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N-Phosphonomethylglycine (glyphosate) is often used to control weeds in agriculture 

land. In Malaysia alone, thousands of tonnes of glyphosate formulation is used annually. 

Although this low-cost herbicide is able to effectively in killing weeds, its extensive use 

has been negatively linked to the human health due to its toxicity. Moreover, many past 

studies have reported its negative effects on aquatic animals and vertebrates. Thus, there 

is a need for an eco-friendly method to manage this environmental contaminant. 

Furthermore, it is crucial to find glyphosate-degrading microorganisms in the soil of 

interest for local applications. The objective of this study is to isolate local glyphosate-

degrading bacteria and optimisation of culture medium condition to improve the 

degradation rate. Two bacteria isolated from agriculture site located in Kedah, Malaysia 

were identified by physical, biochemical and 16S rRNA sequencing techniques as 

Burkholderia vietnamiensis strain AQ5-12 and Burkholderia sp. strain AQ5-13. These 

strains were found with the ability to tolerate up to 12 mL/L Roundup concentration and 

were successfully used to degrade glyphosate. Factors affecting glyphosate 

biodegradation such as carbon and nitrogen sources, pH of the medium, glyphosate 

concentration and temperature were optimised using one factor at time (OFAT) and 

response surface method (RSM) using free cells. Initial free cells of strain AQ5-12 and 

AQ5-13 were able to degrade 79.7% and 40.67% of 50 ppm glyphosate, respectively, 

within 24 h incubation. Using these optimisation processes, free cells of AQ5-12 were 

able to degrade 94% of 100 ppm glyphosate, whereas strain AQ5-13 degraded 94% of 

50 ppm glyphosate under optimal condition. The results illustrated fructose at 8.62 g/L, 

ammonium sulphate at 0.5 g/L, pH 5.41, 100 ppm of glyphosate concentration and 32ºC 

as the optimum biodegradation conditions required by Burkholderia vietnamiensis strain 

AQ5-12, whereas the optimum biodegradation conditions for Burkholderia sp. strain 

AQ5-13 were sucrose at 8.0 g/L, ammonium sulphate at 0.5 g/L, pH 6.0, 50 ppm of 

glyphosate concentration and temperature at 32ºC. The optimised condition for free cells 

resulted in significant improvement in degradation rate. The bacteria were immobilised 

in gellan gum gelling agent with its conditions optimised. The results presented a 

degradation rate of 87.2% 100 ppm glyphosate with gellan gum concentration of 0.55 g, 

285 number of beads and bead size of 0.48 cm for immobilised cells of AQ5-12. 
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Meanwhile, immobilised cells of AQ5-13 illustrated a degradation rate of 96.68% 50 

ppm glyphosate with gellan gum concentration of 0.55 g, 280 number of beads and bead 

size of 0.45 cm. It was seen that immobilised form of bacteria showed better 

biodegradation in terms of duration as it degrades the glyphosate within 12 h compared 

to free cells that require 24 h degradation process in optimised media. In conclusion, 

these strains possess the potential of being used in the management of glyphosate 

contamination. Furthermore, the success of isolating bacteria from local soils in Malaysia 

has shown prominent ability in glyphosate degradation rate, which can be applied for 

glyphosate treatment in agricultural land.  
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N-Phosphonomethylglycine (glyphosate) sering digunakan untuk mengawal rumpai di 

tanah pertanian. Di Malaysia sahaja, beribu-ribu tan formulasi glifosat digunakan setiap 

tahun. Walaupun racun herba murah ini berkeupayaan berkesan dalam membunuh 

rumpai, penggunaannya yang luas telah dikaitkan secara negatif dengan kesihatan 

manusia akibat keracunannya. Selain itu, banyak kajian lepas telah melaporkan kesan 

negatif ke atas haiwan akuatik dan vertebrata. Oleh itu, terdapat keperluan untuk kaedah 

yang mesra alam untuk menguruskan pencemaran alam sekitar ini. Tambahan pula, 

adalah penting untuk mencari mikroorganisma yang menurunkan glifosat di tanah yang 

menarik untuk aplikasi tempatan. Oleh demikian, objektif kajian ini adalah untuk 

mendapatkan bakteria tempatan yang boleg mendegradasikan glifosat dan 

pengoptimuman media untuk meningkatkan kadar degradasi. Dua bakteria yang 

dipencilkan dari tapak pertanian yang terletak di Kedah, Malaysia telah dikenal pasti 

