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Cellulose isolation from lignocellulosic materials is a crucial step prior to cellulose 
nanofiber (CNF) production. Previous studies exhibited that the presence of some 
amount of hemicellulose would give advantage in the nanofibrillation of cellulose. 
Superheated steam (SHS) pretreatment has been portrayed as a green approach to 
partially remove the hemicellulose from lignocellulosic materials. In this research, SHS 
was used to pretreat three types of oil palm biomass (OPB): oil palm mesocarp fiber 
(OPMF), oil palm empty fruit bunch (OPEFB) and oil palm frond (OPF). Potassium 
hydroxide (KOH) pretreatment was used as control experiment. Two processing methods 
for CNF production were used i.e. wet disk milling (WDM) and electrospinning. CNF 
obtained was characterised and later, CNF-reinforced polypropylene (PP) biocomposites 
were prepared using melt-blending method. SHS pretreatment caused partial removal of 
hemicellulose, producing cellulose with residual hemicellulose of 9 – 14 wt%. This 
residual hemicellulose assisted in the formation of smaller diameter size CNF from both 
of the processing methods; compared to the CNF from KOH-pretreated OPB. This can 
be explained by the role of hemicellulose which facilitated fiber beating and avoided the 
coalescence of cellulose fibrils. Overall observation showed that WDM managed to 
produce smaller diameter CNF (20-100 nm) compared to electrospinning (100-150nm). 
The influence of residual hemicellulose in CNF on PP/CNF biocomposites was evaluated. 
Several PP:CNF ratio were tested, ranging between 100:0 – 95:5 (wt/wt), with the 
addition of 3wt% of MA-g-PP as compatibiliser. It was found that 3wt% CNF gave the 
best improvement in term of mechanical properties, in which tensile and flexural 
strengths were increased by ~31% and ~28%, respectively, compared to the neat PP. It 
was interesting to note that PP/SHS-pretreated CNF and PP/KOH-pretreated CNF had 
almost similar performances; showing that residual hemicellulose left in the CNF did not 
influence the performance of the PP/CNF biocomposites produced. This finding suggests 
that complete hemicellulose removal is unnecessary for preparing CNF to be used in 
biocomposites making; and hence a less harsh pretreatment step is sufficient. In the 
preparation of nanofiber-plastics compound such as PP/CNF for biocomposites 
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production, the conventional method would involve two separate unit operations for 
nanofibrillation and melt-compounding, respectively. The ability to combine these two 
steps in one-pot would add value to the whole process, considering the instability of CNF 
which is easily agglomerated, and the low productivity due to the downtime in between 
the two-unit operations. In this research, nanofibrillation of cellulose and melt-
compounding of PP and the CNF produced were conducted in an extruder with specially-
designed screw for nanofibrillation. Results showed that PP/CNF biocomposites 
produced through this approach had almost similar performances as PP/CNF 
biocomposites produced by the conventional method. This finding contributes greatly to 
PP-based biocomposites processing, since this indicates that the overall biocomposites 
making could be shortened due to the absence of downtime between the two processes 
(nanofibrillation and melt-compounding). Overall, the findings from this study are 
beneficial for cellulose-based nanomaterials research and industries; since the results 
contributed to an effective, simpler, easier and shorter duration process for CNF and 
nanofiber-plastics compounding. 
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Pengasingan selulosa daripada bahan lignoselulosa adalah langkah penting untuk 
