation of pGW-EgGA20ox, pGW-EgGA2ox and pGW-EgGAI entry clones

4.4.2 Generation of pH2OE-EgGA20ox, pH2OE-EgGA2ox, pH2OE-EgGAI, pH7RNAi-EgGA20ox, pH7RNAi-EgGA2ox and pH7RNAi-EgGAI expression constructs and transformation into A. tumefaciens

4.4.3 Transformation of Arabidopsis by A. tumefaciens (C58) carrying expression constructs via floral dip and generation of homozygous lines

4.4.4 Phenotypic characterization of transgenic Arabidopsis carrying pH2OE-EgGA20ox and pH7RNAi-EgGA20ox constructs

4.4.5 Phenotypic characterization of transgenic Arabidopsis carrying pH2OE-EgGA2ox and pH7RNAi-EgGA2ox constructs

4.4.6 Phenotypic characterization of transgenic Arabidopsis carrying pH2OE-EgGAI and pH7RNAi-EgGAI constructs

4.5 Conclusion

5 SUMMARY, CONCLUSION AND FUTURE STUDY

5.1 Summary of the study

5.2 General conclusion and future study

REFERENCES

APPENDICES

BIODATA OF STUDENT

LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Oil palm fruit forms and types</td>
</tr>
<tr>
<td>2.2</td>
<td>Characterized GA oxidases from different plant species</td>
</tr>
<tr>
<td>2.3</td>
<td>Arabidopsis growth stages for the plate and soil-based phenotypic analysis platforms for Colombia ecotype</td>
</tr>
<tr>
<td>3.1</td>
<td>Plant height, stem thickness and number of leaf after the application of PBZ on clonal oil palms</td>
</tr>
<tr>
<td>3.2</td>
<td>BLAST analysis of the isolated putative EgGA20ox, EgGA2ox and EgGAI genes with highest similarity</td>
</tr>
<tr>
<td>3.3</td>
<td>BLAST analysis of deduced amino acid sequence of putative EgGA20ox gene from oil palm with GA20-oxidases from other plant species</td>
</tr>
<tr>
<td>3.4</td>
<td>BLAST analysis of deduced amino acid sequence of putative EgGA2ox gene from oil palm with GA2-oxidases from other plant species</td>
</tr>
<tr>
<td>3.5</td>
<td>BLAST analysis of deduced amino acid sequence of putative EgGAI gene from oil palm with DELLAs protein from other plant species</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Typical oil palm tree 6</td>
</tr>
<tr>
<td>2.2</td>
<td>Fruit forms and its morphology 9</td>
</tr>
<tr>
<td>2.3</td>
<td>Oil palm planted area in Malaysia from 1960 until 2016. 11</td>
</tr>
<tr>
<td>2.4</td>
<td>General chemical structure of bioactive GAs 16</td>
</tr>
<tr>
<td>2.5</td>
<td>Paclobutrazol (PBZ) chemical structure 19</td>
</tr>
<tr>
<td>2.6</td>
<td>Inhibition point of plant growth retardant in GAs biosynthetic pathway 19</td>
</tr>
<tr>
<td>2.7</td>
<td>GAs biosynthesis pathway in plant 22</td>
</tr>
<tr>
<td>2.8</td>
<td>GAs signaling pathway in plant 26</td>
</tr>
<tr>
<td>2.9</td>
<td>Model plant Arabidopsis thaliana 30</td>
</tr>
<tr>
<td>3.1</td>
<td>Effect of PBZ treatment on clonal oil palms (Clone 8A/PL233/5/9AP-1/4/S/R) at Week 12 42</td>
</tr>
<tr>
<td>3.2</td>
<td>Effect of PBZ on plant height. 43</td>
</tr>
<tr>
<td>3.3</td>
<td>Effect of PBZ on leaf structure, coloration and growth at Week 18 45</td>
</tr>
<tr>
<td>3.4</td>
<td>Effect of PBZ on relative chlorophyll content index 46</td>
</tr>
<tr>
<td>3.5</td>
<td>Photosynthetic rate (P_N) of the PBZ treated clonal palms 47</td>
</tr>
<tr>
<td>3.6</td>
<td>Stomatal conductance (g_s) of the PBZ treated clonal palms 48</td>
</tr>
<tr>
<td>3.7</td>
<td>Transpiration rate (E) of the PBZ treated clonal palms 49</td>
</tr>
<tr>
<td>3.8</td>
<td>Water use efficiency (WUE) of the PBZ treated clonal palms 50</td>
</tr>
<tr>
<td>3.9</td>
<td>Total RNA integrity tested on 1 % (w/v) agarose gel 51</td>
</tr>
<tr>
<td>3.10</td>
<td>PCR amplification of putative EgGA20ox, EgGA20x, and EgGAI genes from oil palm tissue 53</td>
</tr>
<tr>
<td>3.11</td>
<td>Multiple sequence alignment of deduced amino acid of GA20ox from various plant species 59</td>
</tr>
<tr>
<td>3.12</td>
<td>Phylogenetic tree of GA20ox protein sequences from different plant species 60</td>
</tr>
<tr>
<td>3.13</td>
<td>Multiple sequence alignment of deduced amino acid of GA20x from various plant species 65</td>
</tr>
<tr>
<td>3.14</td>
<td>Phylogenetic tree of GA20x protein sequences from different plant species 66</td>
</tr>
<tr>
<td>3.15</td>
<td>Multiple sequence alignment of deduced amino acid of DELLA from various plant species. 73</td>
</tr>
<tr>
<td>3.16</td>
<td>Phylogenetic tree of DELLA protein sequences from different plant species 74</td>
</tr>
</tbody>
</table>
3.17 Gene expression of *EgGA20ox*, *EgGA2ox*, *EgGAI* genes in different tissues
3.18 *EgGA20ox* gene expression profile of PBZ treated oil palm tissue using qPCR
3.19 *EgGA2ox* gene expression profile of PBZ treated oil palm tissue using qPCR
3.20 *EgGAI* gene expression profile of PBZ treated oil palm tissue using qPCR
4.1 Schematic diagram of workflow on functional characterization of *EgGA20ox*, *EgGA2ox* and *EgGAI* genes in *Arabidopsis*
4.2 Verification of entry clones carrying *EgGA20ox*, *EgGA2ox* and *EgGAI* genes.
4.3 Validation of overexpression constructs (pH2OE-EGGA20ox, pH2OE-EGGA2ox and pH2OE-EGGAI)
4.4 Validation of RNAi constructs (pH7RNAi-EGGA20ox, pH7RNAi-EGGA2ox and pH7RNAi-EGGAI)
4.5 Validation of transformed *A. tumefaciens* (C58) carrying overexpression constructs (pH2OE-EGGA20ox, pH2OE-EGGA2ox and pH2OE-EGGAI)
4.6 Validation of transformed *A. tumefaciens* (C58) carrying RNAi constructs (pH7RNAi-EGGA20ox, pH7RNAi-EGGA2ox and pH7RNAi-EGGAI)
4.7 Validation of putative transgenic *Arabidopsis* of overexpression constructs from leaf tissue
4.8 Validation of putative transgenic *Arabidopsis* of RNAi constructs from leaf tissue
4.9 Phenotype of transgenic *Arabidopsis* carrying pH2OE-EGGA20ox construct
4.10 Measurement of growth parameters of transgenic *Arabidopsis* carrying pH2OE-EGGA20ox construct
4.11 Expression of *EGGA20ox* gene in transgenic *Arabidopsis* carrying pH2OE-EGGA20ox construct in different tissues with relative band intensity
4.12 Phenotype of transgenic *Arabidopsis* carrying pH7RNAi-EGGA20ox construct
4.13 Measurement of growth parameters of transgenic *Arabidopsis* carrying pH7RNAi-EGGA20ox construct
4.14 Expression of *EGGA20ox* gene in transgenic *Arabidopsis* carrying pH7RNAi-EGGA20ox construct in different tissues with relative band intensity
4.15 Morphology of leaf, silique and flower of transgenic *Arabidopsis* carrying pH2OE-EGGA20ox and pH7RNAi-EGGA20ox construct
4.16 Phenotype of transgenic *Arabidopsis* carrying pH2OE-\textit{EgGA2ox} construct.