dengan teknik penjujukan fizikal, biokimia dan 16S rRNA sebagai Burkholderia 

vietnamiensis strain AQ5-12 dan Burkholderia sp. strain AQ5-13. Strain ini didapati 

dengan keupayaan untuk bertolak ansur sehingga kepekatan 12 mL/L Roundup dan 

berjaya digunakan untuk merendahkan glifosat. Faktor-faktor yang mempengaruhi 

biopenurunan glifosat seperti sumber karbon dan nitrogen, pH medium, kepekatan 

glifosat dan suhu dioptimalkan dengan menggunakan satu faktor pada waktu (OFAT) 

dan kaedah permukaan tanggapan (RSM) menggunakan sel bebas. Sel-sel bebas awal 

strain AQ5-12 dan AQ5-13 mampu menurunkan 79.7% dan 40.67% glifosat 50 ppm, 

masing-masing, dalam pengeraman 24 jam. Dengan menggunakan proses 

pengoptimuman ini, sel-sel bebas AQ5-12 mampu menurunkan 94% daripada 100 ppm 

glifosat, manakala strain AQ5-13 menurunkan 94% daripada 50 ppm glifosat dalam 

keadaan optimum. Keputusan menggambarkan fruktosa pada 8.62 g/L, ammonium sulfat 

pada 0.5 g/L, pH 5.41, 100 ppm kepekatan glyphosate dan 32ºC sebagai syarat 

biopenurunan optimum yang diperlukan oleh Burkholderia vietnamiensis strain AQ5-

12, manakala keadaan biodegradasi optimum untuk Burkholderia sp. strain AQ5-13 

adalah sukrosa pada 8.0 g/L, ammonium sulfat pada 0.5 g/L, pH 6.0, 50 ppm kepekatan 

glikosat dan suhu pada 32ºC. Keadaan yang dioptimumkan untuk sel-sel bebas 

menghasilkan peningkatan yang ketara dalam kadar penurunan. Bakteria telah 

diabadikan dalam agen gel gellan gum dengan keadaannya dioptimumkan. Hasilnya 
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memperlihatkan kadar penurunan 87.2% 100 ppm glifosat dengan kepekatan gellan gum 

0.55 g, 285 bilangan manik dan saiz manik 0.48 cm untuk sel sekat gerak AQ5-12. 

Sementara itu, sel sekat gerak AQ5-13 menggambarkan kadar kemerosotan 96.68% 50 

ppm glyphosate dengan kepekatan gellan gum 0.55 g, 280 bilangan manik dan saiz 

manik 0.45 cm. Ia telah memperlihatkan bahawa bentuk sekat gerak bakteria 

menunjukkan biopenurunan yang lebih baik dari segi tempoh kerana ia menurunkan 

glifosat dalam masa 12 jam berbanding dengan sel-sel bebas yang memerlukan 24 jam 

proses penurunan dalam media yang dioptimumkan. Kesimpulannya, strain ini 

mempunyai potensi untuk digunakan dalam pengurusan pencemaran glifosat. Tambahan 

pula, kejayaan memencilkan bakteria dari tanah tempatan di Malaysia telah 

menunjukkan keupayaan menonjol dalam kadar penurunan glifosat, yang boleh 

digunakan untuk rawatan glifosat di tanah pertanian. 
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CHAPTER 1 

 

INTRODUCTION 

 

Herbicides are used as a means of controlling a variety of weed species. Newly 

formulated herbicides are fast acting and possess unique actions against different 

environmental conditions. Herbicides can help to increase crop yield by reducing crop 

loss due to uncontrolled weed growth. Meanwhile, glyphosate is a well-known herbicide 

in the agricultural field. The rise of glyphosate is mainly due to its fast action in 

controlling weed number. It is the only herbicide that targets 5-enolpyruvyl-shikimate-

3-phosphate synthase (EPSPS) (Yu et al., 2015). Hence, there are no rival herbicide 

analogues or classes for this herbicide (Duke and Powles, 2008). By inhibiting this 

crucial enzyme, plants will wither and die. Glyphosate herbicides were first introduced 

as Roundup brand by Monsanto Company. Since then, more than 172 glyphosate-based 

products can be found in Malaysia alone. 

 

Herbicides are mainly used to kill and destroy unwanted terrestrial weeds. However, 

during raining seasons, applied Roundup formulations on agricultural land are washed 

away and ended up in an aquatic medium. Aquatic plants and algae are consequently the 

most sensitive group of aquatic nontarget organisms. Moreover, they play significant 

role in aquatic ecosystems. Destruction of these aquatic plants reduces the stability of 

sediments in the lakes and running water, thus destroying the habitat where juvenile 

fishes and crustaceans take shelter (Gurnell et al., 2012). Besides, exposure to glyphosate 

on amphibians resulted in abnormalities. A high percentage of morphology alterations 

was observed in sharp-snouted tree frog (Ssinax nassicus) incubated with 3 - 7 mg/L of 

glyphosate, which is the exact amount used in the sub-agricultural field (Sviridov et al., 

2014). 