penghasilan CNF. Kajian sebelum ini menunjukkan kehadiran sejumlah kecil 
hemiselulosa mampu memberi kebaikan kepada nanofibrilasi selulosa. Rawatan stim 
panas lampau (SHS) telah terbukti sebagai kaedah rawatan secara hijau untuk 
menyingkirkan sebahagian hemiselulosa daripada bahan lignoselulosa. Di dalam kajian 
ini, SHS telah digunakan untuk merawat tiga jenis sisa biomas kelapa sawit (OPB): serat 
mesokarp kelapa sawit (OPMF), tandan kosong kelapa sawit (OPEFB) dan pelepah 
kelapa sawit (OPF). Rawatan kalium hidroksida (KOH) digunakan sebagai eksperimen 
kawalan. Dua kaedah penghasilan CNF telah digunakan iaitu penspinan elektro dan 
pengilingan cakera basah (WDM). CNF yang dihasilkan telah dinilai serta digunakan 
untuk penghasilan biokomposit CNF-diperkuatkan polipropilena (PP) dengan 
menggunakan kaedah campuran-lebur. Rawatan SHS telah menyingkirkan hemiselulosa 
secara separa, dengan menghasilkan selulosa dan hemiselulosa berbaki sebanyak 9 – 14 
% berat. Baki hemiselulosa  membantu dalam penghasilan CNF bersaiz yang lebih kecil 
untuk kedua-dua kaedah pemprosesan, jika dibandingkan dengan CNF daripada OPB 
terawat KOH. Ini boleh dijelaskan dengan fungsi hemiselulosa yang membantu untuk 
lonjakan fiber dan menghalang perlekatan semula fibril selulosa. Secara keseluruhanya, 
WDM menghasilkan CNF yang berdiameter lebih kecil (20-100 nm) jika dibandingkan 
dengan penspinan elektro (100-150 nm). Kesan terhadap baki hemiselulosa pada CNF 
dalam PP/CNF biokomposit telah dinilai. Beberapa nisbah untuk PP:CNF telah diuji 
dalam lingkungan 100:0 – 95:5 (berat/berat), dengan tambahan 3% berat MA-g-PP 
sebagai bahan serasi. Hasil menunjukkan bahawa 3% berat CNF memberikan kadar 
penambahbaikan yang terbaik untuk sifat mekanikal dengan peningkatan kadar kekuatan 
tegangan dan fleksur masing-masing sebanyak ~31% dan ~28%, jika dibandingkan 
dengan PP. Menariknya, PP/CNF terawat SHS dan KOH mempunyai prestasi yang 
sama; menunjukkan bahawa kehadiran sejumlah kecil hemiselulosa pada CNF tidak 
mempengaruhi prestasi biokomposit PP/CNF. Penemuan ini mencadangkan bahawa 
rawatan pengasingan hemiselulosa sepenuhnya adalah tidak diperlukan untuk 
penghasilan CNF untuk digunakan di dalam biokomposit; oleh itu, rawatan yang kurang 
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menggunakan bahan kimia boleh digunakan. Dalam penghasilan bahan campuran 
nanofiber-plastik seperti PP/CNF biokomposit secara konvesional melibatkan dua jenis 
unit operasi iaitu nanofibrilasi dan campuran-lebur. Kebolehan untuk menggabungkan 
dua proses ini di dalam satu-pot akan menyumbangkan kebaikan kepada keseluruhan 
proses, dengan mengambil kira ketidakstabilan CNF yang mudah beraglomerasi dan 
produktiviti yang rendah disebabkan oleh tambahan masa peralihan di antara dua unit 
operasi. Dalam kajian ini, nanofibrilasi selulosa dan campuran-lebur di antara PP dan 
CNF dihasilkan dengan menggunakan extrusi dengan skru yang direka khas untuk 
nanofibrilasi. Keputusan telah mendapati bahawa PP/CNF biokomposit yang dihasilkan 
secara kaedah ini mempunyai prestasi yang sama dengan komposit yang dihasilkan 
secara kaedah konvensional. Penemuan ini telah menyumbang kebaikan kepada 
pemprosesan biokomposit berasaskan PP, dimana ia membuktikan bahawa keseluruhan 
proses penghasilan biokomposit boleh dipercepatkan dengan menyingkirkan masa 
peralihan di antara dua proses (nanofibrilasi dan campuran lebur). Secara 
keseluruhannya, penemuan di dalam kajian ini memberi kebaikan kepada industri dan 
kajian nanomaterial berasaskan selulosa. Kajian ini telah menyumbang kepada proses 
penghasilan biokomposit dan nanofiber yang efektif, ringkas, mudah dan pantas.  
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