4.17 Measurement of growth parameters of transgenic *Arabidopsis* carrying pH2OE-\textit{EgGA2ox} construct

4.18 Expression of \textit{EgGA2ox} gene in transgenic *Arabidopsis* carrying pH2OE-\textit{EgGA2ox} construct in different tissues with relative band intensity

4.19 Phenotype of transgenic *Arabidopsis* carrying pH7RNAi-\textit{EgGA2ox} construct.

4.20 Measurement of growth parameters of transgenic *Arabidopsis* carrying pH7RNAi-\textit{EgGA2ox} construct

4.21 Expression of \textit{EgGA2ox} gene in transgenic *Arabidopsis* carrying pH7RNAi-\textit{EgGA2ox} construct in different tissues with relative band intensity

4.22 Morphology of leaf, silique and flower of transgenic *Arabidopsis* carrying pH2OE-\textit{EgGA2ox} and pH7RNAi-\textit{EgGA2ox} constructs

4.23 Phenotype of transgenic *Arabidopsis* carrying pH2OE-\textit{EgGAI} construct

4.24 Measurement of growth parameters of transgenic *Arabidopsis* carrying pH2OE-\textit{EgGAI} construct

4.25 Expression of \textit{EgGAI} gene in transgenic *Arabidopsis* carrying pH2OE-\textit{EgGAI} construct in different tissues with relative band intensity

4.26 Phenotype of transgenic *Arabidopsis* carrying pH7RNAi-\textit{EgGAI} construct

4.27 Measurement of growth parameter of transgenic *Arabidopsis* carrying pH7RNAi-\textit{EgGAI} construct.

4.28 Expression of \textit{EgGAI} gene transgenic *Arabidopsis* carrying pH7RNAi-\textit{EgGAI} construct in different tissues