 

Increased awareness on the profound effects of environmental problems such as traces 

of glyphosate in drinking waters and accepts of herbicide usage has encouraged 

necessary investigations to avoid, reduce or eliminate these problems. Applications of 

microbial inoculants for in-situ treatment of contamination of soil include the 

enhancement of associative N2 fixation and symbiotic, prevention of soil-borne plant 

pathogens, biological control of frost injury on the tubular plant and biodegradation of 

xenobiotic compounds (Elsas and Heijnen, 1990). This microorganism has been 

introduced into contaminated sites in the form of liquid suspensions or adsorbed into 

different physical carriers (Sparrow and Ham, 1983). Nevertheless, the efficiency of 

glyphosate biodegradations depends on the success in isolating glyphosate-degrading 

strains.   

 

A number of glyphosate degrading microorganisms with varying inherent capability to 

utilise glyphosate as carbon or phosphorus source have been isolated and reported from 

different environmental sources. However, high tolerance glyphosate degrading bacteria 

were frequently isolated from agricultural contaminated sites. To date, Bacillus subtilis 
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Bs-15 is one of the best glyphosate degraders with the maximum concentration tolerated 

by this bacterium reaches as high as 40,000 mg/L isolated from glyphosate exposed soil 

(Fan et al., 2012). The growth of these bacteria and their ability to effectively degrade 

glyphosate are significantly influenced by various physical and nutritional factors. 

Optimisation of these factors is therefore crucial to maximise their degradation ability. 

One factor at a time (OFAT) optimisation technique is often deployed to achieve 

optimum glyphosate degradation. However, this method results in some limitations; 

some of them are the lack of capability to address the interactive effects between factors 

and time-consuming as the parameters cannot be simultaneously run (Okoroma et al., 

2012). Statistical optimisation approach using response surface methodology (RSM) is 

used to correct the limitations of the OFAT, which has successfully optimised many 

biological processes (Karamba et al., 2016; Nawawi et al., 2016; Fakhfakh-Zouari et al., 

2010) 

 

Most of these bacteria are isolated using glyphosate alone without introducing any 

herbicide formulation in the medium. Although it has been reported that Bacillus subtilis 

Bs-15 able to degrade up to 40,000 ppm of glyphosate, the application in situ is still 

questionable (Fan et al., 2012). This is because these bacteria need to withstand the toxic 

compounds that usually come together with glyphosate formulation. Chemicals such as 

polyethoxylated tallow amine, acrylamide and urea, which can be found in major 

glyphosate formulation, can significantly reduce bacterial growth or kill them (Mesnage 

et al., 2014). Therefore, it is important to isolate bacteria using Roundup than using 

glyphosate alone as glyphosate alone isolated bacteria may not perform as expected in 

the application of bioremediation. Furthermore, only two glyphosate degrading bacteria 

were isolated from Malaysia (Nourouzi et al., 2011). Moreover, no reports or studies 

were found on glyphosate degradation using gellan gum for immobilisation.  The 

advantage encapsulation of bacterial cells in gellan gum using immobilisation technique 

provides the ability to be used in real life application with fewer risks. Beads, made of 

gellan gum has the ability to be repeatedly used and the composition of the beads are 

made of non-toxic materials which is safer towards the environment (Karamba et al., 

2016).  Moreover, this beads prevents the target bacterial cells leaked out which could 

be pathogenic to native strains. These gaps need to be filled as data from this study could 

provide significant understanding on the effects of immobilisation using native strains in 

Malaysia.  

 

Based on the statements above, this study aims at isolating a native bacterium from 

Malaysia with a potential of withstanding the toxicity of Roundup and ability to degrade 

glyphosate.Thus, the objectives of this study are: 

 

 

1. To isolate, characterise, identify and select glyphosate-degrading bacterium 

from the soil. 

2. To determine optimise nutritional and physical conditions of the bacterium for 

a maximum glyphosate degradation using OFAT approach and RSM by free 

cells. 

3. To study the glyphosate degradation rate using immobilised bacterium, 

optimise the immobilisation conditions and investigate the degradation ability 

of the immobilised cells via OFAT approach and RSM. 
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