1.1 Research overview 
 
 

Malaysia is one of the top producers of palm oil in the world with a total oil palm 
plantation area of 5.39 million hectares (Awalludin et al., 2015). It is estimated that 80 
million dry tons of solid oil palm biomass (OPB) residues are produced during the palm 
oil extraction process which comprises of 54% of empty fruit bunch (OPEFB), 30% of 
shell and 18% of mesocarp fiber (OPMF) (Warid et al., 2016; Chiew and Shimada, 2013). 
This value is expected to rise exponentially by the year 2020 as the palm oil industry 
keeps expanding. Malaysian government has launched many initiatives to capitalise 
biomass potential to demonstrate its commitment towards reducing global warming and 
climate change effects (The Sun Daily,2016).  
 
 
In recent years, there are raising concerns by the public in creating environmental 
sustainability of the industry through utilisation of biomass. Various OPB such as OPMF, 
OPEFB and oil palm fronds (OPF) are suitable candidates for development of bio-based 
products such as biocomposites, biofuels, biosugars and particularly nanocellulose 
(Fahma et al., 2011; Nordin et al., 2013; Wu et al., 2017). According to Chen et al. 
(2011), nanocellulose is a fiber with a dimension of 100 nanometer (nm) or less with 
extremely high specific area and high porosity with excellent pore interconnectivity. 
Nanocellulose can be classified into cellulose nanofiber (CNF), cellulose nanocrystals 
(CNC) and bacterial nanocellulose (BNC). Nanocellulose has been listed as focused 
nanomaterial in the 11th Malaysia Plan under strategic research. It can be used for several 
applications such as plastic production, packaging, biocomposites, food, cosmetics, and 
healthcare.  
 
 
There have been several reports on CNF production from OPB (Yahya et al., 2015; 
Syamsu, 2016; Yasim-Anuar et al., 2017), indicating its suitability as starting material. 
Prior to CNF production, pretreatment process is needed to isolate cellulose from OPB 
since OPB contains other components such as lignin, hemicellulose and extractives. 
Selection of pretreatment process may influence the characteristics of the CNF produced. 
For instance, it has been reported that wood powder pretreated with sodium chlorite 
(NaClO2) for delignification resulted in holocellulose pulp, in which hemicellulose in the 
sample was found to facilitate nanofibrillation. This gave smaller diameter CNF as 
compared to cellulose pulp which has undergone pretreatment i.e. delignification and 
complete hemicellulose removal by potassium hydroxide (Iwamoto et al., 2008). 
According to the Iwamoto et al. (2008), this observation was due to the presence of 
hemicellulose inhibiting coalescence of microfibrils. This is supported by a report by 
Duchesne et al. (2001), where degree of hornification can be correlated with 
hemicellulose content of pulp.  
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Superheated steam (SHS) is considered as a promising pretreatment method for fiber due 
to its ability in removing hemicellulose (Nordin et al., 2013; Zakaria et al., 2014; Warid 
et al., 2016). It is a green fiber pretreatment method since it does not involve harsh 
chemicals and is conducted at atmospheric pressure (Nordin et al., 2013). Another 
advantage of using SHS is that it removes hemicellulose partially, since small amount of 
recalcitrant hemicellulose usually remains in the sample after SHS pretreatment. This 
could be an advantage for cellulose nanofiber production as it may assist in 
nanofibrillation of the nanocellulose. To clarify this, the effect of SHS pretreatment on 
nanofibrillation of CNF from OPB was studied in this research, using two methods for 
nanofiber production which are electrospinning and wet disk milling (WDM).  
 