4.29 Morphology of leaf, silique and flower of transgenic *Arabidopsis* carrying pH2OE-\textit{EgGAI} and pH7RNAi-\textit{EgGAI} constructs.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>degree Celsius</td>
</tr>
<tr>
<td>L</td>
<td>litre</td>
</tr>
<tr>
<td>µl</td>
<td>microlitre</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>WAT</td>
<td>Week after treatment</td>
</tr>
<tr>
<td>FFB</td>
<td>Fresh fruit bunches</td>
</tr>
<tr>
<td>PBZ</td>
<td>Paclobutrazol</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>GA</td>
<td>Gibbollin</td>
</tr>
<tr>
<td>ox</td>
<td>oxidase</td>
</tr>
<tr>
<td>IPP</td>
<td>Isopentenyl diphosphate</td>
</tr>
<tr>
<td>GGPP</td>
<td>Geranylgeranyl pyrophosphate</td>
</tr>
<tr>
<td>CaMV</td>
<td>Cauliflower mosaic virus</td>
</tr>
<tr>
<td>CPP</td>
<td>Copalyl diphosphate</td>
</tr>
<tr>
<td>CPS</td>
<td>ent-copalyl diphosphate synthase</td>
</tr>
<tr>
<td>KS</td>
<td>ent-kaurene synthase</td>
</tr>
<tr>
<td>g</td>
<td>gravity</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>kb</td>
<td>Kilo base</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxyribonucleotide triphosphate</td>
</tr>
<tr>
<td>rRNA</td>
<td>Ribosomal ribonucleic acid</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse transcription - polymerase chain reaction</td>
</tr>
<tr>
<td>qPCR</td>
<td>Real-time polymerase chain reaction</td>
</tr>
<tr>
<td>rpm</td>
<td>Rotation per minute</td>
</tr>
<tr>
<td>EB</td>
<td>Elution buffer</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-aceetate-EDTA</td>
</tr>
<tr>
<td>MPOB</td>
<td>Malaysian Palm Oil Board</td>
</tr>
<tr>
<td>MPOC</td>
<td>Malaysian Palm Oil Council</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Research background

Palm oil is the most traded oil in the world. The demand of the palm oil from the world's oils and fats market has been steadily increasing over the years (MPOB, 2017). Malaysia as one of the palm oil producing countries accounting for over one third of the total palm oil production in world export trade. The oil palm planted area across the nation covers almost 5.74 million hectares in 2016 (MPOB, 2017).

Despite vast plantation of the oil palm, the industry in Malaysia is facing the falling of fresh fruit bunches (FFB) productivity. The decrease of the yield and productivity are partly determined by the height of the oil palm tree. Management of tall oil palm tree is costly and will potentially damage the quality of the fruit upon harvesting. Current oil palm planting materials increase at the rate of 40-75 cm/year (Kushairi et al., 1999). The palms will be too tall thus replanting programs after 25 to 30 years is required.

Plant height is often associated with gibberellic acid (GA). GA is one of the phytohormones that regulates many vital plant growth and developmental processes which includes seed germination, leaf expansion, induction of flowering and plant height (Yamaguchi, 2008). Previous studies showed that regulating gibberellins biosynthesis and signaling altered the height of many plants species (Li et al., 2016; Liang et al., 2014). Therefore, regulating plant height especially in oil palm by manipulating the gibberellins biosynthesis and signaling can be significant.

1.2 Problem Statements and Objectives

Numerous efforts have been done to study the height regulation in many plant species. Previous studies reported that manipulating GA-related genes affected the stature of various species of plant such as Triticum aestivum (Pearce et al., 2015), Oryza sativa (Gebre et al., 2013), Solanum lycopersicum (Chen et al., 2016) and Panicum virgatum (Wuddineh et al., 2015). Genes that are involved in height regulation in GA biosynthesis and signaling from the oil palm are yet to be revealed. Comprehensive researches which are related to the
characterization of the genes functions associated with GA is important to improve our understanding on height regulation mechanism in oil palm.

In planta characterization of genes function is often limited by time and cost constraints. Therefore, characterization of genes functions using heterologous system, Arabidopsis thaliana was opted to observe and evaluate the functions of the genes. The model plant Arabidopsis provides a convenient in vivo system for performing functional analysis of genes as better approach for cost and time efficiencies (Zubaidah et al., 2017).

Thus, this research was conducted to study genes that are related to height regulation in oil palm. The main objective of the research was to isolate GA-related genes from the oil palm (Elaeis guineensis) and characterize their functions.

Therefore, the objectives of this study are:
1. To study the effects of PBZ on the growth pattern of clonal oil palm physiologically and morphologically.
2. To isolate and perform in-silico characterization of gibberellic acids related genes from clonal oil palm.
3. To profile the expression of gibberellic acids related genes in different oil palm tissues using RT-PCR and PBZ treated leaf tissue using qPCR.
4. To generate transgenic Arabidopsis lines (overexpression and RNAi) carrying GA-related genes and perform functional characterization analysis.
REFERENCES

122