 
CNF has been widely studied as reinforcement material in biocomposites. Polyolefins 
such as polypropylene (PP) is the commonly used polymer matrix in biocomposites, due 
to its low density, low production cost, and design flexibility. There are several factors 
which may affect the production of PP/CNF biocomposites such as blending technique, 
the form of CNF used and the amount of CNF loaded during blending.  Twin screw 
extrusion has been extensively used as a method for melt-blending for biocomposites 
production (Ho et al., 2015). Nevertheless, in the case of nanofiber, reports have shown 
that too much of CNF used during melt-blending has led to agglomeration which 
eventually affected the mechanical properties of the biocomposites produced (Lani et al., 
2014). It is therefore the effect of cellulose concentration (wt %) was clarified in this 
study.   
 
 
On the other hand, Oksman and colleagues (2014) and Nishida et al. (2017) have 
demonstrated that wood fibers can be directly fibrillated into nanofiber using a twin-
screw extruder, proving the feasibility of having CNF formation and melt-compounding 
in one-pot. In this study, SHS-pretreated OPB which contained hemicellulose was used 
as starting material; and a specially-designed twin-screw extruder was used to fibrillate 
the pretreated fibers into CNF, and subsequently compounded with PP in the same 
extruder. Effects of hemicellulose on nanofibrillation during this process and the 
resultant biocomposites were studied.  
 
 
1.2 Problem statements 

 
 

Pretreatment is required to isolate cellulose from OPB prior to CNF production. It was 
shown that types of pretreatment methods may influence the hemicellulose content 
which eventually affected the characteristics of the CNF produced. Current pretreatment 
method using chemical is not only removing the hemicellulose completely, but also 
causing environmental issue. SHS has been shown to be a better alternative to chemical 
pretreatment (Nordin et al., 2013) and at the same time is advantageous in partially 
removing hemicellulose from OPB. Since hemicellulose may contribute to better 
nanofibrillation, SHS was postulated to be a better pretreatment method for CNF 
production as compared to chemical pretreatment. In this study, the optimised parameters 
of SHS pretreatment was used to pretreat the OPB fibers. Two processing methods for 
CNF production were used i.e. by using WDM and electrospinning. WDM is chosen due 
to its advantages; no chemical usage, high efficiency and low cost. For electrospinning, 
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the effect of hemicellulose in the fiber to the parameters such as cellulose solution 
viscosity and surface tension was unknown, and it is imperative that the effects be studied 
to further improve the method for use with lignocellulosic biomass. 
 
 
Characteristics of biocomposites can be affected by the composition and the properties 
of the reinforcement material. The form of CNF used and the amount of CNF loaded 
during blending may also affect the properties of the biocomposites. Furthermore, the 
effect of hemicellulose on the biocomposites properties needs to be clarified to mitigate 
any negative effect it has to the biocomposites. 
 
 
Combined nanofibrillation and melt-compounding processes in twin screw extruder 
would be beneficial in reducing the time taken to prepare biocomposites, and 
subsequently increase the productivity. The use of wood powder and cellulose pulp as 
starting material in this process have been tested (Oksman et al., 2014; Nishida et al., 
2017). While, the use of holocellulose pulp (cellulose + hemicellulose) is still lacking. 
Since, the presence of hemicellulose was found advantageous in wet nanofibrillation, it 
is important to see whether the same situation applied in thermal nanofibrillation (i.e. in 
twin-screw extruder). For this process, the role of hemicellulose needs to be clarified, 
and subsequently its effect on the biocomposites produced.     
 
 
1.3 Objectives 

 
 

The overall objective of this study was to determine the influence of superheated steam 
pretreatment on the CNF formation and the characteristics of the biocomposites 
reinforced with the produced CNF. 
  
The specific objectives of this research were: 

1. To characterise the oil palm biomass cellulose isolated using optimised 
parameters of superheated steam and chemical pretreatments. 

2. To evaluate the effect of superheated steam pretreatment on cellulose nanofiber 
formation via electrospinning and wet disk milling. 

3. To investigate the effect of superheated steam-pretreated cellulose nanofiber on 
the performance of polypropylene / cellulose nanofiber biocomposites. 

4. To determine the effect of residual hemicellulose on one-pot nanofibrillation 
and melt-compounding in twin-screw extruder.    
